Logistic Regression: MLE vs. OLS3 in Excel 2013

by Milo Schield

Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

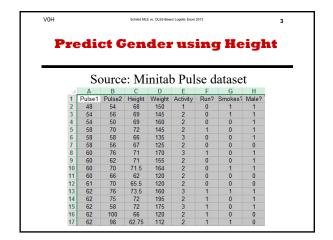
Slides and data at: www.StatLit.org/ pdf/2014-Schield-Logistic-MLE-OLS3-Excel2013-slides.pdf Excel/2014-Schield-Logistic-MLE-OLS3-Excel2013.xlsx

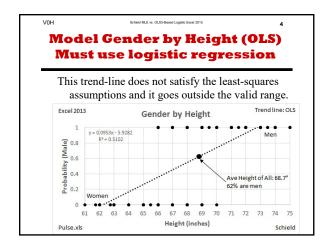
Background & Goals

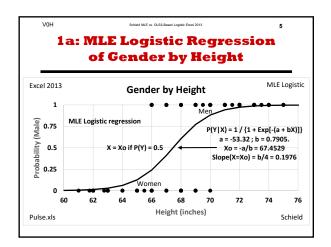
Doing logistic regression properly requires MLE. Doing MLE in Excel is not easy. See Schield 2014a

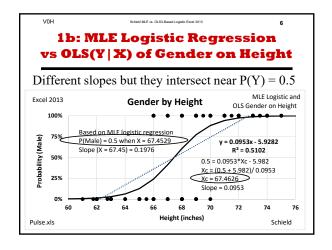
Schield has identified three OLS shortcuts: OLS1: Model Ln(Odds(p)) where p is near 0 or 1 OLS2: Model Ln(Odds(p)) where p is grouped data OLS3: Use OLS to estimate logistic parameters.

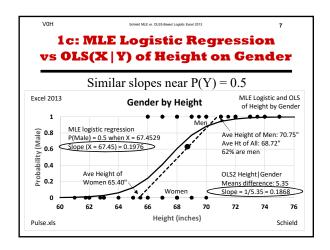
These slides compare OLS3 with MLE. Schield (2014b) presents the OLS3-based approach.

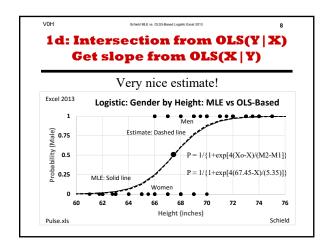


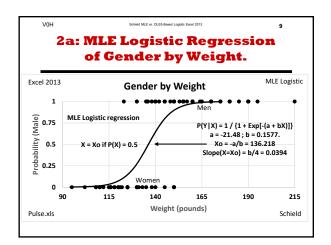


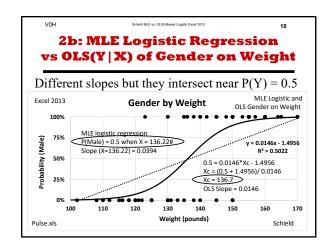


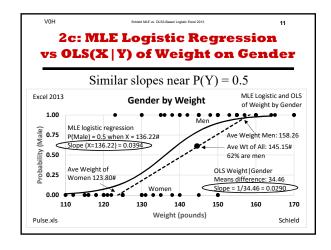


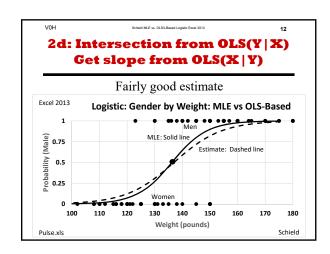


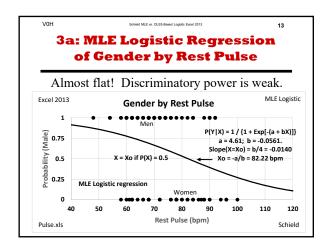


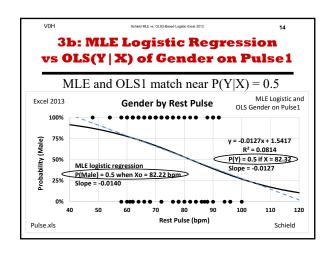


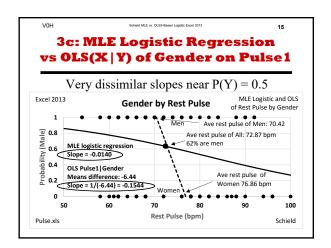


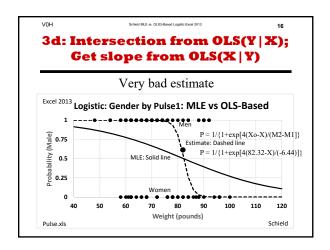




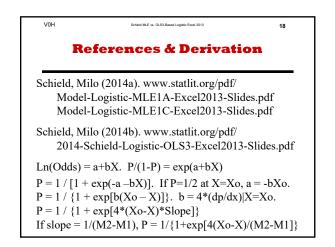








#1: R² = 51% by Height. "Good estimate"
#2: R² = 50% by Weight. "Fair estimate"
#3: R² = 8% by Rest Pulse. "Bad estimate"
Conclusion #1: Using OLS(Y|X) for Xo and using OLS(X|Y) for the associated slope works fairly well when the overlap is small or moderate: OLS(Y|X). R-squared is high: > 0.5
Conclusion #2: Must use MLE when the overlap is large: OLS(Y|X) R-squared is low (< 0.5). But why bother if the model explains so little?



Logistic Regression: MLE vs. OLS3 in Excel 2013

by Milo Schield

Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides and data at: www.StatLit.org/ pdf/2014-Schield-Logistic-MLE-OLS3-Excel2013-slides.pdf Excel/2014-Schield-Logistic-MLE-OLS3-Excel2013.xlsx

Background & Goals

Doing logistic regression properly requires MLE. Doing MLE in Excel is not easy. See Schield 2014a

Schield has identified three OLS shortcuts:

OLS1: Model Ln(Odds(p)) where p is near 0 or 1

OLS2: Model Ln(Odds(p)) where p is grouped data

OLS3: Use OLS to estimate logistic parameters.

These slides compare OLS3 with MLE. Schield (2014b) presents the OLS3-based approach.

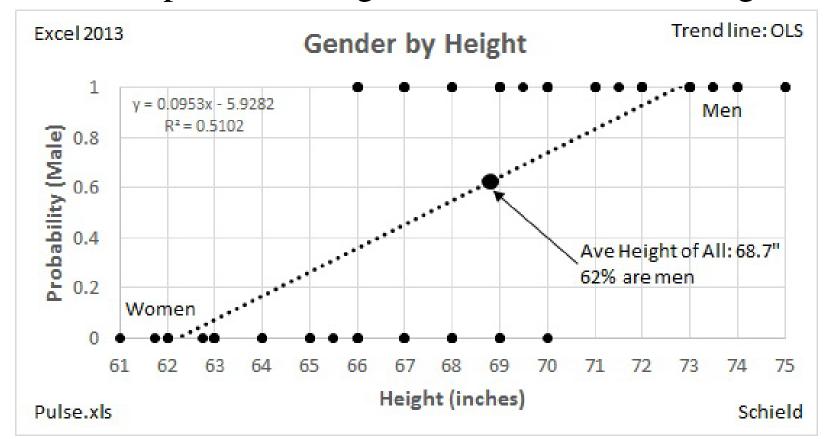
Predict Gender using Height

Source: Minitab Pulse dataset

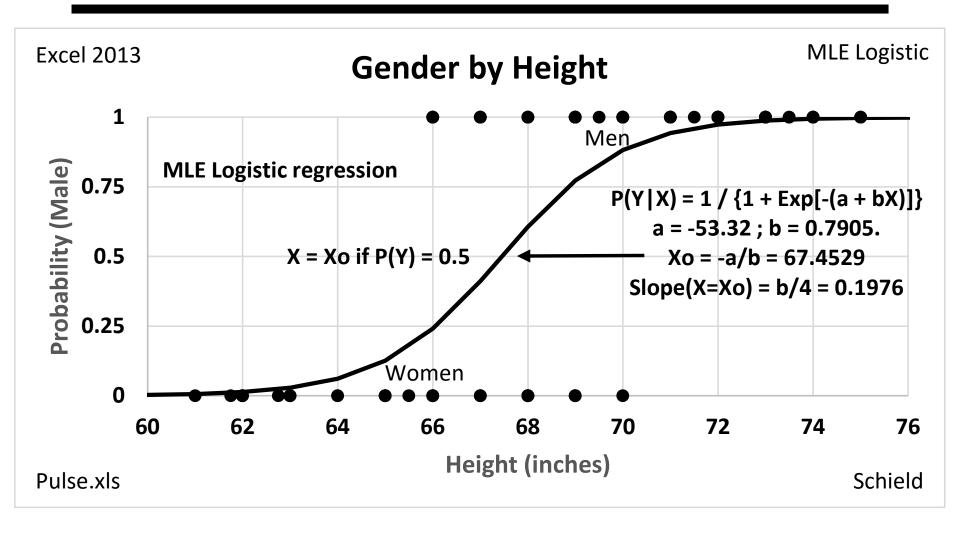
4	Α	В	С	D	E	F	G	Н
1	Pulse1	Pulse2	Height	Weight	Activity	Run?	Smokes?	Male?
2	48	54	68	150	1	0	4	1
3	54	56	69	145	2	0	1	1
4	54	50	69	160	2	0	0	11
5	58	70	72	145	2	1	0	1
6	58	58	66	135	3	0	0	1
7	58	56	67	125	2	0	0	0
8	60	76	71	170	3	1	0	1
9	60	62	71	155	2	0	0	1
10	60	70	71.5	164	2	0	1	1
11	60	66	62	120	2	0	0	0
12	61	70	65.5	120	2	0	0	0
13	62	76	73.5	160	3	1	1	1
14	62	75	72	195	2	1	0	1
15	62	58	72	175	3	1	0	1
16	62	100	66	120	2	1	0	0
17	62	98	62.75	112	2	1	1	0

Model Gender by Height (OLS) Must use logistic regression

This trend-line does not satisfy the least-squares assumptions and it goes outside the valid range.

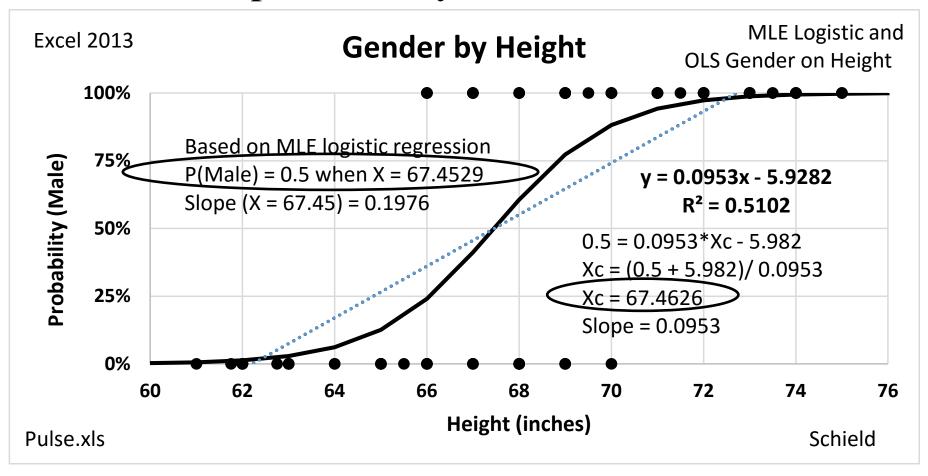


1a: MLE Logistic Regression of Gender by Height



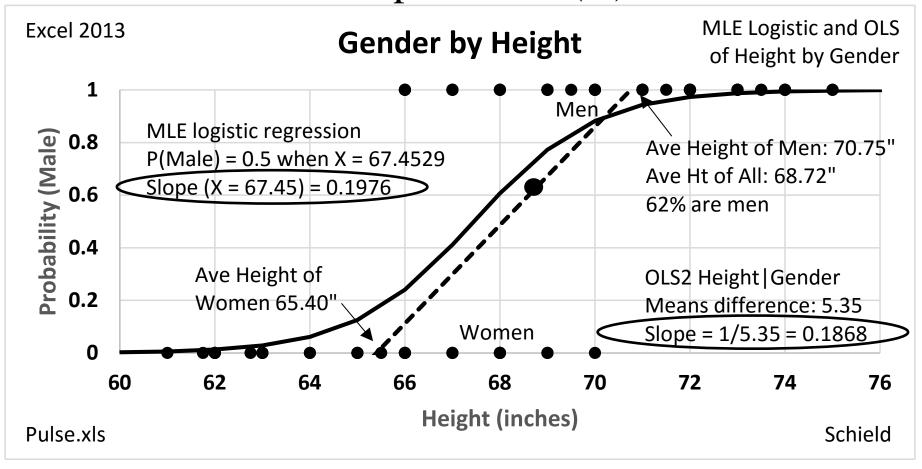
1b: MLE Logistic Regression vs OLS(Y | X) of Gender on Height

Different slopes but they intersect near P(Y) = 0.5



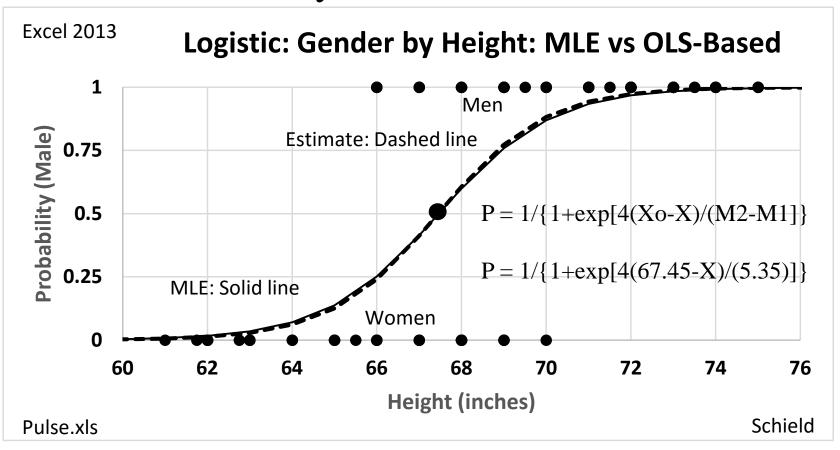
1c: MLE Logistic Regression vs OLS(X | Y) of Height on Gender

Similar slopes near P(Y) = 0.5

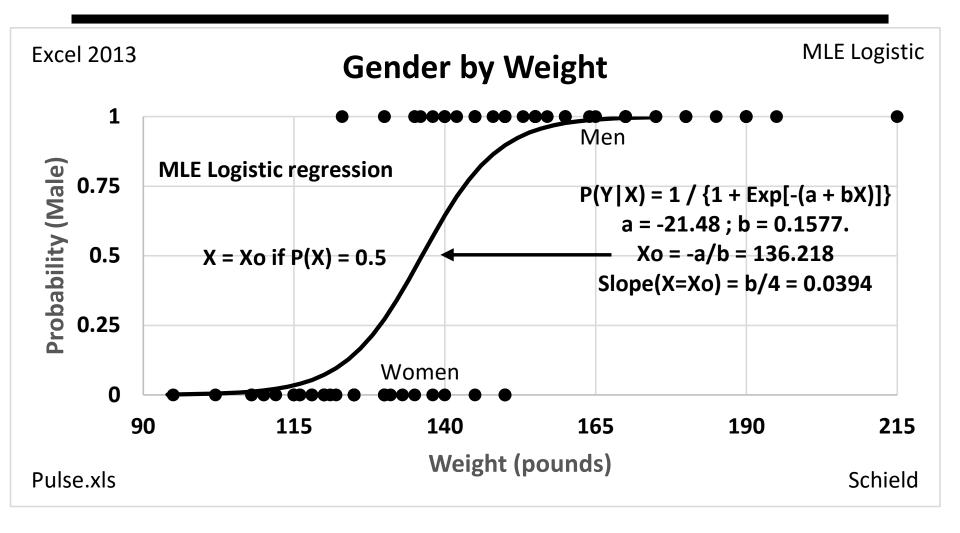


1d: Intersection from OLS(Y | X) Get slope from OLS(X | Y)

Very nice estimate!

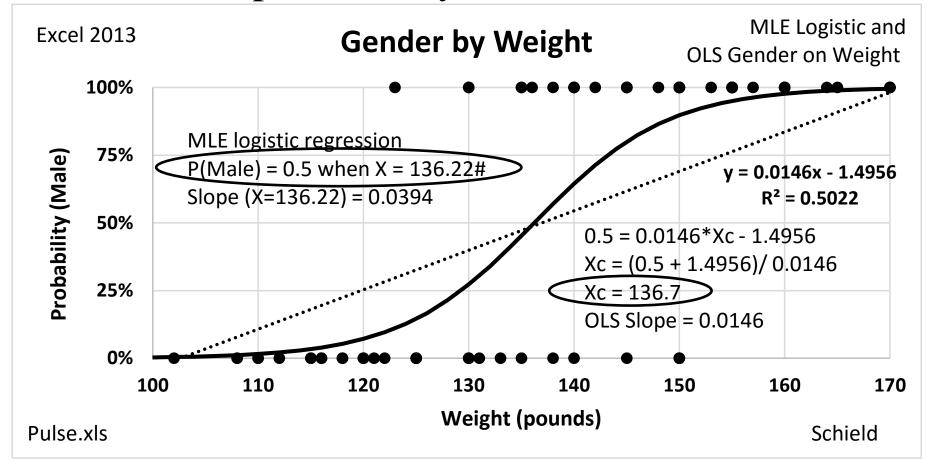


2a: MLE Logistic Regression of Gender by Weight.



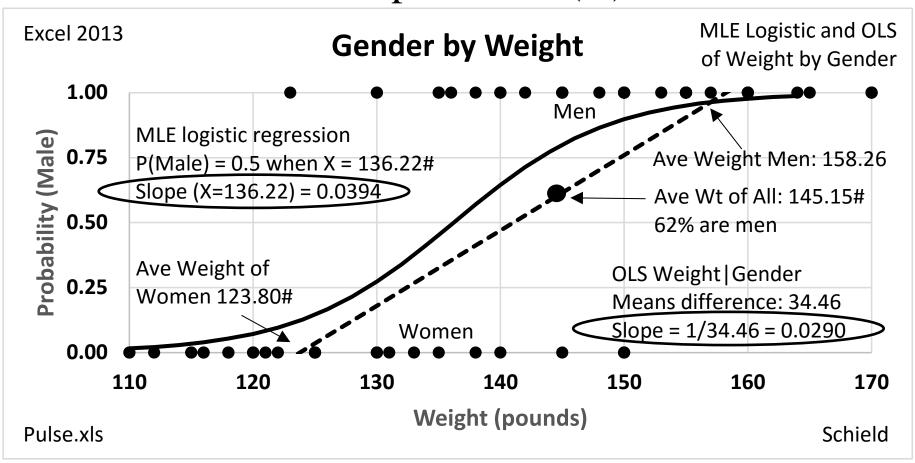
2b: MLE Logistic Regression vs OLS(Y | X) of Gender on Weight

Different slopes but they intersect near P(Y) = 0.5



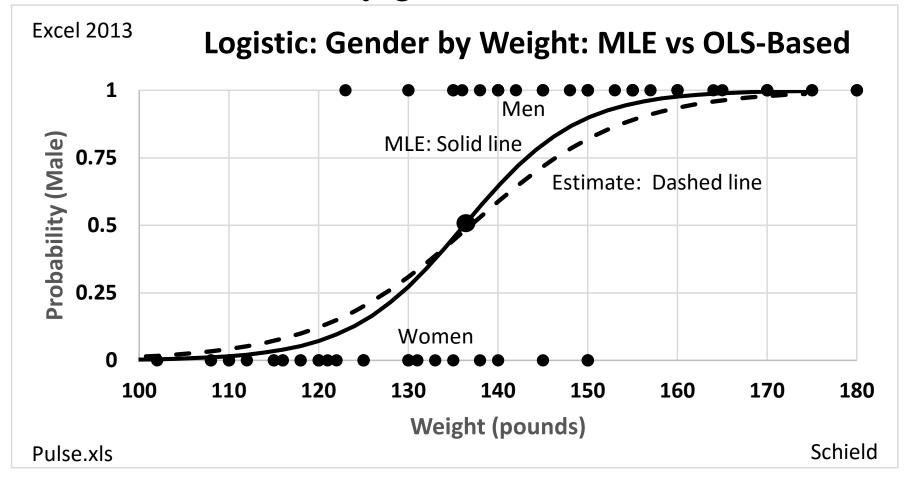
2c: MLE Logistic Regression vs OLS(X | Y) of Weight on Gender

Similar slopes near P(Y) = 0.5



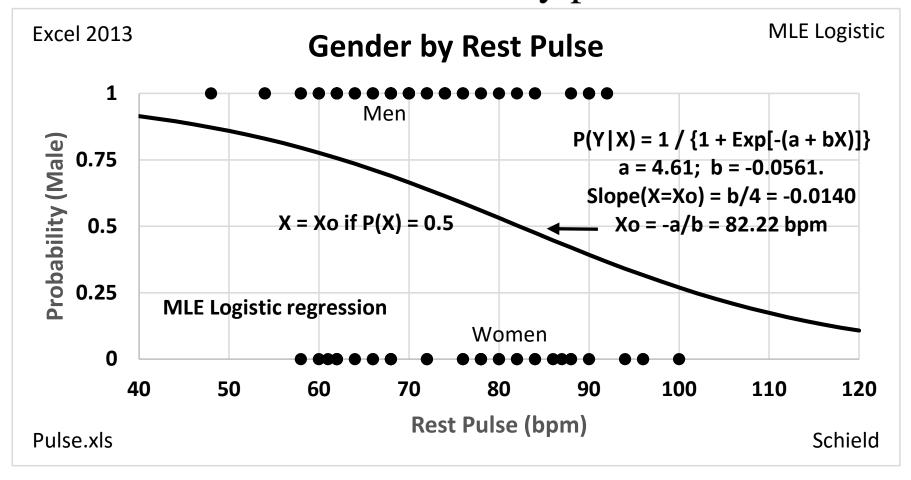
2d: Intersection from OLS(Y | X) Get slope from OLS(X | Y)

Fairly good estimate



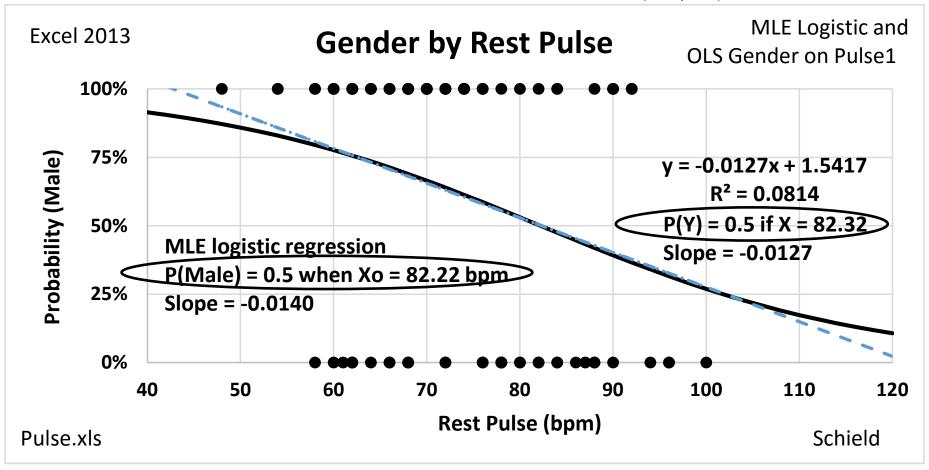
3a: MLE Logistic Regression of Gender by Rest Pulse

Almost flat! Discriminatory power is weak.



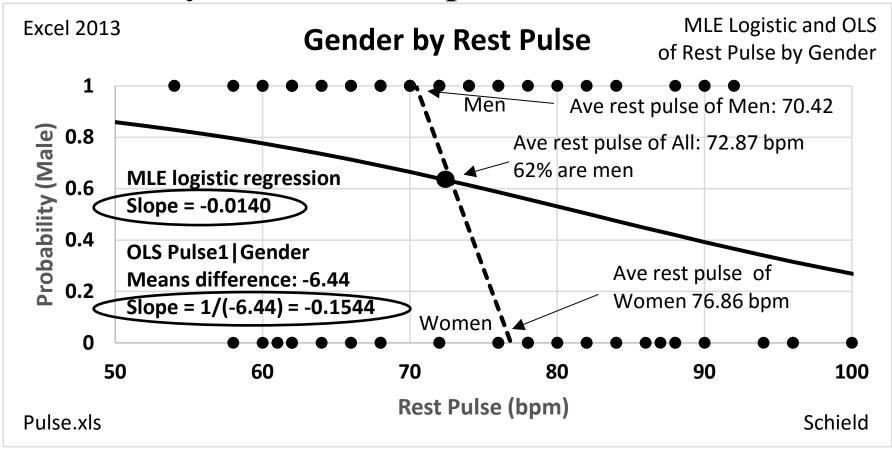
3b: MLE Logistic Regression vs OLS(Y | X) of Gender on Pulse1

MLE and OLS1 match near P(Y|X) = 0.5



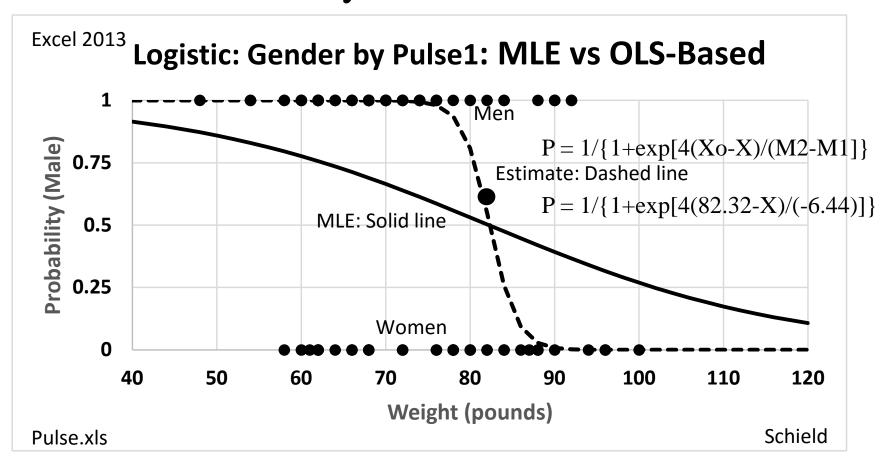
3c: MLE Logistic Regression vs OLS(X | Y) of Gender on Pulse1

Very dissimilar slopes near P(Y) = 0.5



3d: Intersection from OLS(Y | X); Get slope from OLS(X | Y)

Very bad estimate



Analysis and Conclusion Model Gender:

```
#1: R^2 = 51\% by Height. "Good estimate"
```

#2: $R^2 = 50\%$ by Weight. "Fair estimate"

#3: $R^2 = 8\%$ by Rest Pulse. "Bad estimate"

Conclusion #1: Using OLS(Y|X) for Xo and using OLS(X|Y) for the associated slope works fairly well when the overlap is small or moderate: OLS(Y|X). R-squared is high: > 0.5

Conclusion #2: Must use MLE when the overlap is large: OLS(Y|X) R-squared is low (< 0.5). But why bother if the model explains so little?

References & Derivation

Schield, Milo (2014a). www.statlit.org/pdf/ Model-Logistic-MLE1A-Excel2013-Slides.pdf Model-Logistic-MLE1C-Excel2013-Slides.pdf

Schield, Milo (2014b). www.statlit.org/pdf/ 2014-Schield-Logistic-OLS3-Excel2013-Slides.pdf

Ln(Odds) = a+bX. P/(1-P) = exp(a+bX) P = 1 / [1 + exp(-a -bX)]. If P=1/2 at X=Xo, a = -bXo. P = 1 / {1 + exp[b(Xo - X)]}. b = 4*(dp/dx)|X=Xo. P = 1 / {1 + exp[4*(Xo-X)*Slope]} If slope = 1/(M2-M1), P = 1/{1+exp[4(Xo-X)/(M2-M1]}