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Abstract: In observational studies, a statistically signif-
icant relationship can become statistically insignificant 
after taking into account the influence of a confounding 
factor.  This is simply a result of the fact that in obser-
vational studies, all associations are contextual.  Asso-
ciations can change depending on what you take into 
account.  First, a graph type is introduced that displays 
the influence of both binary predictor variables on a 
rate outcome.  Secondly the non-interaction condition is 
introduced to simplify the presentation. Three cases are 
examined: an association is changed, does not disappear 
and is not reversed, an association is changed, does not 
disappear and is reversed, and an association is changed 
and disappears (is spurious).  Third, confidence inter-
vals are used to identify whether an observed difference 
between two percentages is statistically significant.  
The influence of a third factor is shown to be able to 
transform a statistically significant relation into one that 
is statistically insignificant.  Although none of this is 
new, this approach to statistical significance and the 
influence of context is readily presented and easily 
understood.  This approach is strongly recommended 
for those teaching introductory statistics. 
Keywords:  Epidemiology, Confidence Intervals 

INTRODUCTION 
Statistical significance is a most important concept. 

But in most introductory statistics texts, the journey 
from the Binomial theorem through sampling distribu-
tions, the central mean, confidence intervals and hy-
pothesis tests to statistical significance is a long journey 
often taking more than half of a semester course.  Stat-
isticians are keenly aware that in observational studies 
statistical significance depend critically on what is 
taken into account.  But in an introductory course, there 
is little time to emphasize this fact.   

This paper shows an approach that can be taught in 
the introductory course in a short amount of time.  This 
paper presents student level teaching materials along 
with teacher level commentary.  This approach com-
bines the algebraic criteria for spuriousity (Schield and 
Burham, 2003), the graphical approach to displaying 
confounding (Wainer, 2002) and the short-cut approach 
to statistical significance (Giere, 1996; Burkholder and 
Giere, 2003).  The goal is to help students understand – 
quickly and easily – what statistical significance is and 
how it can be contextual. 

1. CONFOUNDING: GRAPHICAL APPROACH 
A graphical approach to confounding is presented 

that applies to binary variables (Wainer, 2002).  We 

will focus on one example involving death rates at two 
hospitals in relation to patient condition where patients 
are in either poor or fair condition.   

Figure 1: Death rates by hospital and patient condition 
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Both hospitals have the same death rate for patients in 
good condition, but the rural hospital has a much higher 
death rate than the city hospital for those in poor condi-
tion.  The overall death rate is just the weighted average 
of the two extremes depending on the mix of patients, 
so the mix-related pattern is always a straight line. 

The rural hospital has mostly patients in good condi-
tion while the city hospital has mostly patients in poor 
condition, so the overall death rate at the rural hospital 
is lower than that at the city hospital.  But once we take 
into account the condition of the patient, we see that for 
the same mix of patients, the rural hospital never has a 
lower death rate than the city hospital.  This reversal is 
an instance of Simpson’s Paradox.  The relation be-
tween two weighted averages is the opposite of that 
between the components of the weighted averages.   

2. NON-INTERACTION 
Statisticians recognize there is no necessity for paral-

lel lines.  The presence of parallel lines simply reflects 
a lack of interaction between hospital and patient condi-
tion.  The lack of interaction is readily seen using the 
following regression model,   

E = constant + aA + bB + cAB.  
For three binary variable it can be shown that constant 
= Ra, a = Rc-Ra, b = Rb-Ra, and c = (Rd-Rc)–(Rb-Ra).    
If the AB coefficient is zero, the (Rd-Rc) = (Rb-Ra), so 
the lines must be parallel.  Thus, in Figure 1 the AB 
coefficient is non-zero, while in Figure 2 the AB coeffi-
cient is zero.   

To simplify the presentation, non-interaction is stipu-
lated so that the model of the data is readily obtained 
from the data.   
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3. CONFOUNDING: THREE CASES 
Assuming non-interaction, we have three different 

cases in an observational study.  For simplicity, the 
observed death rate in the city hospital is taken to be 
higher than that observed in the rural hospital.  
 In Figure 2, the rural hospital has a lower death rate 

than city hospital for the same mix of patients.  
 In Figure 3, the rural hospital has the same death 

rate as the city hospital for the same mix of pa-
tients. 

 In Figure 4, the rural hospital has a higher death 
rate than city hospital for the same mix of patients. 

Figure 2: Death rates by hospital and patient condition 
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The observed death rate at the city hospital (3.5%) is 
greater than that observed at the rural hospital (1.5%).  
But when both hospitals are standardized to have the 
same mix of patients as in the population (50%), the 
difference in death rates shrinks from 2 percentage 
points (3.5% - 1.5%) to 0.5 percentage points. (Since 
the lines are parallel, the 2.75% - 2.25% = 4% - 3.5% = 
1.5% - 1%.)  Standardizing decreases the difference, 
but does not eliminate it or reverse it.  

Figure 3: Death rates by hospital and patient condition 
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In Figure 3, the observed death rate at the city hospi-

tal (3.5%) is greater than that observed at the rural 
hospital (1.5%).  But when both hospitals are standard-
ized to have the same mix of patients as in the popula-
tion the difference in death rates shrinks from 2 per-

centage points (3.5% - 1.5%) to zero. (Since the lines 
are parallel, the 2.5% - 2.5% = 4% - 4% = 1% - 1%.)  
Standardizing totally eliminates the difference.  

In Figure 3, the observed association is completely 
spurious.  Once we take into account the difference in 
patient condition, the observed association disappears 
completely and the standardized death rates are equal 
for the two hospitals. 

If the coordinates of the two weighted averages are 
known (death rates and prevalences of confounder), 
then one can algebraically determine the necessary 
condition for a confounder to make the observed asso-
ciation completely spurious. 

Figure 4: Death rates by hospital and patient condition 
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In Figure 4, the observed death rate at the city hospi-

tal (3%) is greater than that observed at the rural hospi-
tal (2%).  But when both hospitals are standardized to 
have the same mix of patients as in the population, the 
difference in death rates reverses.  It goes from having 
the city hospital’s death rate 1 percentage point (3.5% - 
1.5%) greater to having the rural hospital’s death rate 
0.5 percentage points greater. (Since the lines are paral-
lel, the 2.75% - 2.25% = 4% - 3.5% = 1.5% - 1%.)  
Standardizing reverses the direction of the association.  
This is a clear instance of Simpson’s paradox.  

4. REDUCTION OF FACTORS 
When there is no interaction between the confounder 

and the predictor, it seems that we have three factors at 
work: a difference in rates for the two values of the 
confounder (RD - RC) and difference in mixture be-
tween the treatment group and the population (XP-XF) 
and between the control group and the population (XF-
XQ).  If we designate that difference in rates as RK, 
then RK is non-zero in Figures 2 and 3, but zero in 
Figure 4.   

If the difference in the prevalence of B is constrained 
by the prevalence of B in the population then we can 
reduce two of the variables to one.  We will use Z to 
scale XP and XQ as follows: 

XP  = XPo – Z(XPo – BH) 
XQ = XQo + Z(BH – XQo) 
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This scaling maintains the observed prevalence of B 
regardless of the value of Z.  If Z = 0, we get what was 
actually observed (without taking into account con-
founding).  If Z = 1, we get what would be observed if 
we took into account confounding.  Doing this reduces 
the number of factors to two: the difference in mixture 
(Z) and the difference in death rates.   

5. STANDARDIZING 
Standardizing gives each hospital the same mix of 

patients as is observed in the population.  Consider first 
the situation shown in Figure 5.   

Figure 5: Changing the Mix in Figure 2 
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As we move the percentage of patients in poor condi-
tion from their observed values (Z = 0, P(B|A)=80%, 
P(B|non-A)=20%) to the percentage in the entire popu-
lation (Z=1, P(B)=50%), the death rate at the city hospi-
tal decreases, while that at the rural hospital increases.  
Plotting the death rates for the two hospitals versus Z, 
we get the following graph for AP and AQ. 

Figure 6: Effect of Confounding from Figure 5 

Z=0

Region 1 Region 2

P(B|A) = 80%
P(B|non-A) = 20%

Decrease,
but no

reversal

AP

AQ

Influence of a third factor
on an observed assocation

K

Death
Rate

Z=1
P(B|A) = P(B)=50%
P(B|non-A) = P(B)

Observed
Standardized

Region 3

 

In Figure 6 we have two points and three regions.  
One point on the scale of influence is what is actually 
observed (Z=0).  A second point is what would be ob-
served after taking into account the influence of a con-
founder (Z=1).  These two points give three regions.  

Region 2 is the region between what is actually ob-
served and what would be observed after taking into 
account confounding.  Region 1 is what would be ob-
served if the mix were even more extreme than what 
was observed (Z < 0). Region 3 is what would be ob-
served if the mix were reversed from what was ob-
served (Z > 1).   

Figure 7: Changing the Mix in Figure 4 
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As we move the percentage of patients in poor condi-
tion from their observed values (Z = 0, P(B|A)=80%, 
P(B|non-A)=20%) to the percentage in the entire popu-
lation (Z=1, P(B) = 50%), the death rate at the city 
hospital decreases, while that at the rural hospital in-
creases.  But in this case, they pass a point at which 
they are equal and end up being reversed.  The stand-
ardized death rate at the city hospital is lower than that 
at the rural hospital.  Plotting the death rates for the two 
hospitals versus Z, we get the following graph for the 
values of AP and AQ. 

Figure 8: Effect of Confounding on Figure 7 
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In Figure 8 we have the same two points as seen in 
Figure 6.  The Z=0 point is what is actually observed.  
The Z=1 point is what would be observed after taking 
into account the influence of a confounder.  Regions 1 
and 3 are the same as before. 
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But in Figure 8, we have a new point: the point at 
which the association appears completely spurious and 
the association changes direction.  This third point 
subdivides region 2 into two parts: 2A and 2B.  In terms 
of the hospital example, the left edge of region 2 (Z=0) 
occurs when 80% of city hospital patients are in poor 
condition, while only 20% of rural hospital patients are 
in poor condition.  The right edge of Region 2 (Z=1) 
occurs when 50% of the patients are each hospital are in 
poor condition.  In this case, the cross-over point occurs 
when the percentage who are in poor condition is 60% 
for the city hospital and 40% for the rural hospital.  

6. SAMPLING 
Consider each of the observed fractions as samples 

from a larger population.  If these are random samples, 
then we can construct confidence intervals for the ob-
served fractions.   

One may question whether confidence intervals are 
appropriate since it is not obvious that there is any 
sampling.  Indeed, the hospital data may be the entire 
population for that hospital for a given time period.  But 
our goal is to compare the overall death rates at the 
hospitals – not just for those in a particular time inter-
val, but for those in general.  As such, we can view 
what happened in a particular time interval as a sample 
taken from the larger population of death rates through-
out time.   

This is no different that what is done in clinical trials 
where the data represents everybody in the study, yet 
we still do hypothesis tests to see that the observed 
difference is statistically significant so we can say 
something about the difference in the larger populations 
of those who might have received the treatment and 
those who might not have.   

Although this may seem to have a Bayesian flavor, it 
does not involve taking something that is constant in 
nature (e.g., the speed of light) and talking about the 
probability that that value is in a particular confidence 
interval.  This is like a medical test where different 
samples can have different percentages of subjects who 
have the disease.  This form of sampling occurs when-
ever we have a generation process generating outcomes 
sequentially.   

We can attach confidence intervals to any pattern of 
observations whether it is a straight line or not.  But if 
the pattern is a straight line (see figure 9) then the bands 
formed by the confidence intervals will involve straight 
lines as well.  

7. STATISTICAL SIGNIFICANCE 
If the confidence intervals overlap, then we definite-

ly have a lack of statistical significance.  Now consider 
the results of attaching confidence intervals to the pro-
portions shown in Figure 9.  

Figure 9: Confounding and statistical significance 
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Figure 10: Confounding and statistical significance 
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The region in which the difference is not statistically 

significant is centered on the point at which the associa-
tion is 100% spurious.   

There is no requirement that the third factor be suffi-
cient to bring about a Simpson’s paradox reversal.  The 
influence may simply decrease the observed association 
as shown in Figure 9. 

8. DISCUSSION 
In a well-designed experiment, subjects are ran-

domly assigned to the treatment and control groups.  If 
the resulting difference is determined to be statistically 
significant, that conclusion is treated as being absolute 
– it is not expected to be contextual.  The influence of 
any plausible confounder is expected to be zero due to 
the random assignment involved in assigning subjects 
to the experiment.  So if an association in a well-
designed experiment is statistically significant, one can 
conclude that the treatment caused the observed associ-
ation or the difference.  

But in an observational study, there are an unlim-
ited number of plausible confounders that might be 
taken into account.  And when an observed association 
is found to be statistically significant, that conclusion is 
heavily contextual.  So finding that an association is 
statistically significant in an observational study is 
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weak evidence for presuming that a standardized asso-
ciation would be statistically significant much less for 
presuming that the difference between exposure and 
non-exposure caused the observed difference in out-
comes. 

Understanding the difference between an experi-
ment and an observational study is critical in under-
standing whether an association is contextual and 
whether being statistically significant is contextual.   

9. CONCLUSION 
In summary, we can see that in observational studies, 

statistical significance is contextual.  This follows from 
the fact that in observational studies, associations are 
contextual.  Recognizing that an association can be 
contextual is a fundamental goal of being a critical 
thinker.  Recognizing that statistical significance can be 
contextual is extremely important in understanding the 
role of statistics as evidence.   

Taking into account the influence of a confounder 
can transform an association that is statistically signifi-
cant into one that is not.  Recognizing this possibility – 
indeed this all too often condition – is fundamental to 
thinking critically about any claim based on data from 
an observational study. 

Students studying statistical literacy must understand 
the nature and importance of statistical significance, 
and they must understand when it is absolute (well-
designed experiments) and when it is contextual (all 
observational studies).   
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APPENDIX A:  ALGEBRAIC RELATIONS 
BETWEEN THREE BINARY VARIABLES 

Table A: Cross-prevalence between A and E 
Table A Non-E E TOTAL 
Non-A Aa Ab Ag 

A Ac Ad Ah 
TOTAL Ae Af n 

Table B: Cross-prevalence between B and E 
Table B Non-E E TOTAL 
Non-B Ba Bb Bg 

B Bc Bd Bh 
TOTAL Be Bf=Af Bn = n 

Table X: Cross-prevalence between A and B 
Table X Non-B B TOTAL 
Non-A Xa Xb Xg=Ag 

A Xc Xd Xh=Ah 
TOTAL Xe=Bg Xf=Bh Xn = n 

Table E: Distribution of E by A and B. 
Table E Non-B B TOTAL 
Non-A Ea Eb Eg=Ab 

A Ec Ed Eh=Ad 
TOTAL Ee=Bb Ef=Bd En=Af 

Table R: Rate of E classified by A and B. 
Table R Non-B B TOTAL 
Non-A RA=Ea/Xa RB=Eb/Xb RG=Ab/Ag 

A RC=Ec/Xc RD=Ed/Xd RH=Ad/Ah
TOTAL RE=Bb/Bg RF=Bd/Bh RN = Af/n 

E designates an effect; A and B designate predictors.  In 
names, the first letter designates the table.  Tables A, B, 
X and E are count tables (R is a ratio table).   

DEFINITIONS: 
a. AP = Risk of E for A = Ad/Ah 
b. AQ = Risk of E for non-A = Ab/Ag 
c. XP = Prevalence of B for A = Xd/Xh = AH 
d. XQ = Prevalence of B for non-A = Xb/Xg = AG 
e. BH = Prevalence of B = Bh/n 

Margin Value Ratios:   
AP = RH, AQ = RG.  BP = RF, BQ = RE 
f. RH = (RDXD + RCXC)/XH = RDXP + RC(1-XP) 
g. RG = (RBXB + RAXA)/XG = RBXQ + RA(1-XQ) 
h. RF = (RDXD + RBXB)/XF = RDXN + RB(1-XN) 
i. RE = (RCXC + RAXA)/XE = RCXM + RA(1-XM) 

NON-INTERACTION BETWEEN A AND B. 
1a. RD - RB = RC – RA Non-interaction criteria 
1b. RD - RC = RB – RA Equivalent form 
1c. RA + RD = RB+ RC Equivalent form 
 
If XP = XQ, then 1 
2a. RH - RG = RD - RB = RC – RA 
2b. RF - RE = RD - RC = RB – RA 
 
3a. Let RJ = RD – RB = RC - RA,  

so RD = RB + RJ and RC = RA + RJ. 
3b. Let RK = RD - RC = RB - RA 

so RD = RC + RK and RB = RA + RK. 
3c. RJ – RK = RC – RB 
 
4a AP  = RH = RDXP + RC(1-XP) 
4b AQ = RG = RBXQ + RA(1-XQ) 
4c BP = RF = RDXN + RB(1-XN) 
4d BQ = RE = RCXM + RA(1-XM) 
 
5a AP = (RC+ RK)XP + RC(1 – XP) 
5b AQ = (RA+ RK)XQ + RA(1 – XQ) 
5c BP = (RB+ RJ)XN  + RB(1 – XN) 
5d BQ = (RA+ RJ)XM + RA(1 – XM) 
 
6a AP = RC+ RKXP.  AQ = RA+ RKXQ2 
6c BP = RB+ RJXP.   BQ = RA+ RJXP 
 
7a. AP – AQ = (RC+ RKXP) – (RA+ RKXQ) 
7b. AP – AQ = RJ + RK(XP - XQ)3 
 
8a.  Let XP  = XPo – Z(XPo – BH) 
8b. Let XQ = XQo + Z(BH – XQo) 
8c. XP-XQ = (XPo-Xqo) – Z[(XPo–BH)+(BH-XQo)] 
8d. XP-XQ = (XPo-Xqo)(1 – Z)4 
 
9a. AP – AQ = RJ + RK(XPo - XQo)(1-Z) 
9b. If AP = AQ, (1-Z) = -RJ/[RK(XPo - XQo)]5 
 

                                                           
1 2c. RH-RG=[RDXP+RC(1-XP)]–[RBXQ+RA(1-XQ)] 
2d. RH-RG=[RDXP+RC(1-XP)]–[RBXP+RA(1-XP)] 
2e. RH-RG=(RD-RB)XP + (RC-RA)(1-XP) 
2f. RH-RG=(RD-RB)XP + (RD-RB)(1-XP) 
2g. RH-RG = RD-RB.  QED. 
2 Let XP=.8 and XQ=.2.  

If RC = .010, RK=.025, then AP = .03.   OK 
If RA = .015, RK = .025, then AQ = .02.  OK 

3 Check:  RC-RA = (.010 - .015) = -.005. 
RK*(XP – XQ) = .025(0.8 - .2)  = .015 

 AP-AQ = -.005 + .015 = +.010.  OK 
4 If XPo = .8, XQo = .2,  
 If Z = 1, XP=XQ.  OK 

If Z = 1/3, XP-XQ=.4  OK 
IF Z = 0, XP-XQ = XPo – XQo   OK 

9a AP = RC+ RK[XPo – Z(XPo – BH)] 
9b AQ = RA+ RJ[XQo + Z(BH – XQo)] 
5 (1-Z) = -(-.005)/[.025(.8-.2)] = .005/.015 = 1/3.  NO! 


