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ABSTRACT:
When students obtain a statistically significant sample at a 5%
level of significance, they may conclude they can be 95% confi-
dent that the alternate hypothesis is true.  From a classical per-
spective, this conclusion is unwarranted.  Two elements may
inadvertently support this unwarranted conclusion: the tradi-
tional definitions of Type I error and alpha, and the silence
about confidence.  From a Bayesian perspective, this conclusion
might be warranted. Bayes rule can relate the Bayesian and
classical probabilities of Type I error if classical hypotheses are
treated as point masses and if one can treat degrees of belief
about the truth of a state of nature as a probability.  If the truth
of the null and alternate are equally likely, if β = α, and if the
sample statistic triggers a rejection of the null, then the Baye-
sian probability of Type I error is numerically equal to alpha
and the Bayesian probability the alternate is true equals 1 - α.
The Bayesian probability of Type I error increases as the alter-
nate becomes more improbable for a given level of alpha.  Using
this technique to select alpha and to interpret p-values may im-
prove understanding of classical tests and decrease statistical
opportunism.

INTRODUCTION
Students in introductory statistics are usually introduced to the
classical fixed-level hypothesis test.  Given an alpha of 5% and
a statistically significant random sample they may conclude
they can be 95% confident that the alternate hypothesis is true.

I. CLASSICAL EVALUATION
From a classical perspective, this conclusion is unwarranted and
in error.  However, there are two aspects of the classical ap-
proach that might encourage this error: the traditional defini-
tions of Type I error and alpha, and the silence about confi-
dence in hypothesis testing.

A. DEFINITIONS OF ALPHA & TYPE I ERROR
In presenting the classical hypothesis test, alpha is traditionally
defined as the probability of Type I error.  Type I error is often
illustrated as being an intersection of two conditions as illus-
trated in Table 1.

Table 1: Figurative Description of Hypothesis Testing
CELLS -----  STATE OF NATURE ----
DECISION null is true null is false
Fail to reject null OK outcome Type II error
Reject null Type I error OK outcome

Students may think as follows.  On the one hand, one might
take 50 samples from the Null distribution and perhaps 2 of
them fall in the reject region.  On the other hand, one might
take 50 samples from the alternate distribution and perhaps 38
of them fall in the reject region.  Thus, students might create
the following table.

Table 2:  Table of hypothetical counts
COUNT STATE OF NATURE

Null is true Null is false Total
Fail to reject 48 12 60
Reject 2 38 40
Total 50 50 100

Now there may be some errors in this.  First, in reality either the
null is true or it is not.  In reality, you cannot have counts in
both columns.   Second, alpha is the criteria by which the rejec-
tion region was defined – prior to sampling.  Alpha is not ob-
tained by sampling – except in the limit of large numbers.
These relative frequencies are just estimates of alpha.

Problem:
But, given these counts and the aforementioned definitions of
alpha and Type I error, some students would say that alpha is a
table percentage since Type I error is a single cell.  Given this
data, those students might estimate alpha as 2% (2/100).

Some students may calculate alpha as a row percentage since
rejecting the null is a necessary condition for Type I error.
Given this data, these students would estimate alpha as 5%
(2/40).

Actually, alpha is a column percentage since alpha = P(null is
rejected | null is true).  In this case, alpha is properly estimated
as 4% (2/50).  Unfortunately, the traditional definition of alpha
may prevent students from seeing alpha as a column percent.
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Traditional Solution:
To avoid this problem, most authors traditionally define – not
just describe – Type I error as being conditional on a column-
based process.  Typical examples include:
• Type I error: rejecting HO when HO is true
• Type I error: rejecting a null hypothesis that is true
• Type I error: rejecting HO given that HO is true.
• Type I error: occurs if HO is rejected when it is true
The appendix contains examples of conditional definitions
taken from Smith, Kitchens, Iman, Moore, Moore and McCabe,
Hogg and Tanis,  Neter, Wasserman and Whitmore, and by
Mendenhall, Sheaffer and Wackerly. Note that in all of these
conditional definitions of Type I error, the stipulated condition
is that the null is true.

Thus, these traditional definitions imply that Type I error occurs
only within a column-based process – a classical test of signifi-
cance.  By making Type I error meaningful only if one is sam-
pling from the null, then – and only then – is the short-form
statement of alpha (the probability of Type I error) a proper
definition.

Disadvantages
The traditional approach has several disadvantages.  It requires
students to ignore the simple definition of Type I error as an
intersection that is readily illustrated by means of a 2x2 table.  It
requires students to consider Type I error as being conditional
and thus meaningful only within a test of significance.  It re-
quires students to consider alpha as being conditional without
using the normal keywords for conditionality.  This process-
oriented, conditional definition of Type I error is extremely
subtle and very easy to misinterpret.

Explanation
Given these disadvantages, why do authors traditionally present
alpha as being unconditional and Type I error as being condi-
tional on a column-based process?

Authors may be using these unusual definitions to introduce a
hidden premise: Bayesian conditional probabilities (a row-based
process) are meaningless in a hypothesis test involving a state of
nature.  Since the hypotheses are about a state of nature and
since a state of nature is, in fact, either true or false, they argue
it follows that a Bayesian row probability of Type I error is
meaningless since is it either 0 or 1.  Once Type I error is de-
fined as a column-based process (rejecting the null given the
null is true), then one cannot use this concept in any row-based
process (calculating a Bayesian probability of Type I error).

R. A. Fisher regarded probability theorems involving “psycho-
logical tendencies” (Bayesian reasoning) as “useless for scien-
tific purposes” (Fisher, 1947).  One wonders if the conditional
wording of Type I error reflects this conviction.  Authors who

define Type I error conditionally may simply be following his
practice without intending any claim about Bayesian inference.

This process-based definition makes highly assertive and highly
disputable claims about the epistemological status of
probability.  This claim is much stronger than saying that a
classical test of significance simply ignores predictions of the
Bayesian probability of error.

This hidden premise attempts to reduce knowledge from being
contextual to being intrinsic.  To understand the contextual -
intrinsic distinction, consider having tossed a fair coin in a
situation where no one yet knows the true state of nature about
this coin.  In reality (metaphysically or intrinsically), the prob-
ability of heads is either 0 or 1; but in our minds (epistemo-
logically or contextually) we do not know this reality.  So to us
the state of the coin is still a random variable with a probability
of 0.5 of being heads.  Students, in placing counts in both col-
umns in Table 2, are acting as though the state of nature is like
the state of this coin:  determined in reality but uncertain in our
context of knowledge.  Their action is consistent with the view
that knowledge is contextual – not intrinsic.

In summary, the traditional column-based definition of Type I
error hides a highly disputable assertion about the nature of
probability.  By enclosing this assertion in a definition, stu-
dents, teachers and even authors may have difficulty recogniz-
ing that a highly disputable philosophical argument is being
made.  Teachers may bypass this problem by referring to alpha
as P(reject null | null is true).  But this correct outcome hides
the difficulties in using the traditional definitions of alpha and
Type I error.  Bayesians avoid this problem by simply avoiding
the use of Type I error in determining P(null is true | null is
rejected).

Recommendation
Authors and teachers should abandon the traditional definitions
and use definitions that are more general:
• Define Type I error as an intersection of two logically co-

equal conditions: Type I error occurs whenever the null is
true and the null is rejected.

• Define alpha conditionally as a column-based process:
alpha is the probability of Type I error if the sample is
drawn from the null distribution.

This definition of Type I error makes it descriptively neutral
rather than being disputably assertive (See Kelley’s review of
definitions in The Art of Reasoning.)
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This general approach has several advantages.  It presents
Type I error simply as a single cell in a 2x2 table.  It makes
explicit the conditional nature of alpha: P(null will be rejected |
null is true).  It permits Bayesians to talk about the probability
of Type I error given the null is rejected.  Most importantly, in
terms of Table 1, it should decrease the chance of mistaking
alpha (a column percentage) for the Bayesian probability of
Type I error (a row percentage).

B. SILENCE ABOUT CONFIDENCE
Within a classical approach, confidence is never mentioned in
discussing hypothesis testing.  The traditional explanation is
that a particular hypothesis describes a state of nature.  As such,
the hypothesis is either true or false.  One has no choice about
which distribution one samples from.  Among the statistically
significant samples, either all or none will result in Type I error.

But suppose students are interested in confidence.  In confi-
dence intervals, students were told there is a complementary
relation between alpha (the probability of error) and confidence
level.  This may generate certain expectations in hypothesis
testing.  And since most texts and teachers are resolutely silent
about confidence in hypothesis testing, students presume confi-
dence applies to what they are interested in as decision makers -
- the confidence that a decision is correct.  Thus, they conclude
that an alpha of 5% means they can be 95% confident that a
decision to reject the null is correct.

The solution to the problem of silence is to be explicit about the
inability of the classical approach to speak of confidence, to
present the Bayesian approach and then to present the
strengths and weaknesses of each approach.  For as Berger
(1980) concluded “most such users (and probably the over-
whelming majority) interpret classical measures in the direct
probabilistic [Bayesian] sense.  (Indeed the only way we have
had even moderate success, in teaching elementary statistics
students that an error probability is not a probability of a hy-
pothesis, is to teach enough Bayesian analysis to be able to
demonstrate the difference with examples.)”.

II.    BAYESIAN JUSTIFICATION
From a Bayesian perspective, one can evaluate the Bayesian
probability of Type I error associated with a classical hypothesis
test by following a three step process.  The first step involves
the use of Bayes rule in comparing the quality and predictive
power of medical tests.  This step is not controversial so long as
each subject can be either diseased or disease free.

The Bayesian approach to medical tests is featured by Ellisor
and Morrel in Statistics for Blood Bankers.  The Bayesian ap-
proach to acceptance testing is presented by Moore and McCabe
in Introduction to the Practice of Statistics and by Neter,
Wasserman and Whitmore in Applied Statistics.  The Bayesian
approach to medical tests and acceptance testing is reviewed at
length by Hamburg in Statistical Analysis for Decision Making.

Step 1:  Evaluating Medical Tests on Individuals
Medical tests on individuals can be evaluated using a 2x2 table
involving two contradictory states of disease for each individual
and two test outcomes.

Table 3: the four cells in a 2x2 table:
CELLS DISEASE STATUS
TEST RESULT Disease-free Diseased
Negative OK outcome Type II Error
Positive Type I Error OK Outcome

In Table, 4, the following row probabilities are used:
• δ is the Bayesian probability the subject is disease-free

given that the test is positive (Type I error)
• ε is the Bayesian probability the subject is diseased given

the test is negative (Type II error).
• γ is the prior probability that the subject is diseased

Let δ′ = 1 - δ, ε′ = 1 - ε, and γ′ = 1 - γ.
• δ′ is the Bayesian probability that the subject is diseased

given that the test is positive.  This is called the Positive
Predictive Value (PPV).

• ε′ is the Bayesian probability that the subject is not diseased
given the test is negative.  This is called the Negative Pre-
dictive Value (NPV).

PPV and NPV are used by Kolins in Statistics for Blood Bank-
ers edited by Ellisor and Morel (1983). Kolins references Galen
and Gambino (1975)  Beyond Normality John Wiley and Sons
as a primary source.]

Table 4: the quality of a prediction (row percents)
ROW % DISEASE STATUS
Outcome Disease Free Diseased
Negative ε′  =  1 - ε ε 1
Positive δ δ′  =  1 - δ 1
Incidence  γ′  =  1 - γ γ 1

Table 5 illustrates the column probabilities associated with sen-
sitivity and specificity in medical tests.  The symbol α is used to
identify the probability of a positive test among those who are
disease free.  At this point this alpha has no relation to the al-
pha used in classical hypothesis testing.  But this choice fore-
shadows what will come.
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Table 5: the quality of a test (column percents)
COL % DISEASE STATUS
TEST RESULTS Disease Free Diseased
Negative specificity (α′) β
Positive α sensitivity (β′)
TOTAL 1 1

When α, β and γ are known, we can generate the counts in a
2x2 table for any test involving N subjects.  Note that α′ = 1-α,
β′ = 1-β, and γ′ = 1-γ.
Table 6:  the counts for each cell:
COUNT SUBJECT STATUS

Disease-free Diseased
Negative α′ γ′ N β γ N (α′γ′ + βγ)N
Positive α γ′ N β′ γ N (αγ′ + β′γ)N
Prevalence γ′ N γ N N

ROW VERSUS COLUMN PROBABILITIES
Row probabilities can be generated given column probabilities
using counts in Table 6 or by using Bayes rule: δ = P(Positive &
Disease Free) / P(Positive).

δ = αγ′ / (αγ′ + β′γ) Eq. 1a
ε = βγ / (α′γ′ + βγ) Eq. 1b

Column probabilities can be generated given row probabilities
by solving 1a and 1b for alpha and beta:

α =  δγβ′  / γ′δ′ Eq. 2a
β =  εγ′α′ / γ ε′ Eq. 2b

In summary, γ is the probability that a random patient has the
disease – prior to (before) the test.  If the patient tests positive,
then δ′ is the revised probability the patient is diseased – poste-
rior to (after) the test.  The symbols δ and ε are reversed from
those used in Ellisor and Morel’s Statistics for Blood Bankers.
This reversal links the alphabetic sequence (δ and ε) with Type
I and 2 errors respectively just like with α and β.

Step 2:  Reducing Continuous Hypothesis
The second step in evaluating the Bayesian probability of Type I
error in a classical hypothesis test is to reduce a continuous
quantitative variable to a point mass.  Reducing a null hypothe-
sis from a range (HO: µ ≤ µO) to a point mass (HO: µ = µO) is
standard procedure within the classical approach.  Specifically,
the point mass is situated so as to maximize the associated er-
ror.

Step 3:  Using Degrees of Belief and States of Nature
The third step is to give prior probabilities about states of na-
ture based on degrees of belief (Bayesian) the same epistemic
status as prior probabilities about individual subjects based on
relative frequencies (frequentist).  This entails treating the ex-

istence of both null and alternate as simultaneously possible in
thought even though in reality only one is true.  It means treat-
ing Table 1 as being conceptually similar to Table 2.  For more
on this very important and highly disputable step, read Scien-
tific Reasoning by Howson and Urbach.

Summary:
If we allow degrees of belief about a state of nature, then the
dichotomous model used in medical testing can encompass
classical hypothesis tests involving a quantitative variable.
The Bayesian approach to classical hypothesis testing is men-
tioned in Statistical Reasoning by Smith.  It is discussed in Sta-
tistical Decision Theory and Bayesian Analysis by Berger and
in Statistical Analysis for Decision Making by Hamburg.

General Case
With a fixed sample size and specific values for alpha and beta,
the Bayesian probability of Type I error can be deduced using
Eq. 1a for any given value of the prior probability.  As the al-
ternate becomes more unlikely, alpha must decrease for a fixed
level of Bayesian confidence. As Hamburg (1983) noted: “Prior
knowledge concerning the likelihood of truth of the competing
hypotheses also helps the investigator in establishing the sig-
nificance level.  Hence, if it is considered likely that the null
hypothesis is true, we will tend to set α at a very low figure in
order to maintain a low probability of erroneously rejecting that
hypothesis.”

Beta equals Alpha
If Ho: µ ≤ µo, HA: µ > µ1 and µ1 > µo, then by varying the sepa-
ration (µ1 - µo) or the sample size (n), one can obtain β = α for
any value of alpha.  If β = α, then

δ  =  αγ′ / (αγ′ + α′γ) Eq. 3a
α  =  δγ  / (γ′δ′ + δγ) Eq. 3b

These relations are illustrated in Figures 1 and 2.

Figure 1: δ as a function of γ for a fixed value of α.
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Figure 1 shows that as the alternate becomes more unlikely (γ
decreases), the Bayesian probability of Type I error (δ) increases
for a fixed classical probability of Type I error (α).  Thus the
Bayesian confidence (δ′) that the alternate is true (given rejec-
tion of the null) decreases as γ decreases – for a fixed value of
alpha.

One can interpret 1-α as the Bayesian confidence the alternate
is true given rejection of the null when the prior probability of a
false null is 50% (γ = 0.5).  In this case δ = α and thus δ′ = α′.
This was noted by 1965 by John Pratt in Bayesian Interpreta-
tion of Standard Inference Statements. “Now consider a prob-
lem involving two acts and two simple hypotheses HO and H1.
(Classification problems are sometimes of this type and all
problems of this type can be restated as classification problems.)
Any procedure in such a problem may be regarded as a test of
the null hypothesis HO;  then α is the probability, given HO, of
taking the less desirable action [rejecting HO].  Let β be the
probability, given H1, of taking the less desirable action [reject-
ing H1].   This problem can be viewed as a choice among the
available (α,β)-points. If the loss attributable to taking the
wrong action is the same for both kinds of error, then the ortho-
dox framework rather suggests choosing that test with α=β
among the admissible (here essentially also most powerful and
likelihood-ratio) tests.  This will coincide with the Bayesian
procedure if HO and H1 are equally likely a priori and are suita-
bly symmetric with respect to one another so that the admissible
(α,β)-curve is symmetric in α and β.” [Section 8.4; underscore
added]

Figure 2 shows how alpha should be decreased as the plausibil-
ity of the alternate (gamma) decreases in order to maintain a
fixed level of Bayesian confidence.

Figure 2:  α as a function of γ for a fixed value of δ
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In certain cases, Equation 3a and 3b can be simplified:

δ  ≅  α ( γ′ / γ ) when α << 1 Eq. 4a
α  ≅  δ ( γ / γ′ ) when δ << 1 Eq. 4b

Beta = 1 - Alpha
If Ho: µ ≤ µo and Ha: µ > µo, then β = 1 - α = α′ regardless of
sample size.  If β = α′, then

δ =  γ′ = 1- γ    and  δ′ =  γ     for all α Eq. 5

Equation 5 is similar to equation 4a in that δ increases as γ de-
creases.  The difference is that the magnitude of the Bayesian
probability of Type I error is independent of the value of alpha.
In this case, decreasing the value of alpha has no effect on the
Bayesian probability of Type I error!  This result may seem
counter-intuitive.  But one should not expect that decreasing the
value of alpha will overcome the difficulty in distinguishing
between two hypothesis which are separated only infinitesimally
(µ = µo vs. µ > µo).  One might say that such tests are worthless
since they give no new knowledge from a Bayesian perspective.
A better alternative is to treat this situation as though one were
testing an alternate with β = α and evaluate the Type I error
using the results derived in the previous section.

Objections
Frequentists may object to including any Bayesian reasoning
since frequency is “objective” while the probability of an alter-
nate hypothesis being true is generally “subjective”. But the
choice of alpha is not “objective”  Having social agreement on
the significance associated with certain values of alpha does not
give alpha the same objectivity as has the p-value (which is de-
termined by the data and the Null).

Many might argue that fixed-level hypothesis tests are outdated
and one should simply report p-values.  But a p-value functions
as a sample-dependent alpha if we use the sample statistic to
reject the null.  As such all the comments made about alpha in
this paper apply with equal force to p-values.   If β = p-value,
then  P(HA is true | p-value of statistic) = p′γ / (pγ′ + p′γ) where
p indicates the p-value, and p′ = 1 - p.  If β = p and γ = 0.5,
then P(HA is true | p-value) = 1 - p.

Bayesians might argue that one should simply bypass the classi-
cal test of significance and use a full-fledged Bayesian ap-
proach.  This approach ignores the stature of classical hypothe-
sis tests and ignores the goal of this paper which is to help users
of classical tests better understand the meaning of alpha and p-
value.
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III.  CONCLUSIONS
Users of classical tests must realize that the value of alpha is not
“objective” and should consider setting a value for alpha based
on Bayesian inference.  Alpha should decrease as the alternate
becomes less likely.

Users of classical tests must realize that very small      p-values
are not necessarily stronger evidence for the truth of the alter-
nate hypothesis.

Thesis advisors and reviewers of journal articles should apply
these principles in accepting statistical support for highly dis-
putable conclusions.  If alpha is not adjusted for the likelihood
of the alternate, then statistical opportunists will be encouraged
to use classical hypothesis testing as evidence in support of un-
repeatable findings and the credibility of classical hypothesis
testing as a scientific method will suffer.

In teaching students about classical hypothesis tests, we want
them to understand the meaning of alpha and p-value.  If using
Bayes rule in classical hypothesis tests helps students better
understand the meaning of alpha and p-value, then this ap-
proach should be of value to both Bayesians and non-Bayesians.

APPENDIX
The following quotes concern Type I error and alpha.  The un-
derscore and bold are added for emphasis.

“A Type I error rejects a null hypothesis that is true.”  “α =
P[Type I error] = P[reject HO | HO is true].”  Page  362 in Statis-
tical Reasoning by Smith.

“A Type I error is rejecting a null hypothesis that is true.  The
probability of committing a Type I error is denoted as α.”  “The
level of significance is α, the probability of making a Type I
error.”  Pages 326 and 328 in Exploring Statistics by Kitchens.

 “Type I error .. is .. rejecting HO when HO is true.”  “The prob-
ability of making a Type I error …  is called the level of signifi-
cance and is denoted by α.”  Page 302 in A Data-based Ap-
proach to Statistics by Iman.

“.. Type I error, reject HO when HO is true.” “..the probability of
the Type I error is denoted by α..”  Page 324 and 326 in Prob-
ability and Statistical Inference by Hogg and Tanis.

“If we reject HO (accept HA) when in fact HO is true, this a Type
I error.”  “The significance level α of any fixed level test is the
probability of a Type I error.  That is, α is the probability that
the test will reject the null hypothesis HO when HO is in fact
true.” Pages 482 and 484 in Introduction to the Practice of Sta-
tistics by Moore and McCabe.  Pages 388 and 390 in The Basic
Practice of Statistics by Moore.

“A Type I error is made if conclusion H1 is selected as being
correct when, in fact, HO is the correct conclusion.”  “The prob-

ability of Type I error will be denoted by α … ”.  Pages 259 and
266 in Applied Statistics by Neter Wasserman and Whitmore.

“A Type I error is made if HO is rejected when HO is true.  The
probability of a type I error is denoted by α.”  Page 374 in
Mathematical Statistics by Mendenhall, Sheaffer and Wackerly.
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