
ABSTRACT

Benford's Law (1938) predicts that digit fre-
quencies for many scientific, engineering, and
business data sets will follow P(dd)=log(1+1/
dd) for digits dd. This law has been used by
auditors since 1989 to detect errors and fraud
in data sets. Benford also postulated a separate
law for integer quantities. This little-known
variant of the law is shown to be substantially
correct, despite an error by Benford in its deri-
vation. The integer variant is then shown to be
extraordinarily common in everyday life, cor-
rectly predicting the distribution of footnotes
per page in textbooks, sizes of groups walking
in public parks and visiting restaurants, fatal-
ity counts in air crashes, repeat visits to service
businesses, and purchase quantities for goods.

The practical value of the integer variant of
Benford's Law is illustrated using cases from
the author's consulting experience, as a limit
toward which a distribution will tend. A po-
tential proof for a universal distribution law
for integer quantities (an 'ontic' distribution)
combining Benford's Law, Zipf's Law, and
Pareto's Law is outlined. The philosophical
implications of ‘naked-eye quantum mechan-
ics’ are briefly considered.

The possibility of a general law predicting digit frequen-
cies was first addressed more than a century ago by as-
tronomer Simon Newcomb. Newcomb observed in a
brief 1881 paper for the American Journal of Mathematics
that standard logarithm tables tended to be much more
soiled and worn on their front pages, where the conver-
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sion values for figures with low initial digits were found.
He reasoned that this could only occur if the lower ini-
tial digits 1-3 occurred with much more regularity in
typical computations, and proposed an empirical dis-
tribution that was itself logarithmic: P(dd) = log(1+1/
dd), where P represents the relative frequency of a digit
combination 'dd'.  The formula as written is intended
to apply to any number of digits, such as '1' or '467'.
Newcomb also determined the probability of the ten
second digits, independent of the first digits, e.g. P(b) =
log[(ab+1)/ab] / log[(a+1)/a], where 'a' represents the
first digit and 'b' the second.

In 1938, Frank Benford (an engineer for General Elec-
tric) independently reported on the same law, deriving
the same formula.  He collected 20,229 observations
from sources such as county populations, tables of engi-
neering constants, baseball scores, and the street addresses
from American Men of Science, and showed that although
the digit distributions for any one particular source might
diverge from the expected value, a set formed from di-
verse sources conformed very well. His paper, "The Law
of Anomalous Numbers," chanced to appear in the same
issue of the Proceedings of the American Philosophical
Society as a critical paper on electron scattering by Hans
Bethe; this association brought Benford's findings to a
much larger audience than Newcomb's earlier work, and
thus the law came to bear his name.

by Dean Brooks
Practical Applications of Benford's Law for Integer Quantities

Editor’s note: This paper was originally submitted to the
Statistics Education seminar of the 2002 American
Statistical Association’s national convention, held in New
York City in August 2002.  Because of schedule conflicts, it
was not presented at the ASA seminar.  It appears here in
a slightly lengthier form.
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Between 1938 and the present, just over 100 papers
have been published on aspects of Benford's Law (see
Raimi, 1976, for a survey). Papers written prior to the
1990s were predominantly focused on explaining or
deriving the law in theoretical terms. Several attempts
were made to prove that the law was a consequence of
our numbering system, and not 'real'. However, it had
been clear even to Newcomb that the law implied an
underlying logarithmic distribution of the actual sizes
of events and entities, with many small items and pro-
gressively fewer large ones.

In a key development, Roger Pinkham argued (Pinkham,
1961) that for any digit-distribution law to hold con-
sistently, it would have to be scale-invariant. A data set
expressed in varying units of measurement, such as
pounds versus kilograms, should conform equally well
regardless of the units used. Furthermore, the number
of units on successively larger value ranges should re-
main constant: if there are N units on the range x to kx,
then there should also be N units found on the range kx
to k2x. Pinkham demonstrated that the only law which
satisfies both these conditions is the one Benford and
Newcomb found.

In the late 1980s, attention turned to practical applica-
tions, particularly in auditing. Large sets of inventory
data or financial transactions had already been shown
to conform to the law.  During the 1990s experimental
work by Nigrini and others showed that if erroneous or
fraudulent entries were included in an otherwise con-
forming data set, they could be expected to create devi-
ating 'spikes' on a digit-frequency graph. This detection
technique was the subject of Digital Analysis Using
Benford's Law: Tests and Statistics for Auditors (2000),
written by Mark J. Nigrini, Ph.D. and edited by the
present author. The practice has become well known
among auditors.

This balance of this paper reexamines Benford's origi-
nal essay in its treatment of the various 'digital orders',
in which a significant error occurred.  Benford supplied
a more general version of the formula to deal with situ-

ations where values were rounded or truncated.  It seemed
likely to him that the relative frequencies or probabili-
ties P for initial digits 1-9 would be different if second
digits were non-existent, rather than simply set aside in
the frequency calculations.  Benford called his result "the
general equation for the Law of Anomalous Numbers",
where r is the number of digits allowed:

P
1

r =     log
e 
10(2*10r-1 – 1) + 8      1

                       10r – 1          10r   N

P
a
r =     log

e
(a + 1)10r-1 – 1 – 1       1

                    a*10r-1 – 1       10r     N

It can be seen that this equation is approximated by
P(dd) = log(1+1/dd) for high orders of r, allowing the
use of the simpler formula in typical cases.  For the low-
est order of r, representing numbers that were truncated
or rounded to one digit, Benford computed the theo-
retical frequencies as shown in Table 1 below.

A key assumption underlying all of Benford's work on
anomalous digits is that any actual quantity in nature
can be approximated by a continuous function, capable
of being manipulated using integral calculus.  As Benford
put it, "The justification for using a continuous form is
that the things we use the number system to represent
are nearly always perfectly continuous functions, and
the number, say 9, given to any phenomenon will be
used in some degree for all the infinite sizes of phenom-
ena between 8 and 10 when we confine ourselves to single
digit numbers."  Benford further observed that the spac-
ing of observations tended to be geometric, and argued
that there was "no necessity or implication of limits at
either the upper or lower regions of the series."

These were curious statements. Taken literally, they seem
to imply several things, none of which can be true. First,
that the distributions of discrete entities such as oranges,
cows or trees, can be precisely represented by continu-
ous functions. Justifying this procedure, Benford wrote
that "The summation of area under the curve . . . is
taken as the probability for using a 9 for phenomena in

Digit 1 2 3 4 5 6 7 8 9 All

Freq 0.393 0.257 0.133 0.081 0.053 0.036 0.024 0.015 0.008 1.000

Table 1. Benford�s predicted digit frequencies for r = 1.
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this region. This is about equivalent to knowing accu-
rately the size of all phenomena in this region and de-
ciding to call everything between 8.5 and 9.5 by the
number 9."  We can concede that if we are measuring
the span of a thundercloud as it moves, some sort of
rounding in the dimensions seems legitimate. But in
reality, one cannot typically observe 0.75 of a cow along-
side 1.38 cows, much less can we decide pragmatically
to call their sum two cows.

Furthermore, limits exist in reality that are not accounted
for here.  Observed values at the left-hand limit of the
distribution are assumed to decline asymptotically to
some nonzero value, while their probability of occur-
rence increases geometrically.  But if it is legitimate to
round all values between 8.5 and 9.5, should we not
also round down all values between 0 and 0.5, to zero?
Zero is eliminated as a leading digit in the continuous
version of the law, because all the observed quantities
are known with high precision. But if we are round-
ing—or counting entities that are integer-like in na-
ture—then zero should re-enter the picture. To put this
question another way, is it more reasonable in forming
an empirical law of distribution to anticipate finding
herds of ever-smaller microscopic cows (or fractions of
cows) in the millions and then billions, or do we reach a
point where we simply expect zero cows?

Benford's right-hand limit is equally doubtful.  The as-
sumption that observed sizes of phenomena will form a

scale-invariant geometric series of unlimited range has
never been seriously tested in the literature, and seems
impossible on the face of it. Every data set derived from
actual entities or measurements has a largest member.
We tend to believe, following modern cosmology as well
as arguments from Aristotle, that the universe is finite—
but even if the universe as a whole were somehow infi-
nite, nothing on Earth is.

Revisiting the first digital order

In presenting the simpler form of his digits law, P(dd) =
log(1+1/dd), Benford made sure to validate his results
against a wide variety of data. The abstract reasoning
which he applied to create his 'general equation' was
not validated in the same way. Instead, Benford focused
on a test using exactly one type of data: the distribution
of footnotes in engineering reference books.

Benford explained his choice this way: "The frequencies
of the single digits 1 to 9 vary enough from the frequen-
cies of the limiting order to allow a statistical test if a
source of digits used singly can be found. The footnotes
so commonly used in technical literature are an excel-
lent source, consisting of units that are indicated by num-
bers, letters or symbols."

By examining the Standard Handbook for Electrical En-
gineers and several other reference works, Benford as-
sembled a table of relative frequencies of occurrence for
pages with 1-9 footnotes each. 1

1 2 3 4 5 6 7 8 9 Total pages

Book 1 55.1 22.7 12.3 5.0 2.4 1.7 0.3 0.3 0.3 586
Book 2 56.3 22.1 6.6 6.1 5.0 2.2 1.1 0.6 0.0 181
Book 3 52.8 23.6 8.5 5.5 4.0 3.2 0.8 0.0 1.6 127
Book 4 37.2 25.7 12.1 9.5 4.8 5.2 2.6 2.2 0.9 230
Book 5 29.7 26.6 14.6 11.0 8.0 5.9 1.8 1.0 1.4 287
Book 6 19.5 17.4 17.7 11.9 11.3 9.2 6.1 5.8 1.1 293
Book 7 33.0 27.5 11.8 10.7 4.3 5.9 2.8 2.4 1.6 254
Book 8 56.8 23.2 6.7 7.6 2.4 1.4 0.5 1.4 0.0 211
Book 9 49.5 22.3 13.7 6.9 2.3 1.5 1.5 1.5 0.8 394
Book 10 41.7 25.2 13.4 9.1 4.7 3.2 1.7 0.5 0.5 405
Average 43.2 23.6 11.8 8.3 4.9 3.9 1.9 1.6 0.8 2968

Table 2. Benford�s percentage frequencies of footnote counts per page in
various engineering texts1
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Benford then observed that the agreement with theory
was as good as the computed probable errors, and so
concluded that the 'general equation' was correct.
Benford's claim appears to have gone largely unchal-
lenged by subsequent writers, and in practical applica-
tions, the simpler version of his equation is invariably
used. Progress in justifying and applying the law has
been effectively confined to those quantities whose dis-
tributions approximate continuous functions of high
order r, far from either left-hand or right-hand limits.

For many quantities like money or weight, the limits
may not be of great practical importance, and units can
indeed be varied to almost any degree we please.  This is
why corporate databases tend to conform closely to
Benford's simple formula, and why digital analysis aimed
at detecting anomalies has worked so well.  But for 'quan-
tized' items such as oranges, cows and trees, the uni-
verse dictates one particular, non-optional unit of mea-
sure. The left-hand limit becomes zero, the right-hand
limit becomes significant, and scale invariance can no
longer be regarded as an essential condition.

Quantization, zero, and the Fibonacci proportion

Benford derived his 'general equation' using a log-linear
graphical method, into which a value of zero cannot be
introduced. To allow for the existence of zero as the left-
hand limit requires a new rationale for estimating the
relative probabilities.

Here we will resort to an intuitive analogy.  The relative
probabilities of the digits (shown in the table) seem sus-
piciously geometric in nature. The likelihood of observ-
ing 1 cow (say) is 1.8 times as great as the likelihood of
2 cows . . . and the likelihood of observing 2 cows is 1.7
times as great as 3 cows, and so on. These values vary
quite symmetrically above and below a median of 1.57
and a mean of 1.64. If we leave aside continuous func-
tion space, and think of each integer quantity as being

somewhat like a quantum energy level, perhaps these
probabilities are not merely similar, but identical.

Furthermore, these ratios cluster closely around the fa-
mous Fibonacci proportion or ‘golden mean’ of
1.618034…  The correspondence is so close, in fact,
that we would need a very large sample size before we
could argue on strictly empirical grounds which is the
true underlying pattern (see Figure 1 on the next page).
Table 3 shows the proportions that would result if each
successively higher integer occurred 0.618034 times as
often as the previous one, compared with Benford’s. Al-
though much more can be said about the merits of us-
ing the Fibonacci proportion in this way, here we will
simply let it stand—as a promising hypothesis in much
the same spirit as the original approximation proposed
by Newcomb and Benford.

We immediately note an opportunity to test our theory:
in computing his footnote frequencies, Benford help-
fully included the total number of pages he examined,
for six of the ten books in his sample.  If the fixed-prob-
ability model is correct, then we would expect to find
1.618 times as many zeroes (pages with no footnotes)
as ones in those books. For now we will neglect the num-
ber of pages with 10 footnotes or more, as likely being
very small.

Benford observed 499 pages with one footnote, and
1,402 pages with one footnote or more, out of a total of
2,166 pages.  The ratio of zeros to ones is approximately
(2,166-1,402)/499, or around 1.53.  The fit is as good
for the zeros as for any other digit; therefore our 'quan-
tum' model, generalized to cover zeros, works on
Benford's original data.

In fact, there is no doubt that this represents a real, and
common, distribution pattern.  The author has observed
the same relative frequencies in dozens of other situa-
tions, and has had success in using the 'quantum' curve

Digit 1 2 3 4 5 6 7 8 9

Benford 0.39319 0.25760 0.13266 0.08152 0.05348 0.03575 0.02352 0.01456 0.00772

Ratio 1.53 1.94 1.63 1.52 1.50 1.52 1.62 1.89

Fibonacci 0.38706 0.23922 0.14784 0.09137 0.05647 0.0349 0.02157 0.01333 0.00824

Ratio 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

Table 3. Comparison of Benford�s expected frequencies with frequencies based on
uniform geometric series using Fibonacci
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as a practical forecasting tool. For example, copies of
business software sold to different customers: on aver-
age, 1.618 times as many customers buy one copy as
buy two, and 1.618 times as many buy two as buy three,
and so on.  This same pattern applies to return visits to
service businesses such as hairdressers, and to subscrip-
tion renewals, and to many other aspects of economic
life. It also applies to, for example, the distribution of
field goals per player during NCAA basketball: even the
proportion of zeros, representing at least one attempt
by that player but no goals scored, is as predicted.

When we examine transportation accident statistics, we
bring into focus one more striking consequence of this
distribution. Assuming that we consider only accidents
that have both fatalities and survivors (ignoring acci-
dents that are 100 percent fatal, or 100 percent nonfa-
tal), the distribution of fatalities and the distribution of
survivors each follow the ontic distribution, with one
survivor or fatality being 1.62 times as likely to occur as
two, and so on.  This pattern emerges regardless of the
particular transportation type: survival statistics for lost
ships, crashing planes, and even submarines destroyed
in combat all follow the law.  The law is consistent even
when considering a single aircraft type, such as every
crash involving a Douglas DC-3, or every accident that
occurred in the month of March.

As a separate constraint, the proportion of fatalities to
survivors in such cases averages very close to 1:1.  This
latter constraint may turn out to be an application of
Zipf's Law, where the largest group (all passengers prior
to the crash) averages twice the size of the second-larg-
est group (all passengers still alive after the crash).

Equally intriguing are those cases inwhich the distribu-
tion falls short, failing to fill in to the limiting values.
For example, in the early years of television, very few
households had more than one TV. This type of short-
fall tends to indicate some practical barrier, in this case
most likely high price, or the inability to use more than
one of the item (e.g. few households own more than one
set of encyclopedias). Further investigation can often
determine the specific cause and in many cases action
can be taken, altering the distribution: thus in recent
decades the price of televisions has fallen such that many
if not most households now have several.

That this curve represents a genuine limit is borne out
by the rarity of cases where the distribution of low inte-
ger values rises above Benford’s expected line. Nonethe-
less it is clearly not a strict physical limit, merely a sta-
tistical one; it can be violated, temporarily or in un-
usual circumstances.

An 'ontic' distribution

If this 'quantum' pattern were to persist unchanged to
indefinitely large values, not only for the integers 1 to 9
but the integers 1 to 1 billion, some new paradoxes would
soon emerge.  Cities would be non-existent, as the rela-
tive probability of a grouping of N individuals is given
by 0.618034(N+1).  But we already know from diverse
observations that this pattern does not persist to indefi-
nitely large values; for larger values, the distribution must
transition to a curve approximating Benford's Law.

This puzzle introduces us to a much wider problem,
that of reconciling two competing forms of distribu-
tion, Pareto's Law and Zipf's Law, with these two vari-
ants of Benford's Law. This problem is discussed in depth
in successive issues of Frequencies: The Journal of Size
Law Applications. The author has determined that a
single distribution, called 'ontic' from the Greek 'ontos'
for entity, can account for the patterns observed by
Pareto, Zipf, and Benford.

The critical point is that we must abandon Benford's
assumption, as ratified by Pinkham, that the density of
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Figure 1. Graphic comparison of
Benford�s curve to Fibonacci
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items on successively larger ranges is constant. In the
ontic distribution, for each doubling of the range, the
number of items on the new range falls to 0.618 of the
previous range: thus if there are 1,000 corporations with
sales between $1 million and $2 million, there should
be approximately 618 corporations with sales between
$2 million and $4 million. The same would apply to
counts of employees or personal computers. This is con-
firmed by Fortune 500 listings from recent decades.

Interestingly, the expected proportions of the initial digits
1-9 under an ontic distribution are close enough to the
standard Benford distribution that for most practical
purposes the deviation would not be noticed. There
ought to be a tendency for ontically distributed data to
have a slight but statistically significant excess of ‘1’s or
‘2’s, and too few ‘8’s and ‘9’s, by comparison to Benford’s
Law—and this is precisely what is observed in many
actual data sets (see for example several in Nigrini, 2000,
or the U.S. population data from Benford, 1938). Such
a mild deviation in slope does not interfere with the
anomaly-detection techniques used by auditors.

The slope of the ontic distribution is essentially the same
as that found by Pareto in his late nineteenth-century
studies of income and land distributions among Euro-
pean elites. Pareto's law of elites revealed a gradual de-
cline in numbers, so that if the number of observations
on a given range is N, the number found after extend-
ing the upper limit of the range by a factor of k should
be k-0.7 times N.  Inserting k=2 and 1.618N as the ob-
served result, we find that the implied exponent in the
ontic distribution is -0.69424, very close indeed to
Pareto's average value of -0.7.

This ontic distribution strongly suggests a fractal or self-
similar ordering.  In the general case, if there are N items
in the range x to 2x, then there will be approximately
1.618 times N items in the range from 2x to infinity
(meaning to the highest value in the set).

This follows as a consequence of summing the infinite
series of contributions from successively larger ranges:

x-2x: 1.000

compared to 2x-4x: 0.618 1.618 total
plus 4x-8x: 0.382
plus 8x-16x: 0.236
plus 16x-32x: 0.146

. . . . . .

In the left-hand limit, where we deal with zeros or small
integer values, the pattern is modified to the 'quantum'
version found above, in part because the ‘range’ between
successive integers cannot be occupied. In the right-hand
limit, where we deal with the largest values, the distri-
bution is typically ontic but occasionally approximates
(under certain conditions) Zipf's Law. 2

Even where the ontic distribution in its most literal form
is not evident, the underlying ordering principle still
may be, and can have many strange and interesting side
consequences. The Fibonacci proportion shows up in
many contexts in which a range of possible values is
evenly divided into two halves.  For example:

· Approximately 62 percent of the individual
names in North American phone directories
begin with the letters A-M, while 38 percent
begin with N-Z.  The same is true of the cor-
porate names in the Fortune 1000.

· About 62 percent of professional hockey play-
ers have birthdays between January 1 and June
30 (which gives them several months' height
and weight advantage in junior hockey com-
pared with boys born later in the calendar
year).  Among professional soccer players (who
play a different season), 62 percent have birth-
days between July and December.

· On four-lane roadways, 62 percent of traffic
tends to travel in the curb lanes, and 38 per-
cent in the faster median lanes.

· Initial assassination attempts against public
figures tend to succeed about 62 percent of
the time. A successful assassin tends either to
be killed in the act, or captured and subse-
quently put to death, about 62 percent of the
time as well.

· In Stanley Milgrim's famous psychology ex-
periment, in which volunteer lab assistants
were urged by an authority figure to inflict
intense (simulated) pain on a protesting sub-
ject, on average 62 percent of the volunteers
followed instructions and completed the pro-
cedure. A 62 percent “yes” or “no” vote is very
common in surveys with exactly two answer
choices.
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Philosophical overview

There is no firm consensus at present on the precise causes
behind Benford’s Law, or Zipf ’s Law, or Pareto’s Law.
This is particularly evident when we consider that Pareto’s
Law applies to tangible entities such as land or money,
while Zipf ’s Law originally applied to frequencies of oc-
currence for words in a language, and Benford’s Law
applies to practically any number, including constants
from engineering handbooks.

One commonly voiced suggestion is that these are all in
effect “meta-laws,” the subtle and aggregate consequences
of many individual constraints and influences. Theodore
Hill has described Benford’s Law (Hill, 1998) as arising
from “a distribution of distributions”, meaning that al-
though any particular data set may not conform to it,
as the diversity of data grows, the Benford digit pattern
inevitably emerges. 3

The ontic distribution has the effect of reorganizing these
various meta-laws into two broader ones, at the cost of
losing some of the generality of Benford’s original digit
law. It applies to observed quantities of distinct entities,
not necessarily to abstract ratios or scientific constants
or all numbers in general:

1st Law of Ontic Distributions

Where both the size and number of observations
are free to vary, the sums of all observations in
successive ranges x to kx and kx to k2x will tend
to be equal.

2nd Law of Ontic Distributions

Where both the size and number of observations
are free to vary, the number of observations in
successive ranges x to 2x, and 2x to the largest
observation in the set (much larger than 2x), will
tend to the ratio 1:1.618...

The 1st Law replaces Pinkham’s scale invariance prin-
ciple with an “indifference principle”: given a sufficient
diversity of conditions and influences, the distribution
of observations tends to be such that the same total
amount of substance (cows, oranges, dollars, fatalities)
can be found on any two adjacent ranges of similar pro-
portion.

The 2nd Law reconciles Benford’s Law with Pareto’s Law
and Zipf ’s Law by treating the distribution of the sizes
of observations as a self-similar, fractal ordering in which

the proportion of units on a given range is a constant
fraction of the number of units above that range. Under
Benford’s Law, the proportion of units found upon suc-
cessive doublings of the range should remain a constant
1:1; under Zipf ’s Law it falls to 1:0.5; but in the most
general case (covering Pareto’s observations and a great
diversity of real data) it is actually 1:0.618.

Notice the symmetric deviations from these two laws
when we examine the left-hand and right-hand limits.

· In the left-hand limit, the 2nd Law still can
be adhered to exactly, if we allow for the quan-
tization of the ranges: there tend to be 1.618
times as many observations above a given in-
teger, as at that integer. However, the 1st Law
can not be adhered to consistently because
an integers-only range like 1 to 2, or 2 to 4, is
not a good approximation for a freely vary-
ing range of values.

· In the right-hand limit, the 1st Law can be
adhered to nearly exactly, given that the sizes
of the individual observations can vary. How-
ever, if the total number of observations is
held fixed, as for example when we are rank-
ing population sizes for cities and the num-
ber of cities is therefore fixed, the distribu-
tion deviates away from the 2nd Law to con-
form with Zipf ’s Law.

Ultimately, the ontic distribution is likely to prove more
commonly observed and perhaps just as significant in
its practical applications as the bell-shaped normal dis-
tribution.  The many measures that it pertains to (sales,
land ownership, accidental deaths, behavioral choices)
may make it just as vital to everyday life as the more
well-established uses of the Gaussian distribution, such
as statistical process control in manufacturing. In the
long run we will have to adjust our intuition about what
is 'normal' to what nature shows us.

Educational opportunities

This paper has been submitted under the heading of
statistics education. In addition to its practical forecast-
ing value and philosophical significance, this distribu-
tion also has unique educational potential. Math edu-
cation for high school students and university under-
graduates does not always stress the tangible, practical
connection of mathematics to everyday reality, and even
gifted beginners find it difficult to produce original work.
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· Sizes of bird and animal flocks
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(earthquake, flood, fire)
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· Sizes of stock market transactions
· Sizes of computing tasks
· Sizes of oil and chemical spills
· Sizes of insurance claims

Those interested in reporting their observations are in-
vited to submit to Frequencies: The Journal of Size Law
Applications, at www.ekaros.ca.

References

"The Law of Anomalous Numbers," Frank Benford, Pro-
ceedings of the American Philosophical Society, 1938

“The First Digit Phenomenon,” Theodore P. Hill, Ameri-
can Scientist, Jul-Aug 1998

Digital Analysis Using Benford's Law: Tests & Statistics
for Auditors, Mark J. Nigrini, Global Audit Publications,
2000

“On the distribution of first significant digits,” Roger
Pinkham, Annals of Mathematical Statistics, 1961

“The First Digit Problem,” Ralph A. Raimi, American
Mathematical Monthly, Aug-Sep 1976

Acknowledgments

I want to thank Mark Nigrini for the unique opportu-
nity of editing his book and the insights into the back-
ground of Benford’s Law that our conversations afforded
me; Milo Schield of Augsburg College, for inviting me
to the 2002 ASA session on Statistical Education and
encouraging my work on these questions; and BethAnn
Burton, freelance researcher, for her patient support and
enthusiasm in collecting data and assisting in my many
experiments.

Notes
1. This table of footnote frequencies by Benford contains

several minor inconsistencies that I cannot account for
as being wrong additions or similar kinds of error. In
private notes shared during the editing of his book, Mark
Nigrini observed that Benford’s main table of results
(Benford, 1938) errs by what appears to be occasional
improper rounding in the direction of greater confor-
mity to predicted values. The inconsistencies in this case
do not seem to be of that kind, but like those previously
observed by Nigrini, they are not significant statistically.

2. Zipf ’s Law is usually stated as a ranking rule: the Nth-
ranked item in a distribution with largest member size
C will have average size C/N. The second-largest item is
1/2 the size of the largest, the third-largest is 1/3rd, and
so on. This implies that item counts decline by 50 per-
cent with each doubling of the range, as items ranked
51st through 100th will occupy half the range of items
ranked 26th through 50th, etc.

3. Hill rephrased the significant-digit law this way:
“If distributions are selected at random (in any ‘unbi-
ased’ way) and random samples are taken from each of
these distributions, then the significant-digit frequen-
cies of the combined sample will converge to Benford’s
distribution, even though the individual distributions
selected may not closely follow the law.”


