"The Business of Communication" UUWS P Marcf 16, 2001

Describing
Rates and Percentages in Tables

Presented $\mathcal{B y}$
Milo Schield
\mathcal{A} ugs burg College Minne apotis, $\mathcal{M N}$
schield@augsburg.edu
zwwoungs burgedu/ppages/~schield

Abstract (Revised)

This paper presents the grammatical rules involved in describing rates and percentages using \%, rate and percentage grammars. Introduces some ways to decode the part-whole status of columns and rows in tables of rates and percentages. Introduces half tables. Finishes by examining some more real tables and graphs. Discusses the problems indecoding such tables. Reviews student difficulties in reading percentages in tables contained in the \mathcal{U} Statistical Abstract. Conclusion: Students have difficulty realizing and accepting the fact that in describing and comparing ratios (rates and percentages) small differences in syntax can create large differences in semantics.

Biograpfy

Professor Milo Schield has taught "statisticalliteracy"for six years. He has a $\mathcal{P h D}$ in $\operatorname{Space~Physics,~fas~taught~traditional~statistics~for~} 15$ years, and has taught critical thinking for seven years at 6oth the undergraduate and graduate level. He has given talks on reading tables at the $\mathcal{U S}$ Bureau of Labor Statistics and the US Bureau of the Census. He has given talks on statistical literacy in Australia, China, Iapan, Spain, England, Scotland and Wales. He has sponsored sessions on statistical literacy at the last three national meetings of the $\mathcal{A m e r i c a n ~ S t a t i s t i c a l ~ A s s o c i a t i o n . ~ H e ~ i s ~ w r i t i n g ~ a ~}$ textbook on Statistical Literacy. This material is taken from one of the chapters. He has taught this material to about 600 college students in small classes. He is interested in working with teachers interested in including statisticalliteracy topics in their courses.

If you are interested in field-testing statistical literacy materials in your classroom, contact Dr. Schield.

The We 6 is allowing increased access to statistics. Many college students cannot read statistics in tables.

No. 149. Death Rates for Injury by Firearms, Sex, Race, and Age: 1995 [Death rate per 100,000 population. Desths ctassified according to the ninth revision of the Intemationar Classification of Diseases]									
ITEM	$\begin{aligned} & 5-14 \\ & \text { yrs } \\ & \text { old } \end{aligned}$	$\begin{aligned} & 15-24 \\ & \text { yrs. } \\ & \text { old } \end{aligned}$	$\begin{gathered} 25-34 \\ \text { yrs. } \\ \text { old } \end{gathered}$	$\begin{gathered} 35-44 \\ \text { yrs } \\ \text { old } \end{gathered}$	$\begin{aligned} & 45-54 \\ & \text { yrs. } \\ & \text { old } \end{aligned}$	$\begin{gathered} 55-64 \\ \text { yrs. } \\ \text { old } \end{gathered}$	$\begin{aligned} & 65-74 \\ & \text { yrs. } \\ & \text { dd } \end{aligned}$	$\begin{aligned} & 75-84 \\ & \text { yrs. } \\ & \text { old } \end{aligned}$	85 ys. and over
MALE									
Firearms: White	2.5	31.4	26.1	21.2	19.6	19.9	28.1	39.8	50.8
Black	5.5	140.2	94.4	46.6	32.1	24.3	22.0	209	(B)
Accidents: White	0.7	1.8	0.8	0.6	0.5	0.4	0.6	07	B
Black	0.8	+4.3	1.5	(B)	(8)	(目)	(B)	(B)	
Suicide: Write	0.8	15.4	15.1	14.2	14.9	16.6	239	382	49.5
Black.	(B)	13.2	11.9	7.6	6.9	7.5	10.2	13.9	(B)
Homicide White	0.9	13.6	98	6.3	4.0	$\begin{array}{r}78 \\ +15 \\ \hline\end{array}$	1.5	0.8	(B)
Black. . . .	4.1	121.0	80.7	38.3	24.6	15.9	10.6	(B)	(B)

A1. Are "firearms", "sex", "race" and "age" all similar items in this table?
A2. What are the meanings of "by" in this title?

Percent Distribution of Marriages by Age, Sex and Previous Marital Status Taken from Table 158 in 1998 U.S. Statistical Abstract								
$\begin{gathered} \text { SEX \& } \\ \text { MARITAL } \end{gathered}$ STATUS	Total	$\begin{gathered} \text { Under } \\ 20 \end{gathered}$	20-24	25-29	30-34	35-44	45-64	$\begin{gathered} 65 \\ \text { plus } \end{gathered}$
WOMEN								
All marriages								
1980	100.0	21.1	37.1	18.7	9.3	7.8	5.0	1.0
1985	100.0	13.9	34.4	22.1	12.0	11.1	5.4	1.0
1990	100.0	10.6	29.3	24.6	14.2	13.9	6.1	1.0

Do these describe the 21.1 circled in this table?
B1. T F In 1980, 21.1% of women under 20 were married.
B2. T F In 1980, 21.1% of women who were married were under 20.
B3. T F In 1980, 21.1% of women were under 20 when married.
B4. T F In 1980, 21.1\% of marriages were to women under 20.
B5. Can "in" mean two different things? If so, what? \qquad and \qquad
B6. Can "married" mean two different things? If so, what? \qquad and \qquad

DIVISION AND STATE	BIRTHS TO			
	TEENAGE MOTHERS,			
PERCENT OF TOTAL		$	$	Pnited States
:---				
Dist. of Columbia				
New England				
Middle Atlantic				
East North Central				
West North Central				
South Atlantic				
East South Central				
West South Central				
Mountain				
Pacific				

Which of the following describe the circled percentage above?
A1. T F 11.5% of births to teenage moms are in Pacific states.
A2. T F 11.5% of births are to teenage moms in Pacific states.
A3. T F 11.5% of births in Pacific states are to teenage moms.

BIRTHS TO UNMARRIED WOMEN BY RACE OF CHILD	1970	1980	1985	1990	1994
```PERCENT DISTRIBUTION Total \1 White Black```	$\begin{gathered} 100.0 \\ 43.9 \\ 54.0 \end{gathered}$	$\begin{gathered} 100.0 \\ 48.1 \\ 48.9 \end{gathered}$	$\begin{gathered} 100.0 \\ 52.3 \\ 44.1 \end{gathered}$	$\begin{gathered} 100.0 \\ 55.6 \\ 40.6 \end{gathered}$	$\begin{array}{r} 100.0 \\ 61.6 \\ 34.8 \end{array}$
```AS PERCENT OF ALL BIRTHS Total \1 White Black \1 Includes other races not shown separately.```	$\begin{gathered} 10.7 \\ 5.7 \\ 37.6 \end{gathered}$	$\begin{aligned} & 18.4 \\ & 11.0 \\ & 55.2 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 14.5 \\ & 60.1 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 20.1 \\ & 65.2 \end{aligned}$	$\begin{array}{r} 32.6 \\ 25.4 \\ \hline 70.4 \\ \hline \end{array}$

Which of the following describe the circled percentage above?
B1. T F 70.4% of all US births are to blacks.
B2. T F 70.4% of all births to blacks are to unmarried women.
B3. T F 70.4% of all births to unmarried women are to blacks.

$\mathcal{T A B L E S}$

1990 USS ACCIDEXVAL $\mathcal{A L E A T H S}$				Body cells
	RACE			
S EX	Write	\mathcal{N} on-Wfite	ALL	
Mate	82,940	27,120	110,060	Margin
Female	34,210	8,070	42,280	cells
ALL	117,150	35,190	152,340	

Tables have indexes: index variables and index values.
| A1. In the above table, is Sex a variable or a value? Variable Value

Indexes form cells: body cells and margin cells.
A2. Are margin cells always the bottom row and the right column? Yes No
A3. Must all tables have margin cells? Yes No

Margin cells are sums or averages in a given direction.
| A4. Are these margin values sums or averages? Sums Averages Mixed Neither

Cell values are often described using "and" (both) and "or" (either).
How many accidental deaths involved a person
A6. who was [either] male OR female? \qquad
A6. who was [either] male OR white?
A7. who was [both] male AND white?

There are many ways to signify the joining function of "and":
$\mathfrak{A n d}$ The number of people who are male $\mathcal{A N} \mathcal{N D}$ died accidentally is 100,060.
$\mathcal{A d j e c t i v e - n o u n : ~ M a l e ~ a c c i d e n t a l - d e a t h s ~ n u m b e r e d ~ 1 1 0 , 0 6 0 . ~}$
Subject-verb: 110,060 male deaths were accidental.
Relative clause: Males who died accidentally number 110,060.
Prepositions: The number Of accidentaldeaths $\mathcal{A M O N G}$ males is 100,060 .
A8. How many accidental deaths involved white-females?
A9. How many females who are non-white died accidentally?
A10. Among whites, what is the number of accidental deaths?
\qquad
\qquad
"And" can be ambiguous. The precedence can be ambiguous.
A11. How many people - both male and female - died accidentally?
A12. How many business majors and Economics minors graduated?
A13. How many males and whites or females died accidentally?

PERCENTAGES

There are two kinds of percentages:

1. Part-whole percentages. Always between 0% and 100%.
2. Percentage-change. Can be negative or more than 100%.

Which kind of percentages are the following? Circle your answer.
A1. Unemployment is 5\%. Part-whole Percentage-change ??
A2. Interest rates are 8\%. Part-whole Percentage-change ??
A3. Prices decreased by 2%. Part-whole Percentage-change ??
A4. Unemployment rose to 9%. Part-whole Percentage-change ??
A5. Unemployment rose by 9%. Part-whole Percentage-change ??

Per numbers (percentages erates) are different from regular numbers:
B1. T F A 40% market share in the Eastern US and a 60% market share in the Western US means a 100% share of the entire US market.
B2. T F A $\$ 100$ stock that drops 50% and then rises 50% is back to $\$ 100$.

In describing and comparing rates and percentages,
small differences in syntax can create large difference in semantics!
"Some females are smokers" always means "Some smokers are females."
"10 females are smokers" always means "10 smokers are females."
But statements of rates and percentages are not always convertible. " 10% of females are smokers" does not mean " 10% of smokers are females."

$\mathcal{D E S} \subset R I \mathcal{B I} \mathcal{N} G \mathcal{P A R T}$ - WHO LE PERCENTAGES
 ULS ING "\% Of" GRAMMAR

Part-whole percentages are described in two ways using just " $\%$ ".
$\%$ of: $\quad x \%$ of $\{$ whole $\}$ are $\{$ part $\}$
\% are: $\mathcal{A m o n g}\{$ whole\}, $X \%$ are $\{$ part $\}$.
The part-whole indicators for these two forms can be summarized as follows:

Part-Whole Indicators for "\% of" descriptions

$\|$These are the part-whole indicators for '\% of' descriptions. Whole Indicators Part Indicators among $\{$ whole $\}$ Predicate: \% are \{part $\}$ of $\{$ whole $\}$ A relative clause always takes the part-whole status of its' referent.

Underscore the part and circle the whole in the following statements.
A1. 40% of Virginia high-school students used smokeless tobacco in the last month.
A2. Among high-school users of smokeless tobacco in the last month, 40% are from Virginia.
A3. Do these statements assert the same thing? Yes No Can't tell

Table 1: Sample Count of College Students by Sex and Major

Students	Sex		
Major	Male	Female	ALL
Business	60	20	80
Economics	10	50	60
MIS	30	30	60
ALL	100	100	200

True or False?
B1. T F 10% of these males are Economics majors. Correct answer if false: \qquad
B2. T F 30% of these MIS majors are males? Correct answer if false: \qquad
B3. T F 25% of these females are Business majors? Correct answer if false: \qquad
B4. T F 60% of these students are MIS majors? Correct answer if false: \qquad
Decode the question and calculate the answer:
C1. What percentage of these males are business majors? \qquad
C2. Among these females, what percentage are MIS majors? \qquad
C3. Among these students, what percentage are male-MIS majors? \qquad

For percentages, there are three Gasic tables:
Column $\mathcal{T a b l e}$: The margin row is a 100% sum; the margin column values are averages. Row table: The margin column is a 100% sum; the margin row values are averages. Total table : All margin values are sum totals; the grand total is the only 100%.

Table 2:
Sample Table of Column Percentages

College students \| ------------- SEX ----------------			
Major	Male	Female	ALL
Business	60\%	20\%	40\%
Economics	10\%	50\%	30\%
MIS	30\%	30\%	30\%
ALL	100\%	100\%	100\%

Table 3:
Sample Table of Row Percentages

| College students \|------------- SEX ------------------| | | | |
| :---: | :---: | :---: | :---: |
| Major | Male | Female | ALL |
| Business | 75\% | 25\% | 100\% |
| Economics | 17\% | 83\% | 100\% |
| MIS | 50\% | 50\% | 100\% |
| ALL | 50\% | 50\% | 100\% |

Table4:
Sample Table
of Total Percentages

| College students | \|------------- SEX ------------------ | | | |
| :---: | :---: | :---: | :---: |
| Major | Male | Female | ALL |
| Business | 30\% | 10\% | 40\% |
| Economics | 5\% | 25\% | 30\% |
| MIS | 15\% | 15\% | 30\% |
| ALL | 50\% | 50\% | 100 \% |

100\%
Margin Rule:
If a margin value is a 100% sum of some pieces, then the cross-pieces are parts and the common unit is a whole.

Decode the question (identify part and whole), find the table with that whole, and find the answer.
A1. What percentage of these males are business majors?
A2. Among these business majors, what percentage are females?
A3 What percentage are male MIS majors among these students?
\qquad
A3 What percentage are male MIS majors among these students?
\qquad
Describe the following percentages using "\%" grammar. Advice: Find the closest 100% whole.
B1. Describe the 60% in the upper-left cell in Table 2. Use the "\% of" form 60% of \qquad are \qquad .
B2. Describe the 75% in the upper-left cell in Table 3. Use the "\% are" form. Among \qquad 75\% are \qquad .
B3 Describe the 30% in the upper-left cell in Table 4. Use the "\% of" form. 30% of \qquad are \qquad .

$\mathcal{D E S C R I B I N G} \mathcal{P A R T}$ - WHO LE PERCENTAGES ULS ING "PERCENTAGE" GRAMMAR

Percentage grammar is different from "\%" grammar in describing partwhole ratios. In "\%"grammar, the verb always indicates the part, while "of" always indicates a whole. In "percentage grammar, neither of these is true. In "percentage" grammar, "of" can indicate either the part or the whole.

There are three ways to describe percentages using "percentage":
P1 Of-who*. The percentage of \{whole\} who are \{part\} is $X \%$.
P2 Who-among: The percentage who are \{part\} among \{whole\} is $X \%$.
P3 Of-among. The percentage of \{part\} among \{whole\} is $X \%$.

* $\mathcal{A d d i n g}$ "Among \{whole\}" to $\mathcal{P 1}$, still leaves "of" indicating a \{whole\}.

Underscore the part and circle the whole in the following statements.
A1. The percentage of male runners who are smokers
A2. Among male runners, the percentage who are smokers
A3. The percentage of smokers among male runners
A4. Among runners, the percentage of males who smoke
A5. Do all these statements assert the same thing? Yes No Can't say.
The part-whole indicators for "percentage" grammar can be summarized:

Whole Indicators	Ambiguous	Part Indicators
among $\{$ whole\}	percentage of	percentage who are \{part\}*

* Otherwise a relative clause has the same part-whole status as what it modifies.

Table 1 (Repeat) Sample Count of College Students by Sex and Major

Students	Sex		
Major	Male	Female	ALL
Business	60	20	80
Economics	10	50	60
MIS	30	30	60
ALL	100	100	200

True or False?
Correct Answer
B1. T F Among males, the percentage of MIS majors is 50%.
B2. T F Among males, the percentage who are MIS majors is 30%.
B3. T F The percentage of MIS majors who are males is 30%.
B4. T F Among business majors, the percentage of females is 20%
\qquad
\qquad
\qquad
\qquad

For percentages, there are three Gasic tables:
Column $\mathcal{T a b l e}$: The margin row is a 100% sum; the margin column values are averages. Row table: The margin column is a 100% sum; the margin row values are averages. Total table : All margin values are sum totals; the grand total is the only 100%.

Table 2:
Sample Table of Column Percentages

College studentsMajor	\| -------------- SEX -----------------		
	Male	Female	ALL
Business	60\%	20\%	40\%
Economics	10\%	50\%	30\%
MIS	30\%	30\%	30\%
ALL	100\%	100\%	100\%

Table 3: Sample Table of Row Percentages

| College students \|------------- SEX -------------------| | | | |
| :---: | :---: | :---: | :---: |
| Major | Male | Female | ALL |
| Business | 75\% | 25\% | 100\% |
| Economics | 17\% | 83\% | 100\% |
| MIS | 50\% | 50\% | 100\% |
| ALL | 50\% | 50\% | 100\% |

In Table 2, identify whether the designated margin cell is a sum, an average or both.

A1. What is the 100% margin value at the bottom left?	sum	average	both	
A2.	What is the 40% margin value at the top right?	sum	average	both
A3.	What is the 100% margin value at the bottom right? sum	average	both	

100\%
Margin Rule
$\mathbf{1 0 0 \%}$ Margin Rule: If a margin value is a 100% sum total, then the pieces are parts and the unit is a whole. If a margin value is a 100% average, then pieces are wholes and the unit is a whole.

Decode the question (identify part and whole), find the table with that whole, and find the answer.
B1. What is the percentage of these males who are business majors?
B2. Among these business majors, what is the percentage of females?
B3 What is the percentage of male MIS majors among these students?
Describe the following percentages using "percentage" grammar.
C1. Describe the 60% in the upper-left cell in Table 2. Use the P1 "of-who" form 60% is the percentage of \qquad who are \qquad .
C2. Describe the 75% in the upper-left cell in Table 3. Use the P2 "who-among" form. 75% is the percentage who are \qquad among \qquad .
C3 Describe the 30\% in the lower-left cell in Table 2. Use the P3 "of-among" form. 30% is the percentage of \qquad among \qquad .

$\mathcal{H a l f}$ Tables of Percentages

Table 4 Sample One-Way Half Table

College Students	---------- S¢ ${ }^{\text {- }}$-------------		
Major	Male	Female	ALL
Business	75\%	25\%	100\%
Economics	17\%	83\%	100\%
MIS	50\%	50\%	100\%
ALL	45\%	55\%	100\%

In a half table, the margin value is an average, so the cross-pieces are wholes. If there is no common part for all the cells in the title, then the unit making up the margin value is a part.

Answer using just the non-grayed portion (the left side) of the table above.
A1. What percentage of business majors are males?
A2. What percentage of business majors are females?
A3. What percentage of males are business majors?
A4. $\mathrm{T} \mathrm{F} \quad 75 \%$ of these business majors are males.
A5. T F 75% of these males are business majors.

Sample One-Way Retention is when a student from last-year returns to school this year. Half Table

Class Last Year	Retention
Freshman	60%
Sophomore	75%
Junior	90%
Seniors	10%
All Classes	70%

B1. Are the rows (classes) parts or wholes? Parts Wholes How do you know?
B2. Describe the 60% using $\%$ of language: 60% of \qquad are \qquad
B3. Describe the 10% using percentage of_who_ language: 10% is the percentage of \qquad who \qquad

RULES FOR DESCRIBING RATES

1990 Ulcidental Death Rates per 100,000			
	RACE		
SEX	White	\mathcal{N} on-White	ALL
Male	81	142	91
$\mathcal{F e m a l e}$	32	39	33
$\mathcal{A L L}$	56	88	61

One candescribe rates using pfrase-Gased descriptions:

PHRASE-BASED DESCRIPTIONS	
	Describe the 81 per 100,000 in the upper-left corner
R1. The rate of $\{$ part $\}$ AMONG $\{$ whole $\}$ is ...	The rate of accidental deaths AMONG US white males is \ldots
R2. The $\{$ part $\}$ rate AMONG $\{$ whole $\}$ is ...	The accidental death rate AMONG US white males is ...
R3. The $\{$ part $\}$ rate OF $\{$ whole $\}$ is ...	The accidental death rate OF US white males is ...

Underscore the part and circle the whole in the following statements.
A1. The rate of unemployment among men was 6%.
A2. The unemployment rate among men was 6%.
A3. The unemployment rate of men was 6%.
A4. Do these three statements assert the same thing? Yes No Can't say.
One candescribe rates using clause-based descriptions:

CLAUSE-BASED DESCRIPTIONS	Describe the 81 per 100,000 in the upper-left corner
R4. $\{$ Part $\}$ occur among $\{$ whole $\}$ at a rate \ldots	Accidental deaths occurred among white males at a rate \ldots
R5. $\{$ Whole $\}$ \{part \} at a rate \ldots	White males died accidentally at a rate \ldots

Underscore the part and circle the whole in the following statements.
B1. Utah high-school students had last-month smokeless tobacco use at a rate of 11.9%.
B2. The five-year survival rate among white women with breast cancer is 85.5%.
B3. The unemployment rate of men was 6%.

[^0]$\mathcal{D E C O D I N G \mathcal { T A B L E S } O \mathcal { F } \mathcal { A } \mathcal { T E S } \mathcal { A N D } \mathcal { D E } \mathcal { R } C E N \mathcal { A } \mathcal { A } G S : ~}$

MARGIN VALUE RULE

If a margin value is an average of some pieces, then the cross-pieces are wholes.
An average is always smaller than the biggest piece
If a margin value is a sum total of some pieces, then the cross-pieces are parts.
A sum total is always bigger than the biggest piece.

Table 2 US
Unemployment
Rates by
Educational Attainment, Sex and Race

Table 6811998 USS		- Hi	t G	e Ach	ed
SEX AND RACE	Total	< 12	12	13-15	> 15
Total: \2	4.4	10.4	5.1	3.8	2.0
Male:	4.7	9.9	5.6	4.0	2.1
Female:	4.1	11.3	4.5	3.6	2.0
White:	3.9	9.4	4.6	3.4	1.8
Black:	8.1	16.6	8.2	6.1	4.4
Hispanic: \4	7.3	9.6	7.5	5.5	3.0
$\backslash 2$ Includes other races, not shown separately.					

A1. Describe the 4.4 in the upper-left corner using rate language with part as an adjective:
The \qquad rate of \qquad is 4.4% (4.4 per hundred)

A2. T F 7.3% is the rate of Hispanic unemployment of high-school graduates among civilian laborers whose highest grade achieved is 12 .

A3. Are the rows (sex, race, ethnicity) wholes or parts? Wholes Parts
A4. Are the columns (highest grade achieved) wholes or parts? Wholes Parts
A5. Describe the 3.0 in the lower-right corner using rate language with part as an adjective:
The \qquad rate of \qquad is 3.0\% (4.4 per hundred)

[^1]Table 3 US
Percent of Women, 15 to 44, Who Received Selected Medical Services: 1995.

CHARACTERISTIC	Pregnancy test	Pap smear	Pelvic exam	$\begin{aligned} & \text { HIV } \\ & \text { Test } \end{aligned}$	Other STD	Pelvic Infection
Total	16.0	61.9	61.3	17.3	7.6	21.0
AGE At INTERVIEW						
15-19 years old	16.1	33.5	32.4	14.6	9.4	16.9
15-17	11.4	23.0	23.4	12.1	7.1	12.2
18-19	23.3	49.9	46.4	18.5	13.0	24.2
20-24 years old	27.4	68.7	66.5	23.7	P 14.0	28.1
25-29 years old	25.3	70.9	69.3	23.6	10.3	25.7
30-34 years old	17.4	69.5	70.3	18.5	6.5	21.8
35-39 years old	8.1	62.9	62.6	14.2	4.7	19.2
40-44 years old	4.3	62.7	63.2	10.0	2.2	15.1
RACE AND HISPANIC ORIGIN						
Hispanic	19.8	52.2	52.6	21.9	7.2	20.4
Non-Hispanic White	14.8	63.2	63.2	14.5	7.1	20.9
Non-Hispanic Black	19.8	67.6	63.0	28.7	11.4	24.8
Non-Hispanic other	14.3	47.7	47.7	14.7	(B)	13.6
MARITAL STATUS						
Never married	15.5	52.1	49.8	18.9	10.7	20.1
Currently married	17.3	68.5	69.0	14.5	4.7	20.9
Formerly married	12.4	64.8	65.3	23.1	9.7	24.2
B: Figure does not meet standard of reliability. HIV test excludes HIV tests done for blood donation.						

Age at Interview Section
A1. T F 23.7% of women receiving an HIV test were ages 20 to 24 .
A2. T F 23.7% of women ages $20-24$ had an HIV test.
A3. T F 23.7% of women had an HIV test and were ages 20-24.
A4. T F 23.7% of women ages $15-54$ had an HIV test.
Race and Hispanic Origin Section
B1. Who is more likely to have an HIV test? Hispanics Non-Hispanic blacks Can't tell

B2. Among those having an HIV test, who is more likely? Hispanics Non-Hispanic blacks Can't tell

Marital Status Section
C1. Who is more likely to have an HIV test?
Currently married Non-married Can't tell
C2. Among those having an HIV test, who is more likely?
Currently married Non-married Can't tell

US Schools Internet Access	PERCENT OF SCHOOLS			PERCENT OF CLASS ROOMS		
	WITH INTERNET ACCESS			WITH INTERNET ACCESS		
SCHOOL CHARACTERISTIC	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$
Total $\backslash \mathbf{1}$	$\mathbf{5 0}$	$\mathbf{6 5}$	$\mathbf{7 8}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{2 7}$
Percent minority enrollment:						
Less than 6 percent	52	65	84	9	18	37
6 to 20 percent	58	72	87	10	18	35
21 to 49 percent	54	65	73	9	12	22
50 percent or more	40	56	63	3	5	13

Which of the following describe the 63% circled above?
A1. T F In 1997, 63% of all US schools with Internet access have minority enrollment of 50% or more.

A2. T F In 1997, 64\% of US schools with a minority enrollment of 50% or more have Internet access.

Which of the following describe the 13% circled above?
B1. T F In 1997, 13% of all classrooms with Internet access are in US schools with a minority enrollment of 50% or more.
B2. T F In 1997 in US schools with a minority enrollment of 50% or more, 13% of classrooms have Internet access.

B3. T F In 1997, 13\% of US classrooms have Internet access and are in schools with minority enrollment of 50% or more.

Circle your answers for 1 through 9. Write out your answers to 10 and 11.
High school students should be taught to describe rates and percentages in tables.

1. The material has enough difficulty to teach at this level rather than before.
a. strongly disagree
b. disagree
c. neutral
d. agree
e. strongly agree
2. The material has enough relevance to personal, professional or civic life.
a. strongly disagree
b. disagree
c. neutral
d. agree
e. strongly agree
3. The material has enough relevance or importance in comparison to other topics.
a. strongly disagree
b. disagree
c. neutral
d. agree
e. strongly agree
4. If this material were to be taught, at what grade should it first be taught?
a. 5-6
b. $7-8$
c. $9-10$
d. $11-12$
e. 13-14 (college)
5. What grades are you most familiar with?
a. 5-6
b. $7-8$
c. $9-10$
d. $11-12$
e. 13-14 (college)

If this material were to be taught, who could teach it as a natural part of their teaching?
6. Mathematics teachers could teach it as a natural part of their work.
a. strongly disagree b. disagree c. neutral d. agree e. strongly agree
7. English teachers could teach it as a natural part of their work.
a. strongly disagree b. disagree c. neutral d. agree e. strongly agree
8. Business communications teachers could teach it as a natural part of their work. a. strongly disagree b. disagree c. neutral d. agree e. strongly agree
9. If this material were to be taught, who should teach it?
a. Mathematics teachers
b. English teachers
c. Communications teachers
10. Why? What is/are your reason(s) for your choice in the previous question?
11. Why isn't this material currently taught in either high school or college?

I will mail you the results of this survey if you include your name and address.
Name:
E-Mail address
Postal Address: \qquad
\qquad

[^0]: ${ }^{1}$ There is another phrase-based description. This requires a subordinate clause:
 The rate at which $\{$ whole $\}\{$ part $\}$ is ...; [The rate at which white males die accidentally]
 The rate at which $\{$ part $\}$ is among $\{$ whole $\}$ [The rate at which accidental deaths occur among white males]

[^1]: ${ }^{2}$ The Margin 100% Sum Rule is just a specific form of this more basic rule. If the margin value is a sum, the pieces must be parts. Since the margin value is 100%, the parallel margin units cannot be parts (otherwise they would sum to more than 100%) so they must be wholes.

