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Abstract:   In essence, statistics is a part of philosophy.  
Specifically, statistics and logic both are part of episte-
mology.  This paper examines three major issues in 
statistics: the role of statistics in science (philosophy of 
science), the role of objectivity in defining probability, 
and the role of chance in statistical inference.  In each 
issue there are two sides: classical frequency-based 
objectivists and Bayesian strength of belief subjectiv-
ists.  The ongoing debate within statistics is primarily 
philosophical.   The root issue is the problem of induc-
tion – also known as the problem of universals.  The 
problem of induction is one of the great problems in 
philosophy today.  The ongoing conflict in statistics is 
in large part a reflection of the failure of philosophers 
to solve this classic problem. 
 
This paper examines four topics: the relation between 
statistics and philosophy of science, the nature of prob-
ability, the role of chance in inference, and hypothesis 
testing.   Specific recommendations are offered.  
 
INTRODUCTION 
 
Although statistics is seldomly taught by philosophers, 
statistics is as close to philosophy as is logic.  Only the 
emphasis on quantity places it in the purview of mathe-
maticians.  This paper examines the relation between 
statistics and philosophy in four key areas. 
 
1. AMBIGUITIES IN STATISTICAL CLAIMS 
 
The reason people can ‘lie’ with statistics is that many 
of the key phrases used in statistics are ambiguous.   
These ambiguities are exploited by the knowledgable, 
communicated by those who could know better and 
accepted by those who trust those who should know 
more. 
 
A keyword is ‘can’.  ‘Can’ is ambiguous. 
1. This drug can kill  -- anyone at a high enough 
dose. 
2. This drug can kill – some subjects but not all. 
3. This drug can kill.  Although I don’t know any 
circumstances under which it definitely will kill all or 
some, I do have some reasons to believe it could. 

4. This drug can kill – because there is no reason it 
can’t (although there is no reason to think it can: #3). 
 
These four forms of ‘can’ represent different kinds of 
potentiality.  The first two identify the conditions under 
which the potency will be actualized.  The third indi-
cates one’s strength of belief that the potency exists 
although there is no certainty that it can (#1 or #2).  The 
fourth is a statement of conceivability:  ‘can’ meaning 
it is conceivable (not logically impossible). 
 
Statistical ambiguity is present in the three key forms of 
statistical inference: generalization, prediction and 
explanation.  
 
Generalization:  Statistics will generalize from a par-
ticular to a universal and identify the confidence asso-
ciated with the inference.  This seems incredible until 
one realizes that the generalization accounts for only 
one kind of uncertainty – that due entirely to chance.  A 
statistical generalization cannot estimate the effect of 
any other kind of uncertainty. 
 
Prediction:  Statistics “predicts” the future from past 
observations.  But this is no great feat provided one has 
the implicit assumption of ceterus paribus about every-
thing related to the model that has been developed.   
 
Explanation: Statistics can explain which things are 
factors or influences.  Statistics identifies how strongly 
a given factor “explains” a particular relationship.  
This too seems incredible until one realizes that this 
explanation is merely a way of saying that two things 
are related, associated or correlated.  The measurement 
of this association is therefore non-controversial.  The 
problem is when unwary readers read that “A influ-
ences B”, “A is a significant factor in the generation of 
B”, or “A explains 60% of the changes in B”.  Most 
readers assume these are statements about causality: 
whether A causes B and how strongly a change in A 
relates to a change in B.   
 
Association, prediction and explanation each have two 
forms (observational and experimental) that are easily 
confused. Consider data obtained on the prices for a 
group of houses.   
 
Observational:  An observational association says that 
for an ‘increase’ of one bathroom, the mean value of 
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the houses increased by $25,000.  An observational 
prediction says that for an ‘increase’ of one bathroom, 
the expected value of the house will increase by 
$25,000.  An observational explanation says that an 
‘increase’ of one bathroom explains the expected in-
crease of $25,000 in the value of the house.  In each 
case, the ‘increase’ was due to a shift in focus from 
houses having one bath to houses having two baths, or 
from two to three, etc.  In an observational association, 
prediction or explanation, the only ‘change’ is in our 
choice of subjects being observed.  The ‘change’ is 
entirely mental – not physical. 
 
Experimental:  An experimental association says that 
for an ‘increase’ of each bathroom (physically adding 
another bathroom), the mean value of such houses in-
creased by $10,000.  An experimental prediction says 
that for an ‘increase’ of one bathroom (physically add-
ing another bathroom), the expected value of that house 
will increase by $10,000.  An experimental explanation 
says that adding one bathroom to an existing house 
‘explains’ the expected increase of $10,000.  In each 
case, the ‘increase’ was physical – an internal change 
within the given subjects.  The increase was a physical 
change in reality. – not just a shift in mental focus.  
 
Obviously an observational statement is based on an asso-
ciation, whereas an experimental statement is based on 
causality.  
 
This obfuscation between observational and experimental 
is quite common in arguments involving statistics.  The 
truth of an observational association is used to argue for 
the truth of an experimental explanation or an experimen-
tal prediction.  
 
1. Cars with cell phones have a 50% higher rate of acci-
dents than cars without.   Thus to minimize accidents we 
should ban car phones.  
 
2. People who complete college make $6,000 more per 
year than people who do not.  Thus if we want people to 
have better incomes, we should encourage them to com-
plete college. 
 
3. People who take vitamins have half as many medical 
problems as those who do not.  If we want to improve 
health, we should subsidize the purchase of vitamins.   
 
2. NATURE OF PROBABILITY 
Typically, probability is presented in three forms: 
1. Hypothetical:  “Suppose we have a fair coin….” 
2. Empirical:  In the long run, the proportion of 

heads in flipping a fair coin will approach 50%. 
3. Subjective:  I think the probability of electing a 

Libertarian President will continue to increase. 

 
The first two are often grouped together as being objec-
tive.  The last one (subjective) uses probability to indi-
cate one’s strength of belief in the truth of a claim.  The 
claim may be historical (“I think the Dinosaurs were 
killed by a meteor.”) or it may be a unique future event 
(“I think that Gold will become the currency of choice 
in less than 50 years.”).   
 
Classical statisticians do not use chance or probability 
to describe a fact.  Suppose someone won two lotteries 
in one week.  Instead of saying the chance of this hap-
pening is 1 in a million, they would say, “the chance of 
this [kind of thing] happening is one in a million” or 
else they would say, “the chance of this is obviously 1 
– it happened.” 
 
Classical statisticians use the word ‘confidence’ to de-
scribe a fact whose value is unknown.  Now suppose 
one has bough two lottery tickets.  The winning num-
bers have been drawn, but the ticket holder is ignorant 
of the winning numbers.  Classical statisticians would 
say one should be 0.000001% confident of wining both 
lotteries.  See Schield, 1997 for a discussion of the rela-
tion between confidence and probability. 
 
Objective and subjective probabilities both obey the 
same probability calculus (laws of probability) despite 
their differences concerning the nature of probability,.   
They both have the same algebraic rules for exclusivity, 
independence and Bayesian dependence. 
 
Exclusivity:  If A and B are exclusive, then having 
both exist or be true simultaneously is impossible.  If 
30% of the students are sophomores and 20% are sen-
iors and one cannot be both, then the probability of 
being either must be 50%.  Similarly, if the “probabil-
ity” that A committed a crime is 10% and the “prob-
ability” that B committed the crime is 20%, then the 
“probability” that one of them committed the crime 
must be 30%.   
 
Independence:  If A and B are independent, then the 
existence of one has no effect on the chance of the 
other existing or being true.  If 50% of the students are 
male and if 30% are business majors and if being a 
business major is independent of sex, then we must 
conclude that 15% of all students are male business 
majors.   Similarly if we think there is a 20% “probabil-
ity” of a stock market drop of at least 30 percentage 
points and if we think there is a 10% probability of a 
major war, and if these events are independent, then the 
probability of both must be exactly 3%.  
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Bayesian Dependence: Bayes Rule is a most interest-
ing example of reasoning from consequent to antece-
dent.  Suppose that subjects are either diseased or dis-
ease-free.  Suppose that test results on these subjects 
are either positive or negative.  
1. If diseased, then 90% chance of positive test. 
2. If not-diseased, then 90% chance of negative test. 
3. Suppose there is a 10% chance of being diseased. 
Then the chance of a subject being diseased is 
a. 50% given a positive test, and 
b. 1% given a negative test. 
 
The quality of a test (90% sensitivity and 90% specific-
ity) and the prevalence of the disease (10%) logically 
determine the quality of the prediction (50% if positive 
and 1% if negative).   
 
This is a simple application of conditional probability 
as summarized by this Venn diagram. 
 

Non-diseased
and

test negative

diseased test-positiveF08Z1

 
 
The underlying issue between Bayesians and non-
Bayesians is objectivity.  The classical statisticians ob-
ject to allowing subjective probabilities.  To do so 
would undermine the objectivity of science and actually 
retard the attainment of knowledge.  Bayesians hold 
that probability is inherently subjective and that the 
classical statisticians are dealing with Platonic forms as 
being intrinsic and are thus non-objective.  Bayesians 
hold that subjective probabilities are informed by ex-
perience.  As more experience accumulates, it will di-
lute out the differences between different prior prob-
abilities.  Bayesians hold that this is how knowledge is 
accumulated and that using classical tests actually dis-
torts and subverts the acquisition of meaningful knowl-
edge.  
 
For a good overview of both sides, see Howson and 
Urbach (1993) on the Bayesian side and Mayo (1996) 
on the classical side.  
 
3. CHANCE IN INFERENCE 
There is verbal obfuscation about whether chance is to 
be treated as a premise (as given) or as a conclusion 
(an explanation) whose truth is disputable and needs 
support from an argument.  The following questions 
were posted on the SciStatEdu newsgroup: 
 

1. Suppose I flip a coin and get 9 heads in 10 tries.  
Statisticians would say this outcome is highly unlikely 
(a) IF due to chance, (b) TO BE due to chance or (c) 
DUE to chance."  [I'd pick 'a'.   Students pick 'b' or 'c'.  I 
think 'c' is ambiguous.] 
 
2. If an outcome is statistically significant, this is the 
same as saying it is highly unlikely (a) IF due to 
chance, (b) TO BE due to chance or (c) DUE to 
chance."  I’d pick 'a'.   Students pick 'b' or 'c'.  I think 'c' 
is ambiguous.] 
 
3. Given that an association (or outcome) is statistically 
significant, _______  it is unlikely to be due to chance. 
(a) THIS MEANS {Same meaning; different words} 
(b) this PROVES it is unlikely to be due to chance. 
{Logically necessary} or (c) this is EVIDENCE that it 
is unlikely to be due to chance.  [I'd pick 'c'; I think 
students would pick either 'a' or 'b'] 
 
4.  Given that an association (or outcome) is unlikely to 
be due to chance, this  _______ it is likely to be due to 
a determinate cause.  Choose from (a) MEANS, (b) 
PROVES or (c) IS EVIDENCE.  [I'd pick either 'a' or 
'b' -- but I'm not very certain yet...] 
 
Replies varied.  One said this was verbal obfuscation 
that had no merit and would simply turn students off.  
Another said these distinctions were among the most 
fundamental concepts in all of statistics.   
 
4. HYPOTHESIS TESTING 
Schield, 1996, argued that classical hypothesis testing 
is vulnerable to Type 1 error provided the alternate 
hypothesis is extremely unlikely prior to sampling.   
This is the prosecutor’s fallacy.   
 
5. CHANCE AND PHILOSOPHY 
There are two views of chance: epistemological and 
metaphysical.  In the epistemic view, chance is merely 
the name for those causes that are so numerous and so 
indeterminate that collectively they are called ‘chance.’ 
In the metaphysical view, chance is something in reality 
whose existence remains independent of the quality of 
our knowledge or measurements.  
 
6. PHILOSOPHY OF SCIENCE & STATISTICS 
Statistics is the key to the philosophy of science today.  
This was not the case 100 years ago.  At that time, cau-
sality in the natural world was typically determinate.  
Probabilistic causality and the influence of chance were 
reserved for games of chance – not philosophy of sci-
ence.  Today, probabilistic causality is much more 
common – not only in medicine and health but also in 
quantum physics, statistical thermodynamics, and as-



11/09/97 Philosophy & Statistical Inference Phil.Colloquium 

971PhStat1b.doc Page 4 Milo Schield 

trophysics.  It has always been common in predicting 
weather and throughout the social sciences.   
 
 
 
6. CONCLUSION 
Statistics is in dire need of philosophical direction.  
One professor at the Univ. of Minnesota asserted that at 
least 30% of all Ph.D. theses in Psychology could not 
be replicated – although all had passed a statistical test 
of significance.  An article in Science (1997) made the 
same point.  Statistics needs help from Philosophy in 
setting its reasoning in order.   
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CLASSICAL CONFIDENCE INTERVALS 
 

 

STRENGTHS: 

1. Relative frequency basis for probability and for confidence level.   

2. Does not treat fixed population parameters as being variable. 

 

WEAKNESSES: 

 

1. Failure to identify at what time ‘confidence’ applies. 

 Prior to sampling (as does probability). 

 After sampling but before the sample statistic is known. 

 After sampling and after the sample statistic is known. 

 

2. Failure to distinguish between definite and indefinite 

Algebraically: [ x  - Z (/n)]        [ x  + Z (/n)] 

 Definite:    [ x o- Z (/n)]    [ x o + Z (/n)].  x o  is fixed. 

 Indefinite:  [ x
~

- Z(/n)]        [ x
~

+ Z(/n)].  x
~

 is variable 

Verbally:  “this interval”:   

 Definite:  “this particular interval” (fixed after sampling) 

 Indefinite:  “this kind of interval” (random prior to sampling) 

 

3. Failure to identify what kind of thing confidence is. 

 A new name for a virtual or hypothetical probability. 

 A new name for a kind of relative frequency. 

 The strength of one’s belief in the truth of a claim. 



11/09/97 Philosophy & Statistical Inference Phil.Colloquium 

971PhStat1b.doc Page 3 Milo Schield 

More Detail on the Concept of 

“CONFIDENCE” 
 

Q. What is confidence?   

A. It is not a probability.  

 

Q. What is the value of confidence?   

A. Value is determined by classical relative frequency (% of intervals) 

 

PROBLEM IN UNDERSTANDING CONCEPT OF CONFIDENCE 

We now know what it is not – but not what it is 

Knowing the numerical value doesn’t tell us what it is. 

We need to know what confidence is in positive terms (not negative). 

 

SUMMARY: 

Most presentations of confidence intervals fail to answer these three 
questions: 

1. What kind of thing confidence is? 

2. What does confidence apply to? 

3. When does confidence apply? 

 

Thus, 

 Students can calculate confidence intervals. 

 Students still can’t interpret what they mean. 
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NEOCLASSICAL INTERPRETATION 

OF CONFIDENCE INTERVALS: 
 

1. Confidence is psychological (being confident is psychological). 

2. ‘90% confidence’ (being 90% confident) identifies a level of confi-
dence when facing a situation involving a 90% chance (probability) 
of winning.  

3. Thus, 90% confidence is really a calibration or prescriptive of one’s 
subjective confidence using an objective measure of uncertainty. 

4. A given level of confidence can (and in some case should) persist 
even when the extrinsic uncertainty becomes a fact – provided one 
has no additional knowledge about the value of the parameter in 
question. 

 

To get from probability to confidence involves three steps. 

Step 1 uses the Principal Principle. 
 

PRINCIPAL PRINCIPLE 
Howson and Urbach (1993), Page 240 

“The principle states that if the objective, physical probability of a ran-
dom event (in the sense of its limiting relative frequency in an infinite 
sequence of trials) were known to be  r, and if no other relevant informa-
tion were available, then the appropriate subjective degree of belief that 
the event will occur on any particular trial would also be  r.” 

[underscore added] 

.
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CONFIDENCE!  IN WHAT? 

1. the chance that the next random confidence interval includes  

2. the chance that  is in this particular confidence interval 

3. the certainty one has in the truth of a claim (strength of belief) 
 

CONFIDENCE REFERS TO  

STRENGTH OF BELIEF 

1. If confidence refers to the uncertainty in the next random sample, 

then confidence is no different than probability. 

2. If confidence refers to the uncertainty in the value of the popula-

tion parameter, then confidence is meaningless.   

 There is no uncertainty in the population parameter. 

3. By elimination, confidence must refer to one’s strength of belief. 

 

STRENGTH OF BELIEF DOES NOT IMPLY SUBJECTIVITY 
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 NEOCLASSICAL INTERPRETATION 

OF CONFIDENCE 

 
Consider a fair coin. 
 
Before flipping: 
 

1.  There is a 50% chance (probability )of getting heads 

2. I am 50% confident of getting a head. 

3. I am 100% confident that the chance of getting a head is 50%. 

After flipping but before seeing.”: 

4. I am  50% confident this coin is flipped with heads up. 
 

 
Consider a normal population with  = 100 and  = 10. 

Consider random samples of size 100.  

1. A 68% probability interval for x  ranges from 99 to 101.  

2. 68% of the 68% confidence intervals will include  = 100 

3. There is a 68% chance a random 68% CI will include . 

4. I am 68% confident that  is in the next 68% CI. 

 

5. Given that ox  = 99, I am 68% confident that 98    100. 
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GENERAL RECOMMENDATIONS  

FOR TEACHING  

CONFIDENCE INTERVALS 
 
 
 

1. Use probability and confidence in a consistent fashion.   

2. Present both the classical and neoclassical interpreta-
tions of confidence intervals. 

3. Specify the context (the time):  
 prior to taking a sample? 
 after taking a sample but prior to taking the statistics? 
 after taking a sample and after taking the statistics? 

 

4. Qualify algebraic statements about confidence intervals 
so students can always tell what is variable.   
 If x  designates a variable and unknown, then use x

~ . 
 If x  designates a constant that is fixed, then use ox .   

5. Avoid verbal ambiguity (‘this interval’)  
 If a particular interval say ‘this particular interval’ 
 If the interval is variable say, ‘this kind of interval’. 

 

6. Say what ‘confidence’ is rather what it is not.  
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NEOCLASSICAL RECOMMENDATIONS  

FOR TEACHING CONFIDENCE INTERVALS 

7. Say what ‘confidence’ is rather than what it is not.  
Confidence is a psychological concept that measures 
one’s strength of belief in the truth of a claim.  It is 
typically subjective but can be prescribed objectively. 

8. Show how frequentist probability can be used to cali-
brate one’s level of confidence.  Identify and validate 
the Principal Principle.  Show that confidence is not 
always subjective. [Primacy of Existence]  

9. Show how a given level of confidence would justify 
taking on a bet having a similar numerical chance 
(probability) of success (assuming similar loss/gain).  

10. Make statements that include ‘confident’:  “We can 
be 95% confident (break even on a 95% bet) that this 
95% confidence interval includes the population pa-
rameter.”  

11. Show that the Principal Principle does not always 
justify inferring the existence of a particular physical 
uncertainty from a level of confidence. [Fallacy of Pri-
macy of Consciousness]  
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Probability of a future event 
CONTEXT: Urn contains 100 balls.  50% are red. 

ACTION:  Selecting 10 balls (with replacement) from an urn. 

CLAIM:  Between 40% and 60% of these balls will be red.  

PROBABILITY 90% chance of this claim being true. 

STRENGTH OF BELIEF:  

 Full statement:    90% confident that this claim is true. 

 Abbreviated statement: 90% confident that 40% to 60% of the next 10 balls will be red 

 

Probability that a claim is true 

CONTEXT: Urn contains 10 balls.  An unknown faction are red.  

ACTION:  Selected 10 balls (with replacement) from urn.  Five were red. 

CLAIM:  Percentage of red balls in the urn is between 40% and 60% 

PROBABILITY Either 0% or 100% chance of this claim being true. 

STRENGTH OF BELIEF:  

 Complete statement:   90% confident that this claim is true. 

 Abbreviated statement:  90% confident that true percentage is between 40% and 60%. 

 

I’m probably not very confident. 

 

I’m 40% confident that the probability of drawing a red ball is 50% 

1. CONFIDENCE IS A KEY WORD 

2. CONFIDENT IS NOT. 

3. BEING CONFIDENT IS WHAT LINKS CLASSICAL AND BAYESIAN 

4. CONFIDENCE IS NOT JUST ANOTHER WAY OF EXPRESSING A PROBABILITY. 

5.  
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CLASSICAL, BAYESIAN AND NEOCLASSICAL 

INTERPRETATIONS OF UNCERTIANTY 

 
 

Uncertainty Source of uncertainty (what) 
 
Description of  
uncertainty (how) 

physical uncertainty 
occurrence of future event 

 is known 

mental uncertainty
truth of a claim  
 is unknown 

Objective 
(repeatable) 

Classical 
(“objectivist”) 

“Neoclassical” 
(pragmatic realist)

Subjective 
(unrepeatable) 

 Bayesian 
(subjectivist) 

 

 

Authors who speak of being 95% confident: 

 Moore and McCabe: 

We can say we are 95% confident that the unknown mean score for 
all California seniors lies between x -9 (452) and x +9 (470).  … The 
statement that ‘we are 95% confident that the unknown  lies be-
tween 452 and 480’ is shorthand for saying, ‘We arrived at these 
numbers by a method that gives correct results 95% of the time.’ ”  
Moore and McCabe.  

Weiss and Hassett, 

Ott, Hildebrand and Ott,  

Anderson, Sweeney and Williams. 

Hamilton 
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CONCLUSIONS  
 

 

Distinction between relative frequency basis of probability and the Bayesian sub-
jective notion of probability is more fundamental than the difference between the 
metaphysical and epistemological differences.   

POTENTIALLY AMBIGUOUS STATEMENTS: 

[Underscore added to identify a potentially ambiguity] 

“The probablity that a confidence interval will include  is called the confidence 
coefficient.”  Mendenhall, Schaeffer and Wackerly, Mathematical Statistics with 
Applications, 2nd Ed. 1981.  Page 305.  Wadsworth, Inc.  

 

-------------------------------------------------------------------------------------------------------------------- 

OPERATIONAL EQUIVALENCE 
 

GAME:  You win the prize if either  

1. this particular 90% confidence interval includes the population parameter 

2. you randomly draw a red ball from an urn containing 9 red balls and one 
white ball.  (You have a 90% chance/probability of drawing a red ball).  

 

There is no long-term advantage to choosing one over the other. 

Thus the classical statement about a confidence interval  

is operationally the same as a statement of probability 
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BEFORE SAMPLE  

IS TAKEN 
 

THIS KIND OF INTERVAL 

Uncertainty is in reality 

 

1. There is a 95% chance that a 95% confi-
dence interval will include . 

 
2. We have 95% confidence (are 95% con-
fident) that this kind of (the next) 95% con-
fidence interval includes . 

 

 

1. There is a 100% chance that 95% of 
these 95% confidence intervals will include 
. 

 

2. We have 100% confidence (are 100% 
confident) that 95% of these 95% confi-
dence intervals will include . 

 

AFTER SAMPLE 

IS TAKEN  
 

THIS PARTICULAR INTERVAL 

Uncertainty is in our minds 

 

1. There is a 95% chance that this 95% 
confidence interval includes the mean. 

 

 

3. We have 95% confidence (are 95% con-
fident) this particular 95% confidence inter-
vals includes . 

 

 

1. There is a 100% chance that this 95% 
confidence intervals does or does not in-
clude . 

 

2. We have 100% confidence (are 100% 
confident) that this 95% confidence intervals 
does or does notl include . 

 

 

POINT:  LEVEL OF CONFIDENCE PERSISTS BECAUSE THE NEW INFORMATION IS 
UNINFORMATIVE.  

 

POSTERIOR UNCERTAINTY = PRIOR UNCERTAINTY 

NO NEW INFORMATION  

 
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Table I:  Claims about confidence intervals from a normal population.  SE = /n 

Context of uncertainty (what) Confidence 
Intervals 
Description of  
uncertainty 

Sample has not  
been drawn. 
 is unknown 

x
~

 is random variable 

sample has been drawn
statistics are unknown 

 is unknown 

ox  is fixed but unknown 

sample has been drawn
Statistics are known 

 is unknown 

ox is fixed and known 

Objective 
(repeatable) 

Classical 
(“objectivist”) 

P[(o–2 SE)  x
~

  
       (o+2 SE)] = .954 

 

 
P[(o – 2 SE)  ox   

(o + 2SE)] = 

   either 0 or 1. 

 
P[(o-2SE)  ox   

(o+2SE)] =  

either 0 or 1 

Confidence 
Strength of belief that 
| x  -  o|   2 Std.Errors 
 

 
 

95% Confidence 
[95% Confident] 

| x
~

 - o |   2 Std.Errors 
 

 
“ 

95% Confidence 
[95% Confident] 

| ox  - o|   2 Std.Error 

 
“Prescriptive” 

95% confidence 
[95% Confident] 

| ox  - o|   2 Std.Error 

Subjective 
 Bayesian 

Probability given by a 
subjective prior 

Probability given by a 
subjective prior 

Posterior given by Bayes 
rule using sample data 
and subjective prior 

  Confidence is calibrated by means of a probability (Principal principle). 

 and     This change in facts does not change one’s level of confidence. 

  


 

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Table I:  Claims about confidence intervals from a normal population:   Std Error = /n 

Context of uncertainty (what) Confidence 
Intervals 
Description of  
uncertainty 

Sample not yet drawn. 
 o is known 

x
~

 is random variable 

Sample has been drawn 
 o is unknown 

?x  is fixed but unknown 

Sample has been drawn.
 o is unknown 

ox is fixed and known 

Objective Prob-
ability Classical 

P[(o–2 SE)  x
~

   

(o+2 SE)]= .95 

 
P[(o–2 SE)  ?x   

(o–2 SE)] 

equals either 0 or 1. 

 
P[(o–2 SE)   ox   

(o–2 SE)] 

equals either 0 or 1 
Confidence 
Strength of  
belief that  
| x  -  o|    
2 Std.Errors 

 
 

95% confidence 
[95% confident] 

| x
~

 - o |   2 Std.Errors 
 

 
 

95% confidence 
[95% confident] 

| ?x  - o|   2 Std.Errors 

 
“Neoclassical” 

95% confidence 
[95% confident] 

| ox  - o|   2 Std.Errors 

  Confidence is calibrated by means of a probability (Principal principle). 

   No change in our knowledge about the sample statistic 

  Knowing the sample statistic does not change our prediction of the relation 

 between the sample statistic and the population parameter. 

 

  


 



