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Abstract 

The rationale for large-scale randomized clinical trials so predominates today that 

essential limitations of this gold standard are rarely considered. However, this attitude is 

quite recent and in sharp contrast with earlier notions about the nature of clinical 

research. Acceptance of human experimentation in its current form came about largely 

because of particular conditions that pertained shortly after World War II. Although 

current circumstances have changed, the basic methodology of clinical trials has 

remained essentially constant. However, new realities imply the need to reconsider the 

ways in which these studies should be designed and analyzed in the future. 
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 1. Introduction 

The recent blockbuster movie Rise of the Planet of the Apes closes ominously as a drop 

of blood drips from the brow of an airline pilot who has contracted a deadly virus. This 

virus is the delivery vehicle for a wonder drug intended to cure Alzheimer’s. It works 

wonders for simian intelligence, but not so well in humans, resulting ultimately in the 

demise of humanity.  Few viewers I have surveyed seem bothered by an inconsistency 

with the 1968 original Planet of the Apes, in which a nuclear holocaust was responsible 

for our downfall and the apes’ subsequent ascendancy.  It seems as if biological agents, 

especially those developed by evil and greedy drug companies, have increasingly 

displaced nuclear weapons as the Frankenstein monsters in our cinematic nightmares.  

While movies are now in living color, the effects of drugs are portrayed as completely 

black and white. The drug is either a hero, capable of miracle cures for all who are 

treated, or an arch-villain, wantonly destroying its unwitting victims. Unfortunately, these 

caricatures are not all that far from the way scientists and regulators tend to regard 

pharmaceutical products. Is it time to adopt a more nuanced view of how drugs and 

medical devices work and how they should be evaluated? 

 

2. A Brief History 

For most of human history, medical practice was an art practiced by “healers” and based 

on esoteric knowledge acquired primarily through apprenticeship.  The value of this 

healing was believed to inhere primarily in the relationship between physician (or 

shaman, herbalist, etc.) and patient rather than in any specific standardized treatment 

modality. The actual benefits and harms resulting were unclear and probably highly 
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variable over time, geographic areas, societies, etc.  Presumably, the experience and skill 

of the individual practitioner was mainly responsible for any real or perceived efficacy of 

the “treatments” rendered.  

During the 1700’s, in the Age of Enlightenment, things gradually began to change.  The 

scientific method, based on empirical evidence about diseases and the impacts of 

different interventions, began to be applied.  However, with the major exception of  

disputes over the wisdom of inoculation to prevent smallpox, the study of medical 

treatment remained almost entirely qualitative.  At the end of the eighteenth century, 

Gilbert Blane described the  research process as hinging almost exclusively on clinical 

reasoning, with no hint of quantitative analysis: 

There is . . . a great difficulty attending all practical inquiries in 

medicine; for in order to ascertain truth, in a manner that is 

satisfactory to a mind habituated to chaste investigation, there 

must be a series of patient and attentive observations upon a 

great number of cases, and the different trials must be varied, 

weighed, and compared, in order to form a proper estimate of 

the real efficacy of different remedies and modes of treatment (Blane, 1785). 

                                                        

                                                                                                                               
Blane would not have understood the relevance of statistical data to treatment efficacy.  

Not too long after, however, statistical ideas would be in the air. By the early nineteenth 

century, the concept of probability, essentially in its current form, was well known.  

Pierre-Simon de Laplace was the leading scientific theorist of the era, and a strong 

believer in the potential of statistical analysis in various fields. In medical research, he 

advocated comparing rates of success between alternative therapeutic interventions: 

The probability calculus can make one appreciate the 

advantages and disadvantages of the methods used in the 

speculative sciences. Thus, to discover the best treatment to 

use in curing a disease, it is sufficient to test each treatment on 

the same number of patients, while keeping all  

circumstances perfectly similar. The superiority of the most 

beneficial treatment will become more and more evident as this 

number is increased, and the calculus will yield the 

corresponding probability of its benefit and of the ratio by 

which it is greater than the others (Laplace, 1825). 

 

Laplace’s prescription was mainly theoretical, but influenced some contemporary 

medical researchers, who saw statistical comparisons as a potential improvement on 

qualitative  clinical evaluations. One of the leaders in promoting quantitative analysis was 

Pierre Louis, who formulated the “numerical method” of assessing treatment efficacy. 

His approach, applied first in the 1820’s, was primitive by modern standards, utilizing 

simple counts without  formal probabilistic analysis. However, his results inspired others, 

primarily in France, to begin seeing the potential of statistical methods. 

The ideas implemented by Louis and some others to count, and even sometimes to 

compare, rates of successful outcomes for different therapies seems an obvious step to us, 

but was in fact quite controversial.  The main sticking point had to do with the conception 

of medical practice that was prevalent at the time. Most physicians, even research-minded 

ones, regarded their practice to be as much art as science. They viewed statistics as 
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glossing over the multitude of specific factors that characterized the individual patient 

and to which their “medical tact” would be applied.  Counting outcomes was in their eyes 

like treating an “average man,” a mythical being made famous by Adolphe Quetelet. 

Moreover, the numbers of individuals necessary for valid statistical conclusions was 

essentially unknown and thought to be extremely large (remember this was well before 

modern notions of significance and confidence intervals). 

Despite these limitations, advocates of the numerical method had some strong arguments 

too. They pointed out that homogeneity of patients might be good enough to obtain 

reasonable conclusions. Even if imperfect, empirical data could go far toward debunking 

the overconfidence many doctors felt about the conclusions they could derive from their 

personal experience. Some objective evidence was necessary, they argued, to place 

medicine on a more scientific footing.  In effect, the controversy revolved around the 

relative trustworthiness of two ways to make medicine more scientific:  rely primarily on 

the detailed  examination of individual circumstances by expert practitioners or on 

statistical evidence from collections of many superficially similar cases. At that time, it 

was a choice between two highly imperfect methodologies. 

The issue of how to regard numerical evidence came to a head in Paris in the mid-1830’s. 

A statistical study comparing an innovative surgery technique for removal of bladder 

stones with a traditional one had been performed by the distinguished surgeon Jean 

Civiale.  His data appeared to  demonstrate a dramatic advantage in survival for the new 

approach, lithotripsy.  However, the medical establishment remained divided.  Civiale’s 

landmark study precipitated a debate that raged for several years about the role of the 

numerical method in the scientific evaluation of therapies.  

Pierre Louis and Simeon-Denis Poisson carried the flag for probability and statistics, 

although Poisson was surprisingly cautious at the outset. Poisson, of course, was the 

leading disciple of Laplace and was in the process of producing a classic work on 

applications of probability to judgments in civil and criminal matters. The prominent  

physicians Francois Double and Risueno d’Amador led the opposition.  The battle was 

joined, but no clear resolution emerged.  Pragmatists at the time recognized  that 

statistical evidence was important to consider, but were unsure just how much weight the 

numerical data ought to be given.  

In the aftermath of this imbroglio, a few pioneers, such as Jules Gavarret in France and 

his student Elisha Bartlett in America, continued to  push for quantification. They 

appreciated the limitations of statistical comparisons, but advocated their use when cases 

were deemed sufficiently similar and large numbers could be obtained. However, in 

general, the impetus for the numerical method  seemed to peter out. Why were the (to us) 

obvious advantages of statistical methods not recognized until much later?  There were at 

least three important explanatory factors.  

One factor was simply the primitive state of data collection and analysis, which left many 

critics doubtful. For example, in the debates over lithotripsy, the quality (reliability, 

objectivity, consistency, etc.) and quantity (number of observations) of the data were 

questioned.  As for the sample sizes required, the standard of proof suggested by Poisson 

was stringent, essentially a significance level of .005. Few studies could satisfy this 

demanding criterion.  Even strong supporters of the numerical method were careful to 

explain that the conditions necessary for calculating averages and comparing them to 

obtain evidence of relative efficacy were not easily satisfied.  
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Part of the difficulty for statisticians of the day was the entanglement of two questions 

that have been separated, and presumably resolved by modern theory.  First, how large 

must the sample sizes be in order to be confident that the observed average difference is 

real? Second, how can the multitude of possible underlying causes (confounding factors) 

be taken into account? William Guy, a leading British applied statistician and practitioner 

of forensic medicine, was guardedly supportive of the numerical method. His 

reservations stemmed from the belief that very large numbers of “facts” (i.e. 

observations) would be required for scientific proof and that the calculus of probability 

could not be the sole determining factor, even theoretically, of the necessary sample 

sizes. 

I now proceed to inquire what number of facts in any given 

inquiry will suffice to yield a true average; and what use are 

we allowed to make of averages derived from comparatively 

small numbers of facts. It is not easy to answer this question. 

It is probable, and even certain, that the number will vary 

with the nature of the facts themselves, and that, as a general 

rule, more facts will be necessary in the case of units of 

variable magnitude than in the case of simple units; more 

facts in the case of events brought about by the combined 

action of many forces than…by a small number of forces 

acting together; more facts when , as in such a question as the 

duration of human life, we admit into our tables several 

classes than when we restrict our inquiry to one class.                                                                  

(Guy, 1860) 

  

Guy was well aware that probability theory could be applied to the problem of 

determining sample sizes. He explicitly rejected this approach. 

This question is from the very nature of the case insusceptible 

of mathematical treatment; but you are probably aware that 

there are mathematical formulae for calculating the limits of 

possible error attaching to any given number of facts, large or 

small, irrespective of the nature of the facts. Of these 

mathematical formulae Gavarret has made much use in 

questioning the sufficiency in point of number of some 

collections of facts made by Louis. …But such applications 

of the pure mathematics must be very rare; and are certainly 

not free from objections.                                      (Guy, 1860) 

 

A second factor was the general disillusionment with probability theory as a tool for 

reasoning about human actions and behavior. Poisson and his followers, elaborating on 

earlier attempts by Laplace and Condorcet,  were applying the theory of probability to 

voting and judicial decision-making. By around 1840, these efforts came to be generally 

seen as over-reaching, resulting in a severe backlash. The philosopher John Stuart Mill in 

1843 famously characterized these applications of probability theory as “the real 

opprobrium of mathematics.” In this climate, skepticism on the part of the medical 

profession about the value of statistics was undoubtedly reinforced. 
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Finally, opposition to statistical methods came from another quarter that might seem to us 

very surprising. Statistical methods were seen by some as being antithetical to the 

scientific method. Most outspoken and influential was Claude Bernard, the father of 

modern physiology. Bernard believed that medical science should be strictly 

deterministic, and that progress could result only from a deeper understanding of how the 

various organs and biological processes functioned.  He had no use for statistics and 

taught that each individual was a unique organism. Grouping together such diverse 

individuals in an average was not helpful to the physician. Indeed, he felt it was 

unscientific and regressive, a throwback to the pure empiricism that must ultimately give 

way to deterministic knowledge of general laws derived from anatomy, physiology and 

biochemistry. 

The results of statistics, even statistics of large numbers, seem 

indeed to show that some compensation in the variations of 

phenomena leads to a law; but as this compensation is 

indefinite, even the mathematicians confess that it can never 

teach us anything about a particular case.                                                            

(Bernard, 1865) 

 

Ironically, Bernard himself was helping to lay the groundwork for a future revival of 

statistical methods in medicine.  In 1862, Bernard had collaborated with Louis Pasteur on 

the first study of a new process for preserving wine that later became known as 

pasteurization. This work led in the 1860’s to the germ theory of disease. The discovery 

that single causes (micro-organisms) could be isolated was a powerful vindication of lab-

based biological research. However, this cause operated in a way that was essentially 

independent of individual characteristic and circumstances. So, the effect of a measure to 

eliminate this cause was amenable to relatively straightforward statistical analysis.  

For example, as early as 1870, Joseph Lister published a landmark study on the 

effectiveness of antiseptic surgery. He compared the mortality rate in the University of 

Edinburgh Hospital during 1867-1869 (after antiseptic methods) with the historical 

experience during 1864-1866 and showed a sharp decline.  However, the prevailing 

ambivalence about statistics induced Lister to emphasize the importance of the 

(deterministic) theory of Pasteur as the major element in the scientific proof supporting 

sterilization.   

This pragmatic but reserved attitude toward statistical evidence continued to hold sway 

for many years.  Even the major advances in statistical thinking initiated by Francis 

Galton and Karl Pearson between 1890 and 1920 had little impact on clinical research.  

Most medical doctors failed to understand or perceive the relevance of statistics, other 

than as (sometimes) a confirmation of what they already  knew.  The application of 

mathematical probability theory would have seemed to most of them ludicrously 

abstruse. For them, medical science could advance by careful recording of clinical case 

studies and occasional breakthroughs in fundamental biological research. Furthermore, 

the statistical methods being developed by Pearson, Edgeworth, and Yule were primarily 

concerned with large samples that were impractical in much medical experimentation. 
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3. Emergence of the Randomized Clinical Trial 

Prior to 1920, statistical comparisons of medical interventions were primarily 

observational and based on data collected retrospectively, such as that analyzed by Lister 

in his study of antiseptic surgery. A few pioneering prospective studies were undertaken, 

but the control groups, if any, were largely dictated by expediency. For example, an 

important study of an anti-typhoid vaccine developed by Almroth Wright in 1896 was 

based on a comparison of volunteers from the British Army with other soldiers in the 

same regiments. Efforts were sometimes made to find broadly “similar” groups for these 

comparisons, but questions about comparability and potential bias always remained. 

Moreover, the ethical dilemma posed by the need to withhold a potentially life-saving 

treatment from the control subjects was disquieting, as dramatically portrayed in the 

novel Arrowsmith, written by Sinclair Lewis in 1925. 

Two major scientific advances that both took place in the 1920’s laid the groundwork for 

a sea change in this situation. In medicine, the fortuitous discovery of penicillin in 1928 

led to a proliferation of new antibiotics that transformed medical practice. Administration 

of these life-saving treatments was relatively straightforward and depended little if at all 

on the subtle medical judgment on which physicians prided themselves.  The drugs’ 

effects were also much less variable with respect to the patient’s response than most 

traditional therapies. These simplifications reduced the force of arguments that 

emphasized the diversity of individuals and questioned the interpretability of simple 

percentages. However, knowledge of statistical methods among medical professionals 

grew slowly. Clinicians were trained to deal with individuals, not populations, and placed 

great faith in their professional judgment, as did the general public.  

In statistics, R. A. Fisher published Statistical Methods for Research Workers in 1925.  

Fisher’s revolutionary innovations in experimental design and analysis proved 

enormously successful in several fields, especially in agricultural research and industrial 

engineering. Fisher’s methods of significance testing, building upon W.S. Gossett’s 

initial breakthrough of the t-test in 1908, finally solved the problem of how to analyze 

experiments with modest sample sizes. His designs based on random assignment of 

treatments to experimental units provided not only a firm basis for calculating p-values 

for significance tests, but also a means of eliminating bias resulting from uncontrolled 

“causes” influencing the outcome.  At one brilliant stroke, Fisher had untangled and 

resolved these two major difficulties that had hamstrung statistical comparisons 

throughout the nineteenth century. 

Fisher’s ideas were widely adopted and further developed by many other researchers and 

mathematicians. One very important but controversial direction of this development was 

initiated by Jerzy Neyman and E.S. Pearson. These pioneers regarded statistics primarily 

as a way to guide decisions, an approach that Fisher found inappropriate for scientific 

research. However, the Neyman-Pearson decision-theoretic methods, including such 

concepts as confidence intervals, Type I and Type II error rates and statistical power, 

became widely accepted. These tools proved particularly useful for research related to 

industrial product development, production and testing. However, the use of statistics to 

evaluate the efficacy and safety of medical interventions remained quite limited. 

It was not until after World War II that conditions were ripe for the application of 

statistical methods, and randomized experimentation in particular, to evaluate medical 

treatments. During wartime, an extraordinary level of cooperation among researchers had 

been orchestrated by the U.S. and British governments in order to address pressing 

Section on Statistical Education – JSM 2011

1552



problems, especially those pertaining to battlefield casualties and illnesses. To some 

extent, the organizational structures created to meet this need carried over into the post-

war years. At the same time, Austin Bradford Hill began promoting the use of 

randomized experimentation, which had been so successful in other domains. While the 

technical problems of dealing with modest samples and controlling for confounding had 

been basically solved, serious practical problems and psychological resistance had yet to 

be overcome. Most practicing physicians balked at the idea of random assignment and 

“blinding.” 

The first randomized clinical trial, directed by Hill in 1946 under the auspices of the 

British Medical Council, demonstrated clearly the benefits conferred by streptomycin for 

the treatment of tuberculosis. Hill’s pioneering efforts began shifting medical opinion 

toward a greater appreciation of the value to society of definitive findings that could be 

obtained via RCTs. Obtaining knowledge for future application must be considered part 

of the physician’s responsibility, along with the primary task of curing each individual. 

Within a few years, many researchers were following in Hill’s footsteps and the golden 

age of the RCT had begun. 

 

4. Clinical Trials Today 

By the 1970’s, the methodology of the large-scale, double-blinded, randomized 

controlled trial had essentially reached maturity. This approach was broadly accepted as 

the only way to “prove” the efficacy of a pharmaceutical product or medical device, and 

was mandated by regulatory agencies throughout the world. The RCT has since become 

the fulcrum around which revolves a mammoth pharmaceutical industry. Clinical 

research organizations (CROs) and software development companies have evolved to 

meet the specialized organizational and technical requirements of these studies. Literally 

billions of dollars can be involved in the complex and lengthy process of developing and 

obtaining regulatory approval, with the Phase III RCT results as the critical determining 

factor.  

There is no question that the modern RCT has made an enormous contribution to human 

health and wellbeing. Replacing clinical judgment with “proof” based on randomization 

and statistical significance has been a major step forward. A plethora of new drugs and 

devices have generated huge profits for their developers and suppliers, while alleviating 

suffering and reducing mortality for their users. It is not surprising that commercial 

enterprises built around the methodological engine driving this cornucopia of benefits 

should continue to expand and thrive. It is virtually inconceivable today to imagine how 

things could possibly be different. Yet, there are critics who voice an array of troubling 

concerns. 

Increasingly, the huge investments of time and expense required by large-scale RCTs fail 

to deliver the definitive answers anticipated. Promising results from one study often 

cannot be replicated in subsequent research. Products that appear safe and effective in 

trials leading to approval may turn out to have problems that are only discovered after 

much wider application post-approval. Some treatments that seem firmly established are 

later called into question, either for safety concerns or an apparent loss of efficacy. These 

and other sources of ambiguity can make it difficult for the medical practitioner to 

interpret and apply a study’s findings to individual patients. Indeed, there is often a 

Section on Statistical Education – JSM 2011

1553



disconnect between the black-and-white “decisions” offered by the statistical paradigm 

and the shades of gray that confront clinicians in dealing with individual patients.  

At a more global level, some skeptics are concerned  about the “medicalization” of 

society. They question the development and aggressive marketing of products for which 

lifestyle changes, or perhaps some form of alternative and complementary medicine, 

might be effective. Many people who would not have been considered ill a generation 

ago are consuming multiple powerful medications on a regular basis. The benefits they 

receive should ideally be weighed against potential adverse effects and drug interactions 

that are often not well catalogued. Again, the RCTs provide little guidance to help the 

practicing physician sort through these complexities. 

 

5. What is the Real Problem? 

Some critics of the RCT have pointed mainly to practical difficulties in implementing its 

stringent requirements: randomization, blinding of investigators and participants, long-

term follow-up, subject retention, accurate data collection, etc.  The usual response is that 

these technical problems can be overcome by scrupulous (and extremely costly) 

adherence to proper research practice. Criticisms of RCTs fall on deaf ears because they 

are tilting against a platonic ideal of research methodology.  Theoretically, the RCT 

appears to be unimpeachable; its internal logic is compelling and promises to deliver 

unequivocal results. Yes, there are practical problems argue its defenders, but nothing is 

perfect. Look at the great successes that have been achieved for decades using the RCT. 

Besides, what else can we do? 

Regrettably, discussions about methodology are hampered by an overly narrow view of 

the issues. As indicated above, a century ago it was natural for scientists to focus on the 

great diversity among individual patients and the complex interactive character of the 

available therapies. The advent of powerful antibiotics changed all that. Therapies 

became highly standardized, primarily in the form of drugs, and the doctor’s role was 

limited to diagnosing the disease and prescribing the correct medication and dose. Patient 

outcomes became standardized as well; either the patient recovered or failed to recover.  

Specific underlying factors that affected the outcome, however complex they might be, 

were completely invisible. For all practical purposes, the outcomes were like rolls of the 

dice or spins of the roulette wheel. Thus, the conditions were ideal for applying the same 

experimental methods that had proved so useful in agriculture and industry. Individuals 

might vary, but the underlying causes of variation were inaccessible and essentially 

irrelevant. The increase in the rate of cure in the population could be assumed to provide 

important information about any individual’s increased “chances” of being cured. So, 

what is wrong with this logic? 

The problem is not with the methodology per se, but with its fit to current conditions. 

Increasingly, the chronic diseases of aging that are being tackled by pharmaceutical R&D 

today do not conform to the classic statistical assumptions. In fact, they raise more 

sophisticated versions of the same issues that vexed researchers long ago. These chronic 

conditions have come into focus precisely because of improvements in health and living 

standards made possible by science, especially medical science.  But afflictions like heart 

disease, cancer, and Alzheimer’s have much more complex and multi-factorial etiologies 

than bacterial infections. Effective weapons against these chronic conditions take the 
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form of long-term lifestyle modification along with medications that target various 

biological processes. These new drugs essentially interact in complex ways with 

individual biology and often with other drugs as well. Treatment becomes a complex 

balancing act, as the physician tinkers with delicate biophysical and biochemical 

mechanisms that are only partially understood.   

These changes in the nature of primary target diseases and their treatment have major 

implications for the design of research. Once again, the physician is faced with the 

salience of individual variability. Dispensing medications in a one-size-fits-all manner 

does not make sense. Helping each individual patient navigate the complex range of 

options for optimizing her health is a fundamentally different problem than curing a case 

syphilis or pneumonia. The kind of information about “average” effects typically 

obtained from RCTs must be filtered through the doctor’s experience to determine its 

possible relevance to the individual patient. But most reports of RCTs offer little or no 

meaningful guidance for a “personalized” interpretation of efficacy and safety. Moreover, 

the rapidly expanding knowledge being generated about genomics and biomarkers will 

only exacerbate the disconnect between RCT results and clinical practice. How should 

the results of sophisticated genetic and other testing be entered into the equation when 

treating each individual? 

 

6. The Great Misconception 

The randomized clinical trial is regarded by most statisticians as the only way to estimate 

the “true” effect of a medical intervention. Despite the growing importance of 

personalized medicine, overall (population-level) effects are considered to be the first-

order lessons to be learned from any RCT. Only after such a general effect is established, 

can the “interactions” between the treatment and other variables be considered. However, 

these “second-order” interactive effects, if they exist, are much harder to prove (lower 

statistical power, problems of multiplicity) and are accordingly treated as tentative, 

requiring further investigation (which rarely occurs). Thus, the cards are stacked against 

detecting any characteristics that can either enhance or dilute the drug’s effect. 

In the 1950’s, it was perfectly reasonable to view the “main effect” estimated from a 

properly designed RCT to be the  primary issue of clinical importance.  This population-

level effect could be interpreted as a measure of how much expected benefit in terms of 

decreased “risk” a patient might obtain. But increasingly the belief that an aggregate 

effect for a population is relevant to each individual may be a misconception. Perhaps we 

need to recover some of the skepticism of our nineteenth- century predecessors regarding 

such statistical summarizations of disparate “facts,” albeit from a more sophisticated 

modern vantage point.  

To clarify the issues, let us consider the simplest situation, when the outcome of interest 

is a particular event (say an ischemic stroke). An RCT comparing a proposed new 

preventive treatment typically will be summarized by a relative risk, perhaps expressed as 

a risk ratio or hazard ratio. This global parameter, if found to be statistically significant in 

a properly conducted RCT is interpreted as the estimated causal effect on the outcome. 

Such a finding is the primary green light that is necessary for approval by regulatory 

agencies. What is rarely understood clearly, however, is that this effect is a statistical 

summary of the individual effects for the particular population under study.  
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What do we mean by an individual causal effect? The classical probabilistic model 

underlying modern statistics has no way to represent the idea of an individual effect. 

However, in recent decades methodologists have recognized that we can define, in 

theory, the potential outcomes that would occur under two different treatment modalities. 

For example, the “outcome” for each subject, such as whether or not a stroke occurs, is 

conceived as a pair of possibilities, a response pattern. The problem is that only one of 

the two possibilities is actually observed. The other is “missing.” By calculating a global 

effect parameter, we effectively “average” the unobservable individual effects.  

In an early paper on agricultural experimentation published in Poland in 1923, Neyman 

explicitly defined this counterfactual causal effect for each experimental unit. However, 

neither he nor anyone else pursued the implications of this idea. About 50 years later, 

Donald Rubin introduced the same concept, initially as a way to express and tackle 

problems of bias in observational studies. Building on this idea, Rubin and his colleagues 

have derived such important innovations as propensity scores and principal components. 

However, while recognizing the existence of individual effects, these methods have so far 

remained primarily focused on aggregate summary measures, such as the average effect 

or relative risk. But suppose that these effects are highly variable, as may well often be 

the case in the kinds of research of most interest today. Then what does this aggregate 

effect really mean?   

 

7.  Ambiguity 

Modern statistical methods have achieved great success in many areas of application. 

However, these technical triumphs depend on the suppression of effect variability.  When 

causal effects can vary substantially across individuals, there is an unavoidable ambiguity 

in the interpretation of aggregate effects. This ambiguity arises because there are many 

possible distributions of individual effects that are consistent with any particular 

aggregate effect. If the individual effects are approximately uniform or vary in an 

essentially random manner (i.e. unrelated to any potentially observable factors), then the 

population parameter remains relevant to any member of the population. However, 

suppose there exist potentially identifiable individual characteristics that are related to the 

causal effect. Then it may become feasible to specify subgroups based on these 

characteristics for which the overall parameter value is misleading.   

Taking seriously this potential leads to complexities that are beyond the power of “pure 

mathematics” to resolve. Neyman, at the dawn of modern statistics,  was perhaps 

uncomfortable with the resulting ambiguities, but may have reasoned that in the context 

of agricultural experiments, the variability across plots of land was immaterial to the 

paramount issue of the overall yield. In modern clinical research, this approach is 

becoming increasingly untenable. Consider the example of a hypothetical drug to prevent 

stroke mentioned above. There are four possible response patterns for any subject, as 

shown in Table 1.  
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Table 1 

Four Possible Response Patterns 

Response Pattern Treatment Placebo Proportion 

1: Doomed stroke stroke P1 

2: Causal stroke no stroke P2 

3: Preventive no stroke stroke P3 

4: Immune no stroke no stroke P4 

 

The expected causal effect calculated from such a study is a function of the distribution 

of response patterns.  For example, the relative risk is given by: 

RR = (P1 + P2) / (P1 + P3 ) 

To understand why, observe that an observed stroke in the study group that is given 

active treatment can represent either a doomed or causal individual. Likewise, a stroke in 

the comparison group can be either a doomed or preventive.  

The same value of RR can correspond to many possible underlying distributions of the 

response patterns. Suppose, for instance, that RR = 0. One possible underlying 

distribution of response patterns is shown in Table 2. 

 

Table 2 

Example of Sharp-Null Hypothesis 

Response Pattern Treatment Placebo Proportion 

1: Doomed stroke stroke .20 

2: Causal stroke no stroke 0 

3: Preventive no stroke stroke 0 

4: Immune no stroke no stroke .80 

 

This underlying causal structure would generate the following observed 2 x 2 

table: 

Table 3 

Hypothetical Stroke Study Results 

 
Stroke No Stroke 

 

Treatment 200 800 20% 

Placebo 200 800 20% 

 

Section on Statistical Education – JSM 2011

1557



These results would ordinarily be interpreted to mean that the intervention had absolutely 

no impact. This notion that no effect for any individual is sometimes called the “sharp- 

null hypothesis.”  However, Table 3 would also be consistent with the underlying 

structure displayed in Table 4: 

  

Table 4 

Example of Dull-Null Hypothesis 

Response Pattern Treatment Placebo Proportion 

1: Doomed stroke stroke .10 

2: Causal stroke no stroke .10 

3: Preventive no stroke stroke .10 

4: Immune no stroke no stroke .70 
 

This “dull-null” hypothesis would tell quite a different story, if the underlying causal 

structure could be revealed. Rather than an overall risk ratio, researchers would focus on 

understanding exactly who could be helped and who harmed by the drug. Can we specify 

variables that predict treatment success? Can we find subgroups of patients with distinct 

distributions of response patterns that differ from the overall population distribution? 

These questions are rarely asked, especially if the overall effect parameter is not 

statistically significant. 

This causal modeling perspective also has important implications for the design of RCTs. 

Sample sizes are chosen to achieve a desired level of statistical power. For example, a 

study might be powered to have a .80 probability of declaring a significant effect if  the 

true RR=.50.  However,  just as for the null hypothesis, this alternative hypothesis is also 

ambiguous. We would interpret this RR to mean that a stroke would be avoided for half 

of those subjects destined to experience one without treatment. We would thus implicitly 

assume the situation portrayed by Table 5. 

Table 5 

Usual Alternative Hypothesis for RR = 2 

Response Pattern Treatment Placebo Proportion 

1: Doomed stroke stroke .10 

2: Causal stroke no stroke 0 

3: Preventive no stroke stroke .10 

4: Immune no stroke no stroke .80 
 

Power calculations are based on the probability distribution for two independent binomial 

samples, regardless of the underlying causal structure. However, it is possible that a 

subgroup of the subjects would actually be harmed by the treatment. Thus, the true state 

of affairs might be as shown in Table 6. 
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Table 6 

Another Alternative Hypothesis for RR = 2 

Response Pattern Treatment Placebo Proportion 

1: Doomed stroke stroke .05 

2: Causal stroke no stroke .05 

3: Preventive no stroke stroke .15 

4: Immune no stroke no stroke .75 
 

There are an infinite number of possible alternative hypotheses that all correspond to  RR 

= .50. So, calculating power against a global alternative like  RR = .50 could be irrelevant 

if our real interest is in stratifying the population for potential personalized treatment. The 

many possibilities for post hoc analyses make a shambles of any traditional measurement 

of statistical significance or power.  

The existence of individual effect variability is an inconvenient truth for standard RCT 

methodology. So, it is convenient for the statistician to ignore it. However,  the clinician 

may have reasons to believe that her particular patient has special characteristics that are 

relevant to his chances of responding favorably to the treatment. Such qualitative insight 

effectively places the patient in a different “reference population” from that on which the 

RCT was based. In the nineteenth century, the physician’s judgment would have been 

trusted much more than the “numerical” rates derived from a large anonymous group. 

Today, we have come full circle, so that this hard-to-quantify clinical expertise can be 

given virtually no weight in our analyses. Has this pendulum swung too far?  

 

8.  The Future of Clinical Trials 

Clinical trials are typically designed with exquisite care around a single objective: to 

guarantee that the primary null hypothesis can be proved or disproved. The protocol for 

an RCT specifies the number of subjects necessary to assure adequate statistical power 

and the exact statistical techniques to be employed. These procedural steps provide the 

sole rationale for believing the results of the study. However, the iron discipline of the 

modern RCT also exerts a highly conservative influence. Investigators must effectively 

promise to learn absolutely nothing throughout the long years of research. They are not 

only “blinded” but effectively lobotomized. As a result, the researcher becomes a passive 

participant who is unable to think creatively about what is happening and to refine his 

understanding as new data and external information emerge over time. 

The sacrifices made by investigators and patients to participate in RCTs are usually 

justified on the basis of necessity. In order to be certain about the one pre-specified piece 

of information, any deviations from the study plan must be avoided. But in light of 

individual effect variability, such certainty is illusory. As a result, the payoff for the 

enormous investment of time and effort is often much too paltry. Consider that the 

majority of new medical products fail to gain approval after years of study. Most are 

shelved, never to make a contribution to human health. Those that are ultimately 

approved may later be found to have unforeseen adverse effects that limit their use. The 
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true calculus of risk versus benefit for the drug or device may turn out to be variable 

across different populations. This problem of external validity  has been largely ignored  

because the potential importance of effect variability has not been appreciated. 

Rather than narrowly focusing on whether or not the treatment “works” in general, we 

should ask a better question. For whom (if anyone) is the treatment beneficial and for 

whom is it harmful? What individual and circumstantial characteristics are conducive to a 

positive (or negative) response? To answer such questions will require a more flexible 

approach to design and analysis of RCTs. There needs to be some mechanism for 

extracting information about effect variability and its possible implications during the 

course of the trial. For example, some researchers could be encouraged to commit the 

heresy of formulating new or modified hypotheses and to perform post hoc interim 

exploratory analyses.  This “discovery team” would be completely separate from the 

more traditional research infrastructure. In effect, its mission would be to “mine” the 

data, both during and after the trial.  

Incorporating a discovery component would greatly increase the potential value of the 

RCT. The additional knowledge gained could set the stage for a more nuanced 

presentation of study findings. It might suggest, and to some extent test, the importance 

of various causal factors related to genetics, concomitant medication, medical history, 

etc. This information could aid clinicians in personalizing their treatment decisions. Even 

if the results of the data mining efforts are negative, they could prove useful by 

disabusing practitioners of intuitions that may be incorrect.  Of course, the exploratory 

research would be less “rigorous” than the traditional form of evaluation. As an exercise 

in data mining, the strength of evidence produced would be assessed not by statistical 

significance, which would be virtually impossible to assess, but would depend mainly on 

validation, either within the RCT itself or in subsequent research.    

In the burgeoning field of “predictive analytics,” data mining techniques, including 

independent validation on hold-out samples, has become standard practice. The 

philosophy is to “trust but verify” under the optimistic assumption that meaningful 

“segmentation” of a population is likely to exist. Techniques that explicitly aim to detect 

characteristics associated with different response patterns for treatments are starting to be 

developed, primarily in the context of marketing research. Finding productive ways to 

bring this sort of creative energy into the sphere of clinical trials without sacrificing 

scientific rigor is a critical challenge for today’s statisticians.      
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