Algebraic Conditions for Binary Spuriousity

MILO SCHIELD

Augsburg College Department of Business Administration Director, W. M. Keck Statistical Literacy Project

THOMAS V.V. BURNHAM

Cognitive Consulting

August 4, 2003

Associations Confounded No test for Confounding

In observational studies, associations are often confounded (tangled up).

Categorical Cube: Three Binary Variables

Quantitative Rate Cube Non-Planar Data

Criteria for Spuriousity: A has"no effect" on E

Cornfield \& Gastwirth used a cross-A rate equality model:

- $P(E \mid A$ and $B)=P(E \mid B)=P(E \mid$ non-A and B)
- $P(E \mid A$ and non-B $)=P(E \mid$ non $-B)=P(E \mid n o n-A$ and non-B $)$

We used two regression models:

- A non-interactive model: $E=b o+\underline{b 1} * A+b 2 * B$
- An interactive model: $E=b 0+\underline{(b 1+b 3 * B)} * A+b 2 * B$

A-E association is spurious if underlined factor is zero.
As viewed from confounder perspective: B-E

- Non-interactive model: B line || A line
- Interactive model: Rate lines intersect at prevalence of B.

Non-Interactive Model: AP:AQ line and BP:BQ line

Non-interactive Spuriousity Projected on B:E Face

Standardizing Shows Influence of Confounder

Standardizing Can Decrease A Difference

Standardizing Shows Simpson's Paradox

Standardizing Can Reverse A Difference

Interactive Spuriousity via Standardizing

Interactive Spuriousity: Non Planar Data

Spuriousity Results: New Necessary Condition

Gastwirth-Cornfield: $\mathrm{RR}(\mathrm{E}: \mathrm{B})>\mathrm{RR}(\mathrm{E}: \mathrm{A})$
New: RR(E:B) - $1>$ [RR(E:A) - 1][P(A)/P(B)]
What cancer-gene effect size is necessary to make association between smoking and cancer spurious?
$R R(E: A)=9$ for cancer among smokers vs. non. $\mathrm{P}(\mathrm{B})=10 \%$. 10% of adults have a cancer gene $\mathrm{P}(\mathrm{A})=40 \%$. 40% of adults smoke, then

- Gastwirth-Cornfield: $\mathrm{RR}(\mathrm{E}: \mathrm{B})>9$.
- New: RR(E:B) > 33

Conclusions

Spuriousity depends on model.
Cornfield conditions more-generally valid.
Standardizing illustrates interactive model.
Spuriousity conditions for non-interactive and interactive models overlap.
New equations for non-interactive spuriousity.
New inequality for non-interactive model: RR(E:B)-1 > [RR(E:A)-1]•P(A) / P(B)

