EVIDENTIAL STATISTICS

Reforming the Introductory Course in Applied Statistics for Non-Majors

Milo Schield

Augsburg College

schield@augsburg.edu

JSM-98 Section on Statistical Education

August 12, 1998

Dallas, Texas

Applied introductory statistics

Many say that introductory statistics has problems and must be reformed.

Dr. 'Bob' Hogg

"I am tired of hearing about problems in introductory statistics.

I know there are problems with introductory statistics;

But I defy anyone to identify what is wrong and what we must do to fix it."

JSM-95 Orlando FL.

"The problem is that introductory statistics is designed like a human <u>anatomy</u> course -not like a human physiology course. So much time is spent trying to get these students to understand where the basic organs are in the Statistical body, that they never get a chance to understand how the organs function together to maintain homeostasis."

From "Testing basic statistical concepts." Posted to sci.stat.edu news-group on 2 June, 1997 by Robert Schilling, MPH at Loma Linda, CA. Email to <u>rschill718@aol.com</u>.

Evidential statistics uses traditional <u>statistics as evidence</u> in arguments with <u>non-statistical</u> <u>conclusions</u>.

Evidential statistics is <u>macro-statistics</u>: a mixture of traditional statistics philosophy of science, and critical thinking.

Sciences of Method

	METHOD OF	
	REASONING	
Content	DEDUCTIVE	INDUCTIVE
WORDS	Logic	Critical
		Thinking
NUMBERS	Mathematics	Evidential
	Probability	Statistics

An example of evidential statistics:

Two hunters were being chased by a hungry bear

The first hunter shouted to the second, "It's hopeless!"

This bear runs twice as fast as we can.

The second hunter shouted back:

"So what? I don't have to outrun the bear.

I just have to outrun YOU...!"

Thanks to David Friedman's Intermediate Microeconomics Text for this example.

Statistics is like a baseball game.

Describing and modeling gets one to 1st

Classical Inference gets one to 2nd.

Bayesian Inference gets one to 3rd.

Evidential statistics reviews all these runs and tries to get one back home.

The run to 1st base

Evidential statistics is concerned with BIAS

"...the most serious threat to the progress of science... comes from bias, not random variation."

John Bailar, Chair, Board of Trustees NISS [Amstat News, Nov., 1997 p. 5]

What you take into account (control for) can change the magnitude and direction of an association between two variables. [Simpson's paradox]

The <u>more unlikely</u> a relationship *if* due to chance, then the <u>more unlikely</u> the relationship *is* due to chance and the <u>more likely</u> the relationship is due to some determinate cause.

The smaller the p-value in a classical test of hypothesis, the <u>more one is justified</u> in rejecting the truth of the null.

Sometimes students cannot distinguish association from causation.

A is positively <u>associated with</u> B A is <u>riskier than</u> B A is <u>determined by</u> B A is <u>explained by</u> B A is <u>linked to</u> (related to) B A is <u>a factor</u> in relation to B A is <u>a ttributable to B</u>

A can be attributed to B

Students can't distinguish association from causation.

Suppose A and B are positively associated:

1. <u>Subjects</u> who have more A are likely to have more B

2. As A increases, B [tends to] increase

3. As A is increased <u>within a subject</u>, we expect that B will increase <u>within that same subject</u>.

The quality of a statistic depends on the kind of study: experimental versus observational.

In presenting regression and ANOVA, we don't dwell on the source of the data (experimental or observational) since the kind of study doesn't affect the statistics

> But the kind of study affects the value of the statistics as evidence.

Good experiments limit arguments.

"Can magnets block pain?"
A recent double-blind experiment of 50 subjects says "Yes"
75% in treatment group got relief;
19% in control group got relief.

While we may have questions, we do have reason to believe this study could be replicated and something like the observed outcome should result.

Experiments and observational studies vary

in the strength they give

to support a conclusion.

<u>Support</u>	Observational	Experiment
Strong	Impossible	Double blind: controlled or repeatable
Moderate	Longitudinal	No-blind and, missing data. Uncontrolled or unrepeatable
Weak	Cross-sectional	

"Statistics: a <u>Guide</u> to Public Policy" 1998 JSM Theme

"Public policy is a series of uncontrolled, [unrepeatable] experiments."

David Pavelchek. JSM-95. Session 172. Orlando, FL

To guide public policy, we must teach Evidential Statistics

Evidential statistics is a key in reforming statistical education!

Seven Reasons Against Teaching Evidential Statistics

1. Dilutes our discipline

• Mathematics is deductive.

2. Division of labor

• causality is discipline specific

3. Arrogance to try to teach all things

- Mathematics and probability
- Statistical inference and modeling
- Critical thinking & Phil.of Science

4. Too much stuff for one semester

- 5. Lack of texts
- 6. Inability to teach
- 7. <u>Inability to test</u>

Florence Nightingale

the passionate statistician, <u>used statistics</u> <u>as evidence</u> to support her claim that *improved medical care would save lives*.

Statistic #1

Crimea, 1859: For every soldier killed in battle, seven died after the battle.

Statistic #2

The death rate for young soldiers in peacetime was twice that of the general population.

(Brown, 1988 *People Who Have Helped the World, p. 44*)

Florence Nightingale introduced many techniques designed to take into account (control for) confounding factors. She noted that mortality statistics should be age-specific and that crude death rates can be misleading.

Johnson & Kotz, 1997 Leading Personalities in Statistical Sciences.

Statistics began as the queen of the social sciences.

David Moore is right on! Introductory statistics should be taught as a liberal art.

It is time to assert our identity!

We should teach <u>Evidential Statistics</u>: statistics as evidence

Jessica Utts, Univ. Calif, Davis <u>Seeing Through Statistics</u>

Gary Smith, Pomona College, Calif <u>Statistical Reasoning</u>

Gudmund Iverson, Swathmore <u>Statistics: A Conceptual Approach</u>

Donald Macnaughton, Toronto <u>www.matstat.com/teach</u>

Milo Schield, Augsburg College <u>www.augsburg.edu/ppages/schield</u>

Thanks to

Alexander Krugushev, Duxbury Editor for Jessica Utts

William Barton, McGraw-Hill Editor for Gary Smith

Jerry Lyons, Springer-Verlag Editor for Gudmund Iverson

Jerry Moreno, JSM-98 Stat. Ed. Program Chair