David Moore argued against teaching Bayesian reasoning in the introductory course. His primary reason was that conditional probability is "fatally subtle."

I agree with the truth of his reason.

But why is conditional probability so subtle?

Is it the probability or is it the conditional thinking.
While both are certainly involved,
I assert it is the latter more than the former.

There are different levels of conditional thinking.
We tend to teach conditional probability directly -in confidence intervals and hypothesis tests.

We teach it using certain keywords:
IF, WHEN and GIVEN.
These are words students use
but students use other words as well.

I assert

1. there is a much more basic level for teaching conditional thinking.
2. Student's have as much trouble at the basic level as the advanced.
3. Deficiencies in handling the basics explains most of the problems at the advanced.
4. The basics can be taught.
5. The basics should be taught before taking on conditional probability.

Consider Arithmetic Comparisons:
Three comparisons: simple difference, simple ratio and relative diff. Each has a different grammar: more than, times as much \& \% more than

Some ratios are so common, they take into account things so elementary, that we give them names. These are what I call "Named Ratios".

These include percent, rate and percentage.
They also include the Chance family: chance, risk, likelihood, odds and probability.
These named ratios have different grammars.
We can also do arithmetic comparisons on these named ratios.
But the grammar to handle the named ratio and the comparison is hard.
Finally there are two specialty forms of comparisons of named ratios:

1. Likely family (which is most common),
2. Attributable to family (which is increasingly common in epidem).

Exercises:

03/17/2000 Conditional Thinking Named Ratio Usage Varies by Source					5
SOURCE	$\begin{gathered} \text { \% of } \\ \text { \{whole\} } \end{gathered}$	Rate	Percentage of \{part $\}$	$\begin{array}{\|r} \text { Chance- } \\ \text { Probability } \end{array}$	
1. Intro Statistics Text	5	5	0	90	
2. Popular Essays	30	20	10	40	
3. Data: $\mathbf{1 9 9 8}$ U. S. Statistical Abstract	40	40	20	0	
Percents are estimates at this time Intro Statistics text: Anderson \& Sweeney.					

Look first at the right columns in each row.
In the first row, statistics texts: 90% of named ratios are Chance family And most of these use "probability".

Now look at the bottom row: the US Statistical Abstract.
The Chance family is never used.
Now look at the middle row:

Conditional Kind of Inference Thinking Varies by Named Ratio

PERCENTS (\%), RATES, OR PERCENTAGES

Factual: "X\% of this sample/group have Y"
Generalization: "X\% of the population have Y."

CHANCE FAMILY: risk, likelihood or probability

Suppose smokers have a higher rate of colds [than non-smokers].

Random Sampling Prediction:

"A smoker has a higher risk of a cold [than does a non-smoker].
"If you smoke, you have a higher risk of a cold [than a non-smoker].

Controlled Prediction:

If non-smokers start smoking, they can expect to cut their risk of colds."
If you start smoking, you can expect to increase your risk of a cold."
If you smoke, you have a higher risk of a cold than if you don't smoke."
"Percent(age) of" normally indicates a whole:
52\% OF males are smokers
The percentage OF males who are smokers is 20%

With"among","percentage of" indicates the part:
Among males, the percentage of smokers is 20%
With "among" and a trailing relative clause, "percentage of" indicates a whole:

Among men, the percentage OF smokers who run

Source: 1998 US Statistical Abstract (Section on unmarried women omitted)

Given these probabilities by race of murder, the relative risk (1.13) is quite small.

Given these probabilities by race of victim, the relative risk (2.6) is much larger.

But the telling condition is the fact that the high and low percentages of the death penalty by race of victim are outside the high and low percentages of the death penalty by race of murderer. This is what makes a Simpson's Paradox reversal likely in comparing the probability of the death sentence by the race of the murderer.

Recall, this was exactly what happened in our previous slide.

Conditional Thinking Grammar of Rates Exceptions
Sometimes the part is modified by a whole. Sometimes "rate of" introduces a whole.
- The accidental death rate per 10,000 teenagers
- Among teenagers the accidental death rate ...
- The teenagers' accidental death rate is ...
- The accidental death rate of teenagers*... *of whole
- The teenager accidental death rate is ...

Death and Death Rates for Injury

 by Firearms, Race and SexDeath by [means of] firearms is the part.
Race and sex are wholes [broken down by].

Solutions:

(1) Death Rates due to/for/from Firearm Injuries by Race and Sex.
(2) Firearm-related Death Rates by Race \& Sex.

Conditional
Thinking

Conclusion for Statistical Literacy

Greater focus on Named Ratios:

Percents, Rates, Percentages,
Chance, Risk, Odds and Probability.

- Describing and comparing
- Separating association \& causation,
- Separating spurious from biased,
- "Check your assumptions..."

Descriptive Statistics: Must include strong emphasis on count-based statistics: counts, percentages and rates
Conditionality: Can be introduced naturally by using tables.
Proportionality: Very basic concept in mathematics. Use percents and rates.

Measuring association. The simplest form of association is the arithmetic comparison. Students must learn this before they take on correlation.
Data modeling: Modeling is another way to describe an association. Students must learn modeling before they study chance.

From association to causation: Students must learn to distinguish these two both grammatically and in reality.

03/17/12000										
Conditional Thinking Percent: Ambiguous Phrase										
No. 113. Percent Low Birthweight, by Smoking Status, Age, and Race of Mother: 1993 [Low birthweight is defined as weight of less than 2,500 grams (5 lb .8 oz .). Excludes California, Indiana, New York, and South Dakota, which did not require reporting of tobacco use during pregnancy]										
SMOKING STATUS AND RACE OF MOTHER	$\begin{aligned} & \text { All } \\ & \text { ages } \end{aligned}$	AGE OF MOTHER								
		Under 15 years	15-19 years			$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$25-29$years	30-34years	35-39years	$\begin{aligned} & 40-49 \\ & \text { years } \end{aligned}$
			Total	15-17 years	18-19 years					
All races ${ }^{1}$.	7.4	13.8	9.6	10.5	9.0	7.5	6.5	6.8	8.0	9.0
Smoker.	11.8	14.7	10.8	11.4	10.5	10.4	11.5	13.6	16.1	17.8
Nonsmoker	6.6	13.8	9.3	10.3	8.6	6.8	5.6	5.7	6.8	7.9
Not stated.	9.2	14.2	11.8	12.9	11.1	9.0	8.2	8.7	9.9	10.3
White.	6.1	10.8	7.9	8.6	7.5	6.1	5.4	5.7	6.8	7.7
Smoker	10.1	14.0	10.3	11.0	9.9	9.2	9.4	10.9	13.3	14.7
Nonsmoker	5.2	10.3	7.1	7.9	6.6	5.2	4.6	4.9	5.9	6.9
Not stated.	7.6	(B)	9.7 13	10.9	9.1	7.8	6.6	7.4	8.2	9.5 17.4
Black.	13.4	16.1	13.4	13.9	13.0	12.3	13.2	14.8	16.6	17.4
Smoker . .	22.6	19.6	17.2	17.1 13	17.3	18.8	23.2	26.3	27.8	30.4
Nonsmoker Not stated.	12.0 16.9	15.9 (B)	13.1 17.5	13.7 17.5	12.6 17.4	11.4 13.9	11.2 16.9	11.8 18.4	13.6 23.7	14.6 22.7
"by" means "among" -- not 'distributed by' Source: 1998 US Statistical Abstract										

Death and Death Rates for Injury

 by Firearms, Race and SexDeath by [means of] firearms is the part.
Race and sex are wholes [broken down by].

Solutions:

(1) Death Rates due to/for/from Firearm Injuries by Race and Sex.
(2) Firearm-related Death Rates by Race \& Sex.

Source: 1998 US Statistical Abstract. Data for 1996 omitted to improve visibility of title.

Given these probabilities by race of murder, the relative risk (1.13) is quite small.

Given these probabilities by race of victim, the relative risk (2.6) is much larger.

But the telling condition is the fact that the high and low percentages of the death penalty by race of victim are outside the high and low percentages of the death penalty by race of murderer. This is what makes a Simpson's Paradox reversal likely in comparing the probability of the death sentence by the race of the murderer.

Recall, this was exactly what happened in our previous slide.

03/17/2000
 Conditional Statistical Literacy
 Conditional Thinking

Students have difficulty with conditional probability.

- Hypothesis tests and p-values:
$\mathrm{P}\left(\mathrm{z}>\mathrm{k} \mid \mathrm{H}_{0}\right.$ is true) with $\mathrm{P}\left(\mathrm{H}_{0}\right.$ is true $\left.\mid \mathrm{z}>\mathrm{k}\right)$
- Confidence Intervals:

P (sample mean will be in interval $\mid \mathrm{mu}$) with P (mu will be in the interval | sample mean).
-David Moore "What is Statistics?" MAA Notes \#21
Garfield and Ahlgren, 1988. "Difficulties in Learning Basic Concepts in probability and Statistics..."

Difficulties with conditional probabilities reflect two causes:

1. Difficulties dealing with probability
2. Difficulties dealing with conditional thinking.

Having taught Critical Thinking for many years, I am strongly convinced that the 2 nd element is at least as problematic as the 1st.

Students who can compute the mean, median and even the standard deviation
but cannot evaluate the use of a statistic in an argument are not statistically literate.

Students who understand probability, sampling distributions, confidence intervals and hypothesis tests
but cannot distinguish association from causation
are not statistically literate.

Students who can calculate anything
but cannot express themselves are not statistically literate.

As a phrase, "percent(age) of" is ambiguous:
\% OF runners
The percentage OF runners

Without a complete description, the reader doesn't know if males is part or whole.

This is a problem in reading tables and graphs.

