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ABSTRACT:    
Given the continuing negative feedback from our 
students, it is appropriate to review the proper goals for 
the introductory course in applied statistics. 
 
Section I summarizes some of the statements about the 
nature and goals of statistics.  These statements appear 
to be relevant, factual and achievable.  Yet if we were 
achieving these goals, students would find statistics 
valuable and useful while other faculty would see 
evidence of statistical reasoning by our students.  All 
too often, these outcomes are not realized.   
 
Section II examines some of the key terms in these 
statements about the nature and goals of statistics and 
finds them to be highly ambiguous.  Some teachers of 
statistics may not discern that these abstract goals may 
be interpreted narrowly or broadly, that these goals 
should be interpreted broadly and that teaching which 
achieves these narrow goals may not achieve these 
broader goals. 
 
Section III classifies various elements of statistics by 
method and subject matter.  If some teachers were 
biased against topics involving induction, this might 
explain the failure of our students to internalize 
statistical thinking.  
 
Section IV compares some of the important topics in 
statistics when goals are taken narrowly as compared to 
when goals are taken broadly.  It also compares 
‘mathematical induction’ with induction.   Again, 
neither deduction nor ‘mathematical induction’ are 
wrong, but induction is also required.  
 
Section V identifies some topics that are missing or 
under-emphasized.   
 
In summary, teachers need to help students “read and 
interpret data”. 
 
I.  GOALS IN TEACHING APPLIED 
STATISTICS 
 
There are many excellent statements of the nature and 
goals of introductory applied statistics.  Given the 

stature of the authors and the quality of the associated 
publication, the following statements have excellent 
credentials. 

  “Our aim in the first course is to develop the 
critical reasoning skills necessary to understand 
our quantitative world.  The focus of the course is 
the process of learning how to ask appropriate 
questions, how to collect data effectively, how to 
summarize and interpret that information, and how 
to understand the limits of statistical inference.  
Statistical thinking is central to education.” [Robert 
Hogg (1990) in Towards Lean and Lively Courses 
in Statistics published by Gordon, Florence and 
Sheldon in Statistics for the Twenty-First Century] 

 “Statistics is the science of data.  More precisely, 
the subject matter of statistics is reasoning from 
uncertain empirical data.”  [David Moore (1992) in 
Teaching Statistics as a Respectable Subject] 

 
Let us assume that these statements about the goals of 
statistics are fundamental and appropriate.  
 
CONSEQUENCES 
If we were achieving these goals, students  

 would find the course useful and valuable  
 might recommend statistics to others 
 might keep their statistics book for reference 
 might choose to take a second course 

If we were achieving these goals, other teachers should 
see improvements among our students in their ability to 

 summarize and display the data 
 assess the quality of a study 
 evaluate the applicability of a model 
 evaluate the inferential conclusions 
 communicate the nature and meaning of data 
 assess the quality of a sample 

If we were achieving these goals, our students would 
have internalized statistical thinking in ways that others 
could and would recognize.   
 
PROBLEM 
According to several studies, this is not happening.  
The failure to bring about these consequence indicates 
that statistics is not really achieving its stated goals.   
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EXPLANATIONS 
One explanation is that statistics is mathematical and 
thus is harder than most other subjects.  Another is that 
students are culturally biased against statistics.  But is 
there an explanation involving that which is under the 
control of the teacher?  What might explain this failure 
among our students based on the nature and content of 
the course?   
 
Some teachers of statistics may not discern that 
1. these abstract goals are ambiguous – they may be 

interpreted narrowly or broadly 
2. these goals should be interpreted broadly 
3. teaching which achieves these narrow goals may 

not achieve these broader goals. 
 
This intellectual failure to discern ambiguity allows 
some teachers to proclaim allegiance to broader goals 
while permitting then to pursue a far narrower set of 
goals.  This on-going ambiguity explains – in part – 
why students do not appreciate statistics and why other 
departments want statistics to be taught by their own 
faculty. 
 
II.   SOURCES OF AMBIGUITY IN STATISTICS 
 
Several of the terms in these goals are ambiguous and 
may be taken either narrowly or broadly.  When taken 
broadly, they are very appropriate.  When taken 
narrowly, they miss the mark. 
 
This systematic ambiguity is the miasma that is 
obscuring our vision; this wide-spread ambiguity is the 
swamp that is undermining our best efforts at statistical 
reform; this all-pervasive ambiguity is the reef upon 
which our hopes for improvement are being dashed. 
 
The following terms are ambiguous.  In each case, the 
cause of the ambiguity is indicated.  
1. Estimate and judgment:  Speaking mathematically, 

we mean ‘mathematical induction’ (narrow) – not 
pure induction (broad).   

2. Inference and quantitative literacy:  Speaking 
mathematically, we mean deductive reasoning 
(narrow) – not the combination of deductive and 
inductive reasoning (broad).   

3. Explanation and factor:  Speaking mathematically, 
we mean a statistically significant correlation 
(narrow) – not causality (broad).  

4. Variability and quantitative literacy:  Speaking 
mathematically, we mean the study of pure chance  
(narrow) – not the study of chance, influence and 
bias (broad).   

5. Probability and chance: Speaking mathematically, 
we mean relative frequencies (narrow) – not the 

strength of a belief or the credibility of a 
conclusion (broad). 

6. Hypothesis testing:  Speaking as classical 
statisticians, we mean a classical test of 
significance (narrow) – not a Bayesian test of the 
null hypothesis (broad). 

 
When combined, these sources of ambiguity make it 
extremely difficult for those who take these terms 
broadly to communicate with those who take these 
terms narrowly.  It is no wonder that meaningful dialog 
is difficult. 
 
ESTIMATE AND JUDGMENT 
Students may presume that statistics will help them 
quantity the credibility of their estimates and 
judgments; students may expect measures of credibility 
involving pure induction.  Instead, classical statistics 
quantifies the “confidence” they can have in their 
methods using ‘mathematical induction’.  Thus, 
statisticians translate credibility (broad) into relative 
frequency (narrow) and translate induction (broad) into 
‘mathematical induction’ (narrow). 
 
INFERENCE AND QUANTITATIVE LITERACY 
Students may presume that statistics will help them 
make sounder generalizations and form stronger 
arguments  involving quantitative matters; students may 
presume that statistics will help them reason inductively 
about the quantitative aspects of the world.  Instead, 
statistics focuses only on valid deductive arguments 
whose conclusions must be true given the truth of the 
premises; statistics only helps students reason 
deductively.  Students expected that inference would 
include induction; statisticians translate inference 
(broad) into deduction. (narrow)  
 
EXPLANATION AND FACTOR 
Students may expect that if education explains 67% of 
the variability in income that this shows that education 
is a causal explanation.  Students may expect that if 
education is a significant factor in predicting salary, 
then this means that education is a causal factor.  
Statisticians are very careful to say this usage of 
‘explanation’ and of ‘factor’ are technical uses which 
identify some feature of the correlation but which assert 
nothing about the causality involved.  [See Milo 
Schield (1995) Correlation, Causation and the 
Coefficient of Determination in Introductory Statistics]  
But without giving students guidance as to how to 
move from correlation to causation, students are left 
without guidance or principle.  Thus, statisticians 
translate causal explanation (broad) into correlative 
explanation (narrow) and translate causal factor (broad) 
into correlative factor (narrow).  
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VARIABILITY & QUANTITATIVE LITERACY 
Students may presume that variability means all 
variation in a set of data.  Instead, statistics focuses 
primarily on the random variation due to pure chance.  
Students may presume that quantitative literacy means 
to be literate about claims and arguments involving 
quantitative data.  To most statisticians, quantitative 
literacy means understanding the role of chance in 
summarizing, modeling data and testing data.  
Statisticians translate variability (broad) into chance 
(narrow) and translate quantitative literacy (broad) into 
probabilistic literacy (narrow).   
 
PROBABILITY AND CHANCE 
Students may think of probability and chance as 
indicating how likely an event is – even if the event 
involved is a one-time, unrepeatable event.  Students 
may intuitively think in terms of probability as a 
measure of the credibility of a claim – even if the claim 
involves a state of nature.  Instead, statisticians view 
probability and chance as having a relative-frequency 
interpretation in the classical approach.  Thus terms 
such as confidence level and level of significance 
should not be interpreted as measures of the credibility 
or error for a particular claim.  Thus statisticians 
translate credibility of belief (broad) into an expected 
relative frequency (narrow).   
 
III.  CLASSIFICATION OF ELEMENTS 
 
Among the sciences of methods, there are those that 
study human reasoning.  These branches of 
epistemology include mathematics, statistics, logic and 
critical thinking. The following table illustrates the 
relation between these four sciences of human thought 
classified by method and by subject. 
 
Table 1: Sciences of method about human reasoning 
 Deductive Only Comprehensive 
 Verbal Logic Critical Thinking 
Quantitative Mathematics Statistics 
 
Philosophically, statistics is critical thinking about 
quantitative claims. 
Gudmund Iversen shares this broader emphasis:  “The 
goal of applied statistics is to help students to form, and 
think critically about, arguments involving statistics.  
This construction places statistics further from 
mathematics and nearer the philosophy of science, 
critical thinking, practical reasoning and applied 
epistemology.” [Gudmund Iversen in Two Kinds of 

Introductory Courses in Heeding the Call for Change.  
p. 29.] 
 
David Moore shares this broader emphasis: “the higher 
goal of teaching statistics is to build the ability of 
students to deal intelligently with variation and data.”  
[David Moore (1992) in What is Statistics?  page 16] 
 
Normally students classify these four method 
disciplines by rows – by the content of the discipline 
and by the department in which it is taught. But, the 
classification by column – by the kind of argument – is 
at least as fundamental. 
 
Critical thinking and applied statistics include both 
deductive and inductive reasoning.  Both disciplines are 
currently in flux because they contain an inductive 
element.  Given the current state of philosophy, the 
proper status of inductive reasoning is somewhat 
unclear.  Thus, the proper status of these two 
disciplines is also uncertain.  As a result, there is 
continuing pressure to eliminate the inductive aspects 
and to teach only what is deductively certain.  
 
Perhaps the clearest sign of inductive reasoning in 
statistics is the mention of causality.  A text that does 
not discuss this topic is unlikely to be a text that 
focuses on inductive reasoning.  Causality is 
necessarily inductive; there is no valid test that 
conclusively proves causality – especially in an 
observational study.  But that does not mean that all 
arguments about nature and causality are equally 
strong.  Statistics must help students discern stronger 
arguments from weaker ones.  This applies to all 
evaluative inferences such as the accuracy of 
measurements, the quality of a sample, the applicability 
of a model, the quality of an inference, and the strength 
of a conclusion about causality.  Students are interested 
in prediction and explanation which means they are 
interested in causality.  Without causality, statistics 
lacks life and purpose. [See Milo Schield (1995)] 
 
When we think of statistics, most of us think of the 
subject as having several basic parts: descriptive, 
probability, inference and possibly modeling.  But the 
essence of statistics is not readily determined by 
knowing these parts.  As a discipline, statistics is 
described by both its methods and its subjects.   
 
Figure 1 illustrates the various elements of statistics 
classified by method and subject.  Experiments are 
most common in the physical sciences while 
observational studies are most common in the social 
sciences.  However there are exceptions in both fields.  
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Figure 1: Statistics as a discipline 
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Topics below the line are generally accepted, 
commonly included in texts and commonly taught.  
Topics above the line are either not generally accepted 
or else are given very little emphasis in a typical 
introductory course. 
 
This distinction is more than just a difference between 
theory and application.  It is a difference in method 
(deductive vs. inductive) and a difference in subject 
matter (formal probability theory vs. the material 
aspects of real data found in observational studies).   
 
Figure 2: Critical Thinking as a Discipline 
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Figure 2 illustrates some of the elements of critical 
thinking classified by method and by subject.  Critical 
thinking is to logic as statistics is to mathematics.  Both 
include a deductive component, but both include an 
inductive component.  This inductive component is 
what is essential to both statistics and to critical 
thinking. 
 

Topics below the line are generally accepted and 
traditionally taught in a course on logic.  Topics above 
the line are either not generally accepted or else are 
given little emphasis in a typical course in introductory 
logic. Those topics that are inductive (such as the 
formation of proper definitions) lack deductive 
certainty and thus are mentioned in passing but have 
the status of an art rather than that of a science.  
 
IV.  GOALS TAKEN NARROWLY VS. 

BROADLY 
 
It is helpful to compare applied statistics as taught with 
goals taken narrowly and as taken broadly.   
 
Remember, teaching with these narrow goals is not 
wrong – all such topics could be appropriate in a 
course taught broadly.  But teaching broadly – which 
includes the topics in any narrow approach – is 
required to achieve our goals. 
 
The remaining figures are organized from bottom to 
top.  Higher level topics depend on – and are taught 
after – lower level topics.   
 
Figure 3:  Statistics with goals taken narrowly 
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The gray background and larger box for the sampling 
distribution such as the central limit theorem and the t-
distribution indicate their strategic importance.  All 
subsequent topics depend on students understanding the 
meaning and implications of these statistical concepts.  
All prior topics are chosen for their ability to help 
students understand and appreciate the origin and truth 
of these key concepts.  This is why probability remains 
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such a central part in our current teaching of applied 
statistics. 
 
Figure 4:  Applied Statistics with goals taken broadly 
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Figure 4 presents applied statistics when the goals are 
taken broadly – when the terms are taken at their 
broader generally-understood meanings rather than at 
their technical or translated meanings.  
 
Again, the gray boxes indicate the items that are of 
strategic importance.  Note that statistical inference is 
one of the three pillars that support our evaluation of 
arguments. But statistical inference is not the sole pillar 
nor is it necessarily the most important.  The quality of 
our modeling and the extent to which we control for  
influence and bias are at least as important as the 
assessment of pure chance – even in small samples.   
 
Note that the final products are not just outcomes but 
are actually the goals of the entire process.  In this case, 
these goals actually determine the means.  In Figure 3, 
the final products are not so much goals as they are 
outcomes.  (Determining statistical independence is not 
so much a general goal as it is an illustration of a 
unique test of significance.) The final topics are 
selected – in large part – because they illustrate the 
various ramifications of various sampling distributions 
such as that identified by the central limit theorem.   
 
Remember, teaching with goals taken narrowly is not 
wrong, but it is inadequate.  Consider this same issue of 

narrow vs. broad in the relation between ‘mathematical 
induction’ and non-mathematical induction. 
 
Figure 5:  ‘Mathematical Induction’ 

We are 100% certain
that 95% of all 95%
confidence intervals
using sample means

from a Normal population
will contain the

population mean

We are 100% certain that
in "rejecting" the null

hypothesis with a 95%
confidence there is no

more than a 5% chance
this sample came from the
null sampling distribution

96ASA5a.vsd Page 2

Claims about something that is
factual (in reality) but disputable (contextually)

PROBABILITY, BINOMIAL DISTRIBUTION
and the CENTRAL LIMIT THEOREM

MATHEMATICAL
INDUCTION

Estimation Judgment

 
In Figure 5, the grayed area indicates the topics that are 
of strategic importance.  These topics give 
‘mathematical induction’ 100% certainty about the 
outcome – described probabilistically.  Thus, 
‘mathematical induction’ is really deductive. 
 
Figure 6:  Non-mathematical induction.   
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In Figure 6, two types of induction are illustrated.  One 
is an approximation to a deductive theorem (as 
commonly taught in statistics).  The other involves a 
generalization, prediction or explanation that extends 
beyond the data.  The data may be of crucial 
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importance in determining the credibility of the claim – 
but the data are certainly not sufficient.    
 
The well-known statement by Fisher uses “no doubt” in 
a way that does not involve a relative frequency 
interpretation.  Yet, this particular statement was based 
on a great deal of statistical data, a particular statistical 
test and some specific knowledge of the person 
involved. 
 
V.  TOPICS MISSING OR UNDEREMPHASIZED 
 
The emphasis on deduction and ‘mathematical 
induction’ determine in large part which topics will be 
included and the extent to which they are emphasized.  
The topics that are missing – or de-emphasized – say a 
great deal about the importance that authors and 
teachers place on those that are included.   
 
(1) A topic this often under-emphasized is the control 
for bias.  According to John Bailar (1994) in A Larger 
Perspective,  

“Our focus must not be limited to understanding 
the implications of pure chance (randomness).  It 
must certainly include an understanding of bias and 
the methods of controlling for non-systematic 
error.” 

 
(2) A topic that is often missing is resampling.  
Resampling has been touted for years, yet the silence 
on this subject is all but deafening.  One wonders 
whether the issue is its teachability, its theoretical status 
or its implications for teaching statistics using a non-
mathematical model.  
 
 (3) A topic that is missing is Bayesian reasoning.  
David Moore (1992) has given an excellent argument 
for why this topic should not be stressed.   

“There are, I think, good reasons not to stress 
Bayesian methods in beginning instruction about 
inference.  First they require a firm grasp of 
conditional probability….  This [distinction 
between classical and Bayesian reasoning] is 
fatally subtle.  In addition, although the subjective 
interpretation of probability is quite natural, it 
diverts attention from randomness and chance as 
observed phenomena in the world whose patterns 
can be described mathematically.  An 
understanding of the behavior of random 
phenomena is an important goal of teaching about 
data and chance.;  probability understood as 
personal degree of belief is at best irrelevant to 
achieving this goal.  The line from data analysis 
through randomized designed for data production 

to inference is clearer when classical inference is 
the goal.” 

An opposing viewpoint has been given by Berger 
(1980) in Statistical Decision Theory and Bayesian 
Analysis 

“most such users (and probably the overwhelming 
majority) interpret classical measures in the direct 
probabilistic [Bayesian] sense.  (Indeed the only 
way we have had even moderate success, in 
teaching elementary statistics students that an error 
probability is not a probability of a hypothesis, is 
to teach enough Bayesian analysis to be able to 
demonstrate the difference with examples.)” 

This opposing viewpoint is supported by Gudmund 
Iversen in Bayesian Statistical Inference.  
 
A more direct reason for teaching Bayesian thinking is 
that Bayesian probabilities are more closely related to 
how strongly we believe that something is true or right 
than are the classical probabilities.  By omitting 
Bayesian reasoning, we reduce our search for 
knowledge to only that which has deductive certainty. 
We seem to be saying to students “Ignore what is 
important but disputable; focus on what is certain.  Real 
knowledge involves certainty.” 
 
VI.   SUMMARY 
 
Every college graduate must be familiar with critical 
thinking; every college graduate should be familiar 
with applied statistics – when taught as critical thinking 
applied to quantitative data.   
 
The ultimate question is “What do we want to teach in 
applied statistics?”.  Do we want to teach mathematical 
purity, the knowledge that our claims are certain 
against error?  Or do we want to teach reality-based 
relevance: the knowledge that we are willing to deal 
with the fact that our knowledge is contextual, that we 
are not omniscient, and that our inductive inferences 
may not always be correct.   
 
Re-engineering statistics will be difficult.  It is much 
easier to teach statistics as applied mathematics with 
right/wrong answers than it is to teach statistics as 
critical thinking about data where arguments are either 
weaker or stronger.  Do we want to hear our students 
say “That course in statistics was really valuable.  I can 
see how I will use statistical reasoning to think about 
quantitative arguments in the future.”? If so, then re-
engineering statistics is what must be done.  This goal 
is achievable and the choice is ours.   
 



6/26/96 The Goals of Introductory Statistics:  Reasoning about Data  

96MSE1A5.doc Page 7 Milo Schield 

REFERENCES: 

Bailar, John.  A Larger Perspective.  The American 
Statistician.  Vol. 49, No. 1, February,1994.  p.10.  

Gordon, Florence and Sheldon, Editors.  Statistics for 
the Twenty-First Century.  The Mathematical 
Association of America. MAA Notes, Number 26, 
1992.  

Kelley, David (1994).  The Art of Reasoning.  2nd Ed.   

Hoaglin, David and Moore, David Editors (1992).  
Perspective on Contemporary Statistics.  The 
Mathematical Association of America.  MAA Notes 21.  

Iverson, Gudmund (1984).   Bayesian Statistical 
Inference.  Sage Publications Series: Quantitative 
Applications in the Social Sciences.   

Polya, G. (1968).  Mathematics and Plausible 
Reasoning.  Princeton Paperbacks.  Vol. I.  Induction 
and Analogy in Mathematics.  Vol. II. Patterns of 
Plausible Inference.  ISBN 0-691-02510.X 

Schield, Milo (1994). Random Sampling versus 
Representative Samples.  ASA 1994 Proceedings of the 
Section on Statistical Education, p. 107-110 

Schield, Milo (1995). Correlation, Causation and the 
Coefficient of Determination in Introductory Statistics 
ASA 1995 Proceedings of the Section on Statistical 
Education, p. 189-194 

Schield, Milo (1996). Teaching Classical Hypothesis 
Testing Comprehensively.  ASA 1996 Proceedings of 
the Section on Statistical Education 

Snee, Ronald.  What’s Missing in Statistical 
Education?  The American Statistician  Vol. 47, 
Number 2, May 1993. 

Steen, Lynn (1992).  Editor of Heeding the Call for 
Change: Suggestions for Curricular Action.  The 
Mathematical Association of America.  MAA Notes 22. 

Tucker, John. (1994).  Modern Interdisciplinary 
University Statistics Education.  Committee on Applied 
and Theoretical Statistics.  National Research Council. 
National Academy Press.  Washington  D.C.  
 
ACKNOWLEDGMENTS: 

Gerald Kaminski, Thomas V.V. Burnham, and Linda 
Schield made cogent comments on earlier drafts.   

My wife, Linda Schield, edited earlier drafts for clarity, 
comprehension and understanding.   

This paper was stimulated by Robert Hogg’s assertion 
that “no one [really] knows the purpose of the first 
applied course in statistics”.  [ASA 1995 Orlando, FL] 

This paper is based on my reflections from teaching 
Critical Thinking for the past 5 years and on the 
continuing exhortation of my close colleague Professor 
John Cerrito to continually focus on “helping students 
to read and interpret data”.  

Dr. Schield may be reached at schield@augsburg.edu. 

 


