LEWIS CARROLL'S DEDUCTIVE LOGIC

Source: Lewis Carroll's <u>Symbolic Logic</u> Edited by W. Bartley, III Published by Potter 1977 ISBN: 0-517-53363-4 pb

Lewis Caroll: (1832-1898)

He was the author of <u>Alice in Wonderland</u> (1865) and <u>Through The Looking Glass</u>. (1871) He was the foremost Victorian photographer of children Under his real name of Charles Dodson he taught mathematics at Oxford He published <u>The Game of Logic</u> in 1886 and published <u>Symbolic Logic</u> (Part I) in 1896.

Symbolic Logic (1896):

Lewis Carol devised a simple, graphical technique to solve certain deductive arguments "Symbolic" is used in an algebraic (Boolean) sense.

Carroll's logic is different from the preceding formal (classical or Aristotilean) logic. Carroll's logic is different from the subsequent mathematical (or modern) logic.

Carroll say his logic as valuable in many ways:

He hoped it would be "of real service to the young" as a "healthful mental recreation".

"those who really try to understand it will find it more interesting than most of the games.."

"He (the accomplished Logician) can apply this skill to any and every subject of human thought; in every one of them it will help one to get *clear* ideas. to make *orderly* arrangement of knowledge and to detect and unravel the *fallacies* one will meet in every subject one may be interested in."

Carroll felt his logic was much easier than classical (formal) logic for three reasons:

- 1. "It (formal logic) is much too hard for the average intellect"
- 2. "Those who do succeed in mastering its principles find it hopelessly dry and uninteresting"
- "It's results are absolutely and entirely useless"
 [Carroll might hold these criticisms against modern mathematical logic]

By contrast, Carroll felt his logic was superior for similar reasons:

- 1. "I have taught the method of Symbolic Logic to *many* children, with entire success" Children learn it easily , and take real *interest* in it
- 2. "As to Symbolic Logic being dry, I can only say try it! I have found .. none to rival it.
- 3. "As to its being useless, I have already said enough." (see above)

For a complete and deliberate presentation of this topic, consult <u>Symbolic Logic</u> by Lewis Carroll

"If this approach can be used any place (during a lecture or while reading or talking) and if it can be recreated without reviewing a forgotten text book, and if it can be applied to many, many situations, then truly this is a tool which is highly valuable. As such it can justify your investment of time, attention and practice necessary to use its power as its master."

Deductive arguments:

Arguments are of two kinds: deductive and inductive

Deductive arguments must have at least one universal premise Inductive arguments have no universal premises but must have a universal conclusion

Deductive arguments are considered either valid or invalid

A valid argument means the conclusion must be true if the premises are true.

Inductive arguments are considered either strong or weak

A strong argument means the conclusion is probably true if the premises are true.

Carroll's Symbolic Logic deals strictly with deductive arguments.

Within mathematics, deductive arguments are extremely common					
Arithmetic: $X + Y = Y + X$ (Commutative Law). Therefore $4+6 = 6+4$					
	(x+y)+z = x+(y+z)	(Associativ	ve Law)	Therefore, $(4+3)+2 = 4+(3+2)$	
Algebra:	$\mathbf{Z} = \mathbf{X} + \mathbf{Y};$	X = 4;	Y = 6;	Therefore, $Z = 10$	
Geometry:	Angles of triangle add to 180°. An equilateral triangle has 3 equal angles,				
Therefore, the angles in an equilateral triangle are each 60°					

Outside mathematics, deductive arguments are common in rules and in the physical sciences

There are several kinds of deductive arguments

Categorical	Single (non-compound), non-modal arguments All men are mortal; Plato is a Man; Therefore, Plato is mortal.				
Modal:	Involving impossibility, possibility and certainty All mammals are warm-blooded; Some dinosaurs <u>may be</u> mammals; Therefore some dinosaurs <u>may be</u> warm-blooded.				
Compound	Involving at least one compound proposition				
Conditional If a graduate has at least a 3.3 GPA, <u>then</u> they graduate with honors No graduate received honors; Therefore, no graduate had a GPA of at least 3.3					
Disjunctive: <u>Either</u> John makes the car payment <u>or</u> the bank repossesses his car; The bank repossessed John's car; Therefore, John did not make the car payment.					
ConjunctiveIf Joe pays Jan <u>and</u> Jan accepts Joe's offer, then Joe gets Jan's car; Joe did not get Jan's car <u>and</u> John paid Jan; Then Jan didn't accept Joe's offer.					
Dil	hmas <u>Either</u> logicians are right <u>or</u> wrong. If they are right, then they don't need logic. If they are wrong, then logic won't help Therefore, logicians don't need logic.				

This handout deals strictly with deductive arguments which are categorical

CATEGORICAL DEDUCTIVE ARGUMENTS

The simplest arguments involve three categorical propositions: two premises and one conclusion Example: Socrates is a Man; All men are mortal; Thus, Socrates is mortal.

1. Each categorical proposition has three variable parts and the verb to be (is or are)

- a. Quantity: No (or None), Some, All or not-All
- b. Subject: a class (or the opposite of a class)
- c. Predicate a second class (or the opposite of a 2nd class)
- Examples: No animals are rocks; Some non-living things are rocks. All rocks are not organic
- 2. All classes must be members of the same universe (category) Example: people includes male/female, rich/poor and student/non-student

3 All classes (subject & predicate) must be <u>bilateral</u>

"Bilateral" is Carroll's term for binary complements: two exclusive and exhaustive classes Examples: male or female, rich or non-rich (poor), full-time or not full-time (part-time)

- 4 Collectively these three propositions must include three bilateral classes
- 5 Each proposition must include exactly two classes (a pair) -- no more and no less
- 6 Each proposition must include a different pair of the three bilateral classes

7 The three classes are generally designated by m, x, and y.

- a. "m" (for middle) is the class eliminated from the conclusion (the "eliminand")
- b. "x" and "y" are the two classes retained in the conclusion (the "retinands").
- c. x' means non-x (or not x); y' means non-y (or not y); m' means non-m (or not m)

Acceptable argument: an argument which does not violate any of the rules mentioned above None of the following arguments are acceptable

- a. No x are m'; All x are y; Thus, some m are y' [See rule 7a above]
- b. No m are x'; All x are m'; Thus, some x are y [See rule 6 above]
- c. No x are ym All mx are m Thus, some my are x [See rules 5 and 7a]

Valid argument: one where the conclusion must be true if the premises are true Strong argument: one where the conclusion is probably true if the premises are true [Good argument: one where the premises appear true and the argument is valid or strong]

SUMMARY (for No, Some and All)

There are 576 acceptable arguments (384 omitting order) The acceptable arguments can be summarized into 20 forms. Of the 20 forms, 12 are valid Of the 12 valid forms, 11 have just one conclusion and one has two conclusions Memorizing the 12 valid arguments is very difficult!!! Lewis Carroll created a simple, graphical solution for validating arguments

QUANTITY:

The opposite of "No" (or "None") is "Some"

No (as a measure of quantity) means nothing or none The negative opposite of "None" or "No" is "no-none" (or "no-No") Double negatives are very difficult mentally and should be avoided The positive opposite of "nothing" or "no" is "something" or "some" "Some" means at least one; Something means more than nothing.

The opposite of "ALL" is "Not All"

"Not-all" means either "none" or "some" (excluding "All")

Following by Milo Schield (It can be ommitted by students)

SQUARE OF OPPOSITION FOR QUANTITY

Three Kinds of Opposites:

Rule: If e	es: (diagonally related) either is false, the opposite is true. If No x is y is false, then Some x is y is true If Not-all x are y is true, then All x is y is false
Contraries:	(Horizontally related)
Rule (top):	If one is true, then the other must be false (both could be false)
Rule (sub):	: If one is false, then the other must be true (both could be true)
Example	If No x is y is false then All x is y may be true (but could be false)
	If No x is y (All x is y) is true then All x is y (No x is y) must be false
	If Some x is y is true then Not-All x is y may be true (could be false)
	If Some x is y (Not-all x is y) is false then Not-all x is y (Some x is y) is true
Sub-alternates	s: (Vertically related)
Rule:	If the universal is true, then the "Particular" is true (but not vice versa).
	If the particular is false, then the universal is false (but not vice versa)
Example:	If No x is y is true then Not-all x is y is also true
	If All x is y is true, then Some x is y is also true
	If Not-All x is y is true, then No x is y may be true (but could be false)
	If Some x is y is true, then All x is y may be true (but could be false)

PROPOSITIONS:

There are two kinds of propositions: propositions of existence and propositions of relation

Propositions of existence assert either existence or non-existence of a subject or predicate.

These propositions have only two forms:					
SOME	There are [some] green cars	Green cars exist (do exist)	Some xy		
NO:	There are no (aren't any) green flies	Green flies do not exist	No xy		

Propositions of relation assert a relation between a subject and a predicate

Carroll investigated the two forms of existence plus "ALL" and "NOT-ALL"					
SOME:	Some cars are green	Some x are y			
NO:	No flies are green	No x are y			
ALL:	All cars are green	All x are y			
NOT-ALI	L: Not-all cars are green	Not all x are y			

For Carroll, "Some" and "All" imply existence. "None" does not. "Not-all" is ambiguous.

Thus, for Carroll

- 1. "All" propositions entail two conjunctive propositions: a SOME and a NO "All cars are green" means "Some cars are green" AND "No cars are not-green"
- 2. "Not-All" propositions entail two disjunctive propositions: a SOME or a NO "Not-all cars are green" = "No cars are green" OR "Some cars are not green"
- ?? [Note: Carroll's presentation does not show how to handle "not-all" statements]

Thus, all these propositions of relation can be converted into propositions of existence.

NORMAL FORM OF PROPOSITIONS:

Translation of non-standard phrases into standard terms "Each x", "Any x" means "All x" (distributive implies collective) Individual things (John Galt, my book, this brown puppy) are expressed as "All x"

"Only x" or "None but x" are expressed as 'No x""

NORMAL FORM:

The subject and predicate of a proposition share a common universe of discussion They are both members of a common category (species of a common genus)

Translation of non-standard clauses into Normal form.

- 1. "All men are mortal" => "All things that are men are things which are mortal or "All men-things are mortal things
- 2. "No books are read" becomes" No <u>things which are books</u> are <u>things which are read</u>" or "No <u>book-things</u> are <u>things which are read</u>" or "No <u>books</u> are <u>things which are read</u>"
- 3. "No one likes flies" becomes "No persons are people who like flies
- 4. "None but the brave find love" becomes "No non-brave people are people who find love"

2.

How to "write" propositions involving 2 variables with Carroll's bilateral diagrams

Consider propositions involving just two bilateral classes: x and y "Write" each proposition using the symbols of I and O as follows:

1. "Some" rule: Place an "I" in the area referenced

ome y are x'
ome y' are x
ome y' are x'
o y are x
)1)1

ш.	rio n'are j	i at o in apper tert conner	Sume us	ito j'aio n
b.	No x' are y	Put O in lower-left corner	Same as	No y are x'
c.	No x are y'	Put O in upper-right corner	Same as	No y' are x
d.	No x' are y'	Put O in lower-right corner	Same as	No y' are x'

3. "All" rule: Break into two conjunctives: a "Some" part and a "No" part. The "Some" part has the same subject and predicate [Use the "Some" rule] The "No" part has the same subject but a reversed predicate [Use the "No" rule]

a.	All x are y Some x are y No x are y'	Put I in upper-left Put O in upper-right	e.	All y are x Some y are x No y are x'	Put I in upper left Put O in lower left
b.	All x are y' Some x are y' No x are y	Put I in upper-right Put O in upper-left	f.	All y are x' Some y are x' No y are x	Put I in lower left Put O in upper left
c.	All x' are y Some x' are y No x' are y	Put I in lower-left Put I in lower-right	g.	All y' are x Some y' are x No y' are x'	Put I in upper right Put O in lower right
d.	All x' are y' Some x' are y' No x' are y	Put I in lower-right Put O in lower-left	h.	J	Put I in lower right Put O in upper right

CONVERSION: to exchange subject and predicate in a simple proposition					
	Original	Conversion	Representation	Conclusion	
SOME	Some x are y	Some y are x	Same (upper-left)	Conversion always OK	
NO	No x are y	No y are x	Same (upper left)	Conversion always OK	
ALL	All x are y	All y are x	Not the same	Conversion never OK	

How to "read" propositions involving 2 variables using Carroll's bilateral diagrams

Consider propositions involving just two bilateral classes: x and y Each proposition is encoded using the symbols of I (Some) and O (None) Read each proposition as follows:

Read as **Some x are y** (or **Some y are x**)

Read as All x are y (No conversion possible)

Read as "No x are y (or No y are x)

Read as All x are y' (no conversion possible)

Read as **All y are x** (No conversion possible)

Read as All y are x' (no conversion possible)

Ask a friend to quiz you on these until you can read these quickly and accurately. Invite your friend to try any combination (these 6 examples do not include all the possibilities)

How to "write" propositions involving three classes using Carroll's trilateral diagrams.

y'

y

Work with a classmate until you can write these very accurately.

Writing these takes time to learn. You must practice until it becomes familiar.

Invite your partner to try any combination (these examples do not include all the possibilities)

How to "read" conclusions based on three terms using Carroll's trilateral diagrams

RULES:

- 1. An "I" in either part (m or m') of a single xy quadrant means "SOME"
- 2. An "O" in both parts (m and m') of a single xy quadrant means "NO"
- 3. An ALL statement can be formed from the appropriate SOME and NO statements.

Drill with a partner until you can read these like you read a book -- easily and accurately. With practice it becomes like a game -- a game you can play profitably for life.

How to identify valid deductive arguments using Carroll's trilateral diagrams

NO and NO

 1. No poets are rich
 x is Poet (m is rich)
 1. No x are m

 2. No yuppies are poor
 y is Yuppie (m' is poor)
 2. No y are m'

 x y y'

 x y y'

 y y'

 x y'

 y y'

 y y'

 y' y'

 y'' y''

 y'' y''

 y'' y''

 y''' y'''

 y'''

Since both segments of the upper left corner contain an "O", this gives a valid conclusion Conclusion: "No x are y" or "No y are x" No poets are Yuppies or No Yuppies are poets

SOME and NO

1. Some poets are poor

х'

- 2. No yuppies are poor
- x is poet (m is poor) 1. Some x are m

m is inside center box

In the xym cell, the "None" pushes the "Some xym or Some xy'm" into the xy'm cell. Conclusion: **Some x are y**'"or "**Some y' are x** or Some poets are non-yuppies A required 'Some' in any part of a quadrant is sufficient to be required of the whole quadrant Advice: Enter the "No" statements first; enter the "Some" statements last

How to identify valid deductive arguments using Carroll's trilateral diagrams ALL and SOME:

Single ALL statement with retinend in subject: m is poor

1. All singers are poorx is singer (x' is non-singer) 1. All x are m2. Some poets are richy is poet (y' is non-poet)2. Some y are m'

m is inside center box

In the xym' cell, the "No" pushes the "Some" into the x'ym' cell. Conclusion: **Some x' are y** or **Some y' are x** or Some non-singers are poets

ALL and NO:

Single ALL statement with retinend in predicate

- All poets are pianists
 No non-poets are rich x is Pianist (x' is non-pianist);
 y is rich (y' is poor);
- 1. All x are m
- 2. No m' are y y y' x x'
- 3. Thus no non-pianists are rich m is poet (m' is non-poet)

3. Thus, no x' are y

m is inside center box

In the x'y cells, the "No" has no competition, thus it upholds the conclusions that "No x' are y" The conclusion has two forms: "**No x' are y**" and "**No y are x'**".

How to identify valid deductive arguments using Carroll's trilateral diagrams

m is inside center box

In the xym cell, the "No" pushes the "Some" into the xy'm cell. In the xym' cell, the "No" pushes the "some" into the x'ym' cell Conclusion: 1. All y' are x which means All non-poets are singers Conclusion: 2. All x' are y which means All non-singers are poets

ALL and ALL:

Conclusion:

Two ALL statements with retinends in predicate

- 1. All poets are pianists x is pianist; y is singer
- 2. All non-poets are singers m is poet

1. All m are x

2. All m' are y

SOME and NO PROPOSITIONS: NO "ALL" PROPOSITIONS

Total of 192 styles in 6 forms: No-No, No-Some and Some-Some with like and unlike eliminands. Of the 6 forms, 2 have valid arguments

NO & NO (64 styles in 2 forms)

Like eliminands:		Unlike eliminands:			
No true conclusions; no valid arguments		True conclusio	True conclusion with same signs as in premises		
Premise	Premise	Conclusion	Premise	Premise	Conclusion
No x are m	No m are y		No x are m'	No m are y	No x are y
No x are m'	No m' are y		No x are m	No m' are y	
No x' are m	No m are y		No x' are m'	No m are y	No x' are y
No x' are m'	No m' are y		No x' are m	No m' are y	
No x' are m	No m are y'		No x are m'	No m are y'	No x are y'
No x' are m'	No m' are y'		No x are m	No m' are y'	
No x are m	No m are y'		No x' are m'	No m are y'	No x' are y'
No x are m'	No m' are y'		No x' are m	No m' are y'	
plus 24 conversions of "No" separate and joint:		plus 24 convers	sions of "No" sepa	arate and joint	

SOME & SOME (64 styles in 2 forms)

Like eliminands.

Like eliminands:			Unlike eliminands:		
No valid conclusion		No valid conclusion			
Premise	Premise	Conclusion	Premise	Premise	Conclusion
Some x are m	Some m are y		Some x are m'	Some m are y	
Some x are m'	Some m' are y		Some x are m	Some m' are y	
Some x' are m	Some m are y		Some x' are m'	Some m are y	
Some x' are m'	Some m' are y		Some x' are m	Some m' are y	
Some x' are m	Some m are y'		Some x are m'	Some m are y'	
Some x' are m'	Some m' are y'		Some x are m	Some m' are y'	
Some x are m	Some m are y'		Some x' are m'	Some m are y'	
Some x are m'	Some m' are y'		Some x' are m	Some m' are y'	
plus 24 conversions of "Some" separate and joint		plus 24 conversions of "Some" separate and joint			

SOME & NONE (64 styles in 2 forms)

Like eliminands

Valid conclusion: Retinand in No changes sign						
Premise	Premise	Conclusion				
Some x are m	No m are y	Some x are y'				
Some x are m'	No m' are y					
Some x' are m	No m are y	Some x' are y				
Some x' are m'	No m' are y					
Some x' are m	No m are y'	Some x' are y				
Some x' are m'	No m' are y'					
Some x are m	No m are y'	Some x are y				
Some x are m'	No m' are y'					
	•					

plus 24 conversions of "Some", "No" and both

Unlike eliminands: No valid conclusion Premise Premise Conclusion Some x are m'No m are ySome x are mNo m' are y Some x' are m' No m are y Some x' are m No m' are y Some x are m' No m are y' Some x are m No m' are y' No m are y' Some x' are m' Some x' are m No m' are y'

plus 24 conversions of "Some", "No" and both

"ALL" STATEMENTS: Retinand always in subject of "ALL" statement Total of 80 styles in 6 forms: All-None, All-Some and All-All with like and unlike eliminands. Of these 6 forms, 3 have valid arguments

ALL & NONE (32 styles in 2 forms)

Like eliminands			Unlike eliminan	ds:	
Valid conclusion	n: "No" retinand of	chgs sign (S=S)	No valid conclu	sion	
Premise	Premise	Conclusion	Premise	Premise	Conclusion
All x are m	No m are y	All x are y'	All x are m'	No m are y	
All x are m'	No m' are y		All x are m	No m' are y	
All x' are m	No m are y	All x' are y'	All x' are m'	No m are y	
All x' are m'	No m' are y		All x' are m	No m' are y	
All x' are m	No m are y'	All x' are y	All x are m'	No m are y'	
All x' are m'	No m' are y'		All x are m	No m' are y'	
All x are m	No m are y'	All x are y	All x' are m'	No m are y'	
All x are m'	No m' are y'		All x' are m	No m' are y'	
plus 8 more by c	converting "No" s	tatements	plus 8 more by c	converting "No" st	atements

ALL & SOME (32 styles in 2 forms)

Like eliminands

Like eliminands	5		Unlike eliminar	nds:	
No valid conclu	ision		Valid conclusio	n: Retinand of All	changes sign
Premise	Premise	Conclusion	Premise	Premise	Conclusion
All x are m	Some m are y		All x are m'	Some m are y	Some x' are y
All x are m'	Some m' are y		All x are m	Some m' are y	
All x' are m	Some m are y		All x' are m'	Some m are y	Some x are y
All x' are m'	Some m' are y		All x' are m	Some m' are y	
All x' are m	Some m are y'		All x are m'	Some m are y'	Some x' are y'
All x' are m'	Some m' are y'		All x are m	Some m' are y'	
All x are m	Some m are y'		All x' are m'	Some m are y'	Some x are y'
All x are m'	Some m' are y'		All x' are m	Some m' are y'	
plus 8 more by	converting "Some'	' statements	plus 8 more by	converting "Some'	' statements

ALL & ALL (16 styles in 2 forms)

Like eliminands

No valid conclus	ion	
Premise	Premise	Conclusion
All x are m	All y are m	
All x are m'	All y are m'	
All x' are m	All y are m	
All x' are m'	All y are m'	
All x' are m	All y are m	
All x' are m'	All y are m'	
All x are m	All y are m	
All x are m'	All y are m'	

No conversions permitted

Unlike eliminands:

Valid conclu	Valid conclusion: One retinand changes sign					
Premise	Premise	Conclusion				
All x are m	All y are m'	All x are y'; All x' are y				
All x are m'	All y are m					
All x' are m	All y are m'	All x' are y'; All x are y				
All x' are m'	All y are m					
All x are m	All y' are m'	All x are y; All x' are y'				
All x are m'	All y' are m					
All x' are m	All y' are m'	All x' are y; All x are y'				
All x' are m'	All y' are m					

No conversions permitted

"ALL" STATEMENTS: Retinand always in predicate (never in subject) of "ALL" Total of 80 styles in 6 forms: All-None, All-Some and All-All with like and unlike eliminands. Of these 6 forms, all 6 have valid arguments.

ALL & NONE (32 styles in 2 forms)

Like eliminand	s		Unlike elimina	nds:	
Valid conclusion	on: "No" retinand	changes sign	Valid conclusion	on: "All' retinand o	changes sign
Premise	Premise	Conclusion	Premise	Premise	Conclusion
All m are x	No m are y	Some x are y'	All m are x	No m' are y	No x' are y
All m' are x	No m' are y		All m' are x	No m are y	
All m are x'	No m are y	Some x' are y'	All m are x'	No m' are y	No x are y
All m' are x'	No m' are y		All m' are x'	No m are y	
All m are x	No m are y'	Some x are y	All m are x	No m' are y'	No x' are y'
All m' are x	No m' are y'		All m' are x	No m are y'	
All m are x'	No m are y'	Some x' are y	All m are x'	No m' are y'	No x are y'
All m' are x'	No m' are y'		All m' are x'	No m are y'	
plus 8 more by	converting "No" s	statements	plus 8 more by	converting "No"	statements

ALL & SOME (32 styles in 2 forms)

Valid conclusion	on: Retinands retair	i sign	No valid concl	usion:	
Premise	Premise	Conclusion	Premise	Premise	Conclusion
All m are x	Some m are y	Some x are y	All m are x	Some m' are y	
All m' are x	Some m' are y		All m' are x	Some m are y	
All m are x'	Some m are y	Some x' are y	All m are x'	Some m' are y	
All m' are x'	Some m' are y		All m' are x'	Some m are y	
All m are x	Some m are y'	Some x are y'	All m are x	Some m' are y'	
All m' are x	Some m' are y'		All m' are x	Some m are y'	
All m are x'	Some m are y'	Some x' are y'	All m are x'	Some m' are y'	
All m' are x'	Some m' are y'		All m' are x'	Some m are y'	
plus 8 more by	converting "Some'	' statements	plus 8 more by	converting "Some"	' statements

ALL & ALL (16 styles in 2 forms)

Like eliminands

Valid conclusion	: No change i	n sign
Premise	Premise	Conclusion
All m are x	All m are y	Some x are y
All m' are x	All m' are y	
All m are x'	All m are y'	Some x' are y'
All m' are x'	All m' are y'	
All m are x'	All m are y	Some x' are y
All m' are x'	All m' are y	
All m are x	All m are y'	Some x are y'
All m' are x	All m' are y'	

Unlike eliminands:

Valid conclusion:	: Both change sigr	1
Premise	Premise	Conclusion
All m are x	All m' are y	No x' are y'
All m' are x	All m are y	
All m are x'	All m' are y	No x are y'
All m' are x	All m are y	
All m are x	All m' are y'	No x are y
All m' are x	All m are y'	
All m are x'	All m' are y'	No x are y
All m' are x'	All m are y'	

TWO "ALL" Statements with Retinands mixed: One in subject of ALL, other in predicate of ALL Total of 32 styles in 2 forms: All-All with like and unlike eliminands. Of the 2 forms, both have valid conclusions.

ALL & ALL: (32 unique styles in 2 forms)

Like eliminands		Unlike eliminat	nds:	
Valid conclusion	n: No change in sign (S=S; P=P)	Valid conclusion	on: Retinand of Al	l changes sign
Premise	Premise Conclusion	Premise	Premise	Conclusion
All x are m	All m are y All x are y	All x are m'	All m are y	Some x' are y
All x are m'	All m' are y """"""	All x are m	All m' are y	
All x' are m	All m are y All x' are y	All x' are m'	All m are y	Some x are y
All x' are m'	All m' are y """"""	All x' are m	All m' are y	
All x' are m	All m are y' All x are y'	All x are m'	All m are y'	Some x' are y'
All x' are m'	All m' are y' " " " " " "	All x are m	All m' are y'	
All x are m	All m are y' All x' are y'	All x' are m'	All m are y'	Some x are y'
All x are m'	All m' are y' " " " " " "	All x' are m	All m' are y'	
plus 8 more by 5	????	plus 8 more by	?????	

SCHIELD GENERAL SUMMARY

STYLES OF STATEMENTS:

Each statement can have 3 signs of quantity (All, Some or No)

Each statement can have 4 possible choices in subject position (eliminating distinction b/t x and y) Each statement can have 2 possible choices in predicate position (eliminating unworkable combos) There are 24 meaningful variations of each statement (excluding the 24 unworkable ones: no m are m'; no x are y)

[There are 108 variations of each statement:

STYLES OF TWO PREMISES:

Number possible = $576 = (3 * 4 * 2)^2$ where 3 = quantity, 4 = 1st argument and 2 = 2nd argument

INCL	UDING ORDER OF I	PREMISES	EXCLUDING O	RDER OF PRE	MISES
	NO SOME	ALL	NO	SOME	ALL
NO	64=8*8 128=64*2	128=64*2	NO 64	64	64
SOME	64	128=64*2	SOME	64	64
ALL		64	ALL		64
for a total	of 576 styles (9*16*4)	or (9*64)	for a total of 384	styles (6*64)	

FORMS OF PREMISES

These 576 styles (384 excluding order) can be summarized into 20 unique forms

Of these 20 different forms of arguments, 12 are sometimes valid and 8 are never valid.

Conclusion #1: 60% of all the types of arguments are valid (40% are not)

Conclusion #2: With one exception, all valid arguments have only 1 valid conclusion,

Less than a 10% (1 in 12) chance a valid argument has more than one conclusion.

Conclusion #3: Only a 5% chance (one in 20) that an argument selected at random (by form) is valid and has more than one conclusion.

SUMMARY OF VALID ARGUMENTS

Both premises have converses (page A-1)

- 1. No and No yield No if unlike
- 2. Some and No yield Some (reverse No) if Like
- 3. With retinands in subject of ALL (page A-2)
 - a. All and No yield All (reverse No) if like
 - b. All and Some yield Some (Reverse All) if unlike [See #2]
 - c. All and All yield Double All (reverse 1) if unlike
- 4. With retinands in predicate of ALL (page A-3)
 - a. All and No yield Some(reverse No) if like; yield No (reverse All) if like
 - b. All and Some yield Some if like
 - c. All and All yield Some if like; yield No (reverse both signs) if unlike
- With retinands mixed between two ALLs (page A-4) if like, yield All (S=S; P=P) if unlike yield Some (Reverse subject of All)

6 forms NO	NO Like: Unlike	•		Some x are y' No x' are y
SOME			Like: Unlike:	Some x are y

At least 1 "All" 14 forms		d in Subject	Retinan	d in Predicate
NO	Like Unlike:	All x are y'		Some x are y' No x' are y
SOME	Like Unlike	Some x' are y	Like: Unlike:	Some x are y
ALL (Ret.match)	Like: Unlike	All x are y' All x' are y		Some x are y No x' are y'
ALL (Ret. opposite)		All x are y Some x' are y		All x are y Some x' are y

CONCLUSION:

Too difficult to memorize 20 forms with 4 characteristics (qty, like, ret in subj if All) plus outcomes. Must be able to reconstruct quickly (on a napkin)

SUMMARY OF RULES: {Draft: In process}

For each premise:

Cannot have two ellimnands or two retinands (exclusive)

For a pair of premises

Must both include eliminands; must each have a retinand; must each have a different retinand

First statement (48) 3 quantity 6 subject 2 predicate

Second statement (24)

3 quantity 4 subject

2 predicate