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Abstract: The defining conditions for a binary con-
founder to nullify an association have been identified 
for a non-interactive model involving a binary predictor 
and a binary outcome.  When the association involves a 
relative risk or prevalence, three values are required to 
specify the nature of the confounder.  One goal of this 
paper is to identify a meaningful single-value that can 
specify the numerical properties of a binary confounder 
that would nullify a given association.  Associations 
that can withstand a certain size confounder without 
being nullified are considered confounder resistant.  A 
second goal is to identify conditions under which the 
influence of a confounder can be shown as confounder-
intervals for an observed ratio and a given size con-
founder.  Formulas for the upper and lower limits of 
confounder intervals are determined for relative preva-
lences.  In order to highlight the influence of potential 
confounders, data analysts using relative risks or preva-
lences from observational data should be accompany 
these with some measure of their susceptibility to con-
founding using either the size confounder that would 
nullify the association or the interval for a given size 
confounder.  
Keywords:  Epidemiology 

1. PROBLEM OF CONFOUNDING 
Confounding is everywhere in observational studies.  

Things are tangled up and mingled together; everything 
seems to be connected to everything.  An association 
between two variables is confounded by a third if the 
third is entangled with both these variables.  

While random assignment can statistically break 
such entanglements, most studies can not (or do not) 
involve random assignment.  Without random assign-
ment, there is no known statistical test for confounding.  
(Pearl, 1998)  Without knowing the distribution of 
confounders, there seems to be no way to say, "there is 
a 20% chance that this observed association is due to 
confounding" or "If this association were entirely spu-
rious, there is less than a 5% chance of seeing an asso-
ciation this big or bigger due to confounding."    

Finally, there seems to be no generally accepted way 
to talk about the nature or size of a confounder.  We 
have no way to eliminate a variable in a regression by 
saying it is beneath some minimum threshold for sus-
ceptibility to confounding.  There is nothing compara-
ble to the “5% level of significance.”  As a result there 
is no way to determine what size relative risk consti-
tutes strong evidence for saying the association is not 
spurious.  

Operationally, epidemiologists tend to disregard rela-
tive risks of less than three as being generally inade-
quate to withstand the influence of confounding. 
Taubes (1995) noted the following: [emphasis added] 

Sir Richard Doll of Oxford University, who once 
co-authored a study erroneously suggesting that 
women who took the anti-hypertension medication 
reserpine had up to a fourfold increase in their risk 
of breast cancer, suggests that no single epidemi-
ologic study is persuasive by itself unless the lower 
limit of its 95% confidence level falls above a 
threefold increased risk. Other researchers, such as 
Harvard's Trichopoulos, opt for a fourfold risk in-
crease as the lower limit. Trichopoulos's ill-fated 
paper on coffee consumption and pancreatic cancer 
had reported a 2.5-fold increased risk. "As a general 
rule of thumb," says Angell of the New England 
Journal, "we are looking for a relative risk of three 
or more [before accepting a paper for publication], 
particularly if it is biologically implausible or if it's 
a brand-new finding." Robert Temple, director of 
drug evaluation at the Food and Drug Administra-
tion, puts it bluntly: "My basic rule is if the relative 
risk isn't at least three or four, forget it."  

While a relative risk of three may be a rule of thumb in 
some areas, lower ratios are being used.  In concluding 
that second-hand smoke caused health problems, the 
EPA relied on a relative risk of 1.2.1  A relative preva-
lence of 1.25 is used to monitor adverse impact in hir-
ing practices involving members of protected classes as 
identified by Title 7 of the 1964-1965 Civil Rights Act.2 

But as John Bailar, an epidemiologist at McGill Uni-
versity and former statistical consultant for the NEJM, 
points out, “there is no reliable way of identifying the 
dividing line.”  Taubes (1995).  Thus, any rule of thumb 
such as RR > 3 requires justification.3   
                                                           
1
 www.forces.org/evidence/ets-whop/index.htm 

2
 On August 25, 1978, four federal agencies (Department of Labor, 

Equal Employment Opportunity Commission, Office of Personnel 
Management and Department of Justice) issued the Adoption by 
Four Agencies of Uniform Guidelines on Employee Selection Pro-
cedures (1978).  The Uniform Guidelines provide standards for fair 
selection procedures for EEO protected classes.  Adverse impact in 
the selection process is presumed when the pass rate of applicants 
from a protected class with a low pass rate is less than 80 percent 
of the pass rate of applicants from the group with the highest selec-
tion rate. This is also referred to as the “four-fifths” rule.   

3
 If one had a distribution of confounders, then one might be able to 

make probabilistic statements.  Of the 24 cases cited by Taubes 
(1995), 80% have RR ≤ 3. 
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An important goal of science is to quantity the prop-
erties of entities.  Since unmeasured confounders are 
difficult to deal with, one approach is to identify as-
sumptions under which the properties of a confounder 
are completely determined by a single value.  Given the 
complete specifications of a confounder one can then 
determine its’ effects on a given association.  Schield 
and Burnham (2003) have shown that specifying a 
binary confounder involves three values when using 
relative prevalences.    

The first goal of this paper is to identify a simple 
way to determine all the properties of a confounder by 
specifying just a single parameter: the confounder size.   

A second goal is to identify what size confounder is 
required to nullify an observed association.  Nullifica-
tion is confounder-induced spuriosity.4  An association 
is spurious – of no effect – if it vanishes after taking a 
confounder into account.   

A third goal is to generate intervals for an observed 
relative risk based on the influence of a binary con-
founder of a given size.   

2. NOTATION 
The notation used in this paper is the same as that 

used in Schield and Burnham (2003).  The predictor 
variable A, the outcome variable E and the confounder 
variable B are all binary.  The variable name is used to 
indicate the values (e.g., A and non-A).  A' designates 
non-A.  If E is cancer and A is smoker, then P(E|A') is 
the prevalence of cancer for non-smokers.5  In order to 
study differences between, and ratios of, prevalences, 
this notation is used: 

1. DP(Y:X) ≡ P(Y|X)-P(Y|X'), 
2. RP(Y:X) ≡ P(Y|X)/P(Y|X'),  XRP(Y:X) ≡ RP(Y:X)-1, 
3. AFP(Y:X) ≡ DP(Y:X)�P(X)/P(Y).   

The colon indicates that the following value and its 
complement are involved.  Consider cancer (E), smok-
ing (A) and a cancer gene (B).  DP(B:A) is the differen-
tial prevalence of the cancer gene for smokers vs. non-
smokers. RP(E:A) is the relative prevalence, XRP(E:A) 
is the excess relative prevalence of cancer for smokers 
vs. non-smokers. AFP(E:A) is the fraction of cancer 
cases in the population that are attributed to smoking.  

The selection of A vs. A', and of B vs. B' is arbitrary. 
This paper assumes they are selected so DP(E:A) > 0 
and DP(E:B) > 0.6  These selections do not determine 
whether DP(B:A) is positive or negative in general. 

                                                           
4 

A spurious association can also be chance-based: due to sampling 
variability when there is no association in the population.   

5
 Note that P(X) signifies prevalence or percentage – not probability. 

6
 If DP(E:A) = 0 then reversal is not meaningful.  If DP(E:B) = 0 or 

DP(B:A) = 0, then spuriousity and reversal are impossible. 

3. DEFINING CONDITIONS FOR 
CONFOUNDER-INDUCED SPURIOSITY 

Schield and Burnham (2003) obtained defining con-
ditions under which an observed association would be 
made spurious by a confounder when using a non-
interactive OLS model for binary data.  The OLS non-
interactive model has the form: 

4. E(A,B) = b0 + b1⋅A + b2⋅B. 

Recall that E is the outcome of interest, A is the binary 
predictor and B is the binary confounder.  Note that b1 
is the partial regression coefficient between the out-
come (E) and the binary predictor (A) after taking into 
account the influence of the confounder (B) using a 
non-interactive model.  

If b1 = 0 then any association between A and E is 
spurious.  There are many forms of this spuriosity con-
dition as shown in Appendix A of Schield and Burnham 
(2003).  The main problem is that at least three values 
must be specified for a confounder in order to deter-
mine its influence on an observed association.   

Can we summarize these characteristics in the 
same way that we summarize a distribution by its center 
and spread?  A first step is to see how these characteris-
tics interact in rendering a given association spurious.  
Hopefully this will help us identify a single value that 
might be used to determine more than one property of a 
confounder.  The goal is to identify summary character-
istics that will identify confounders having the same 
nullifying strength on a relative prevalence in ways that 
are meaningful and useful. 

4. INFLUENCE ON RELATIVE PREVALENCE 
Schield and Burnham (2003) showed that the condition 
needed for a binary confounder to nullify an observed 
relative prevalence, RP(E:A), is given by: 

5. 
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For an observed excess relative prevalence XRP(E:A) 
and predictor prevalence P(A), this condition involves 
three other factors: P(B), XRP(B:A) and XRP(E:B).   

Notice how XRP(E:B) is directly influenced by 
P(B) for given values of XRP(E:A), P(A) and XRP(B:A).  
If P(B) is small, then XRP(E:B) must be large and vice 
versa.  If we have no knowledge of P(B), then it seems 
unwarranted and opportunistic to pick values that yield 
smaller values for either the confounder size, RP(E:B) 
or the confounder linkage with the predictor, RP(B:A).   

To avoid opportunism and to simplify things, sup-
pose that P(B) = P(A).  This restricts confounders to 
those in the same prevalence class as the exposure, just 
as the Attributable Fraction of Cases in the Population 
(AFP) measures the correlation between exposure and 
cases – relative to the maximum possible for exposures 
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in the same prevalence class: e.g., P(B) = P(A).  See 
Schield and Burnham (2002). 

Since the confounder is hypothetical, there is no 
claim that this assumption or stipulation is realistic.  
Only that it is one way of achieving the stated goal of 
specifying all the properties of a confounder given the 
observed data and a single value.   

5. NULLIFICATION WHEN P(B)=P(A) 
When P(B) = P(A), the nullification condition is: 

6.  
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When P(A) = 0.5, we obtain the contours of equal 
strength shown in Figure 1.  Although there are a wide 
range of combinations for RP(E:B) and RP(B:A) it can 
be shown that there is a symmetry around the line, 
RP(E:B) = RP(B:A).7  When a function, y = f(x), has 
one point closest to the origin, that point is given by 
dy/dx = -x/y.  Since these contours are symmetric about 
the diagonal, they are closest when their slope is -1, so 
that the closest point is x = y or RP(E:B) = RP(B:A).8   

Figure 1: RP(E:B) vs RP(B:A) Spuriosity Contours  
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When P(B) = P(A), we can describe a strength con-
tour using a single value, S, where RP(B:A) = PR(E:B) 
= S.  For a given value of RP(E:A), this combination 

                                                           
7
 Let x = XRP(E:B), y = XRP(B:A), z = XRP(E:A) and k = 1/P(A).  

Equation 6 yields, x = z(k+y)/(y-z) so z = x�y/(k+x+y).  The latter 
shows the symmetry between x and y for a given z.   

8
 This can be proven.  Let D2 = x2 + y2 = y2 + [z(k + y)/(y - z)] 2.  To 

minimize D for a given value of z, let dD/dy = 0.  So, y = z + 
SQRT[ z (z + k)] plus a negative and two imaginary roots.  Substi-
tuting the positive solution into the equation for x gives: x = z + 
SQRT[ z (z + k)].  So D is minimized when x = y, which means 
when XRP(B:A) = XRP(E:B) or RP(B:A) = RP(E:B) 

gives the point closest to the origin.  This doesn’t say 
that either RP(E:B) or RP(B:A) is smallest at this point.  
There are combinations where either is smaller, but this 
is the point at which the sum of their squares is smallest 
– they are jointly minimal. 

All the other combinations can be derived given this 
one value of S since P(B) = P(A).  One advantage of 
using this minimal Cartesian distance point, XRP(B:A) 
= XRP(E:B), is that it avoids extremes.   
• A very weak confounder XRP(E:B), minimally more 

than XRP(E:A), can still nullify an association pro-
vided XRP(B:A) is very large.  Focusing on the rela-
tively small size of XRP(E:B) needed for nullifica-
tion makes the observed association seem weak. 

• A very strong confounder XRP(E:B) is required to 
nullify an association provided the excess con-
founder prevalence, XRP(B:A) is minimally greater 
than the observed association: XRP(E:A).  Focusing 
on the large size of XRP(E:B) in this pair makes the 
observed association XRP(E:A) seem very strong.  

6. S CONFOUNDER NULLIFICATION 
An S confounder is hereby defined as a binary con-

founder where P(B) = P(A) and where RP(B:A) = 
RP(E:B) = S.  Using equation 6, it follows that an S 
confounder will nullify the association RP(E:A) when  

7. 
)]:()1)[((
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Collecting terms, solving the quadratic and taking the 
root for S > RP(E:A)9 gives: 
8. )]:()(/[11):():( AEXRPAPAEXRPAERPS ++=  

This equation identifies the size of an S confounder 
needed to nullify an observed association having a 
prevalence, P(A), and a relative prevalence, RP(E:A).   

Figure 2 illustrates the size of an S confounder 
needed to nullify an observed association – given the 
prevalence P(A) and the relative prevalence, RP(E:A).  

Figure 2: Minimum S Needed to Nullify Association 
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9
 RP(E:B) > RP(E:A) is a necessary condition for nullification.  See 

Schield and Burnham (2003). 
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Consider those exposed to second hand smoke. If 
their prevalence is 25% and their relative risk of lung 
cancer is 1.2, then this association would be made spu-
rious by an S confounder of size 2.1.   

Note that the smaller the prevalence of the predic-
tor, P(A), the larger the confounder size, S, needed to 
nullify an observed association, RP(E:A).  For low-
prevalence predictors, very large confounders are re-
quired to nullify the observed association.   

Disciplines, not statisticians, must decide what size S 
confounder is considered small – just as with p-values.   

7. NULLIFICATION BY S CONFOUNDERS 
The largest XRP(E:A) that is be made spurious by 

an S confounder as a function of P(A) is given by:10 

9. )]}1()(2[1/{)1()():( 2 −+−= •• SAPSAPAEXRP  

As shown in Figure 3, relative prevalences under 1.5 
are made spurious by S confounders with S < 4 when 
P(A) > 0.1.   

Figure 3: Maximum RP Made S-Spurious 
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If S = 5, then XRP(E:A) = 16�P(A)/[1+8�P(A)].11  If 

epidemiologists were to require that relative preva-
lences be able to withstand nullification by an S con-
founder of size 5, many relative risks would be noted as 
being vulnerable to confounding.12   

8. IDEA OF CONFOUNDER INTERVALS 
We now set aside the topic of nullification and turn 

to the question of influence.  Suppose that an S con-
founder was tangled up in the observed association, 
RP(E:A).  What value of RP(E:A) would be expected if 
that confounder were removed?   

To repeat, note that we are not saying anything 
about nullification – just about influence – so we are 
not starting from the prior nullification equations.  But 
certainly it seems useful to include the conditions P(B) 
= P(A) and RP(B:A) = RP(E:B) as determining the 
                                                           
10

  Since RP is continuous, this also “equals” the minimum RP(E:A) 
that can withstand being made spurious by a size S confounder.  

11
   If S = 3 then XRP(E:A) = 4�P(A)/[1 + 4�P(A)].  If S = 10, then 

XRP(E:A) = 81�P(A)/[1+18�P(A)]. 
12

 If P(A) = 0.5, RP(E:A) = 2.6; if P(A) = 0.1, RP(E:A) = 1.9. 

lower limit of a confounder interval.  An S confounder 
may decrease without reversal, nullify or reverse an 
observed association.  The latter is Simpson’s Paradox.  
If the confounder interval for an observed relative risk 
included unity, we would say that for that size con-
founder the observed association was not ‘confounder 
resistant’; otherwise it is ‘confounder resistant.’  

The next two sections (9 and 10) illustrate how the 
limits of a confounder interval are obtained using stan-
dardization for a particular case.  Section 11 summa-
rizes the general equations obtained when various sin-
gle and double ratios are standardized.  

As presented in Schield (2004), standardization in-
volves moving weighted averages along the lines con-
necting the actual data points: the rates.  There is no 
necessity that these lines be parallel.  But when viewing 
the results of a non-interactive model, there is typically 
no mention of the actual rates and the associated lines 
are necessarily parallel.   

Standardizing using the four corner values from a 
non-interactive model (which are co-planar) give the 
same results as computing the expected values using the 
model.   Using these four data points, the standardizing 
approach illustrates graphically what the non-
interactive model does algebraically.   

9. LOWER LIMIT 
For example, what is the influence of an S con-

founder of size 2 on an observed association with P(A) 
= 50% and RP(E:A) = 1.5?  To obtain the lower limit, 
the non-interactive model must fit four requirements:  
(1) RP(E:A) = 1.5, (2) P(B) = P(A) = 50%, (3) RP(B:A) 
= 2, and (4) RP(E:B) = 2.   Figure 4 illustrates the non-
interactive model fitting these values and the standardi-
zation from which one can obtain the lower limit. 

Figure 4: Lower Limit of Ratio After Standardizing 
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To see (1) note that P(E:A) = 60% and P(E:A') = 
40%, so RP(E:A) = 1.5.  To see (2) note that P(B) = 
P(A) = 50% as specified.  To see (3) note that P(B|A) = 
66.7% and P(B|A') = 33.3%, so RP(B:A) = 2 (66.7% / 
33.3%) as specified.  Although this figure does not 
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show P(E|B) or P(E|B') directly, note that if P(E|B) = 
2/3 and P(E|B') = 1/3, then RP(E:B) = 2 as specified. 13   

After taking into account the influence of this con-
founder, the standardized value of P(E|A) is 55% while 
the standardized value of P(E|A') is 45% so the stan-
dardized value of the relative prevalence of E for A, the 
lower limit of this confounder interval, is now 1.22. 

10. UPPER LIMIT 
Now we turn to obtaining the upper limit of an S 

confounder interval.  Recall that the removal of a con-
founder can increase the value of an association, 
RP(E:A) as well as decrease the value.  Since we know 
almost nothing about the confounder it seems inappro-
priate to assume that it must always decrease the ob-
served association.  Suppose that A and B are chosen so 
that RP(E:A) and RP(B:A) are both greater than unity.  
Schield and Burnham (2003) showed that in this case 
the direct effect is greater than the whole effect only if 
0 < RP(B:A) < 1.   

What value of RP(B:A) less than 1 can be readily 
determined given RP(E:B)?  An obvious choice is 
RP(B:A) = 1/RP(E:B).  What is happening is that the 
confounder groups, B and B', are being exchanged – not 
in relation to the outcome E but in relation to the pre-
dictor groups, A and A'.  In this sense, RP(B:A) = 
1/RP(E:B) used for the upper limit is closely related to 
RP(B:A) = RP(E:B) used for the lower limit.   

Using a non-interactive model, Figure 5 illustrates 
the standardization from which one can obtain the up-
per limit of a size S=2 confounder interval for P(A) = 
50% and RP(E:A) = 1.5. 

Figure 5: Upper Limit of Ratio After Standardizing 
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Note the four requirements this non-interactive 
model must fit: (1) RP(E:A) = 1.5, (2) P(B) = P(A) = 
50%, (3) RP(B:A) = 1/2, and (4) RP(E:B) = 2.  To see 
(1) note that P(E|A) = 60% and P(E|A') = 40%, so 
RP(E:A) = 1.5.  To see (2) note that P(B) = P(A) = 50% 
                                                           
13

 P(E|B) is a weighted average on the right; P(E|B') on the left. 
1. P(E|B) = P(B|A) �P(E|B,A) + P(B|A') �P(E|B,A').  

2/3 = (2/3)(70%) + (1/3)(60%) = +46.67% + 20% 
2. P(E|B') = P(B'|A) �P(E|B',A) + P(B'|A') �P(E|B',A'). 

1/3 = (2/3)(30%) + (1/3)(40%) = 20% + 13.3% 

as specified.  To see (3) note that P(B|A) = 33.3% and 
P(B|A') = 66.7%, so RP(B:A) = 1/2.  Although P(E|B) 
and P(E|B') are not shown directly, note that if P(E|B) = 
2/3 and P(E|B') = 1/3 then RP(E:B) = 2.14   

After taking into account the influence of this con-
founder, the standardized value of P(E|A) is 2/3 while 
the standardized value of P(E|A') is 1/3 so the standard-
ized value of the relative prevalence of E for A, the 
upper limit of this confounder interval, is 2. 

So having obtained both the lower and upper limits 
of this S confounder interval, we can state the size of 
this particular confounder interval as follows.  Given an 
observed relative prevalence of 1.5 and a predictor 
prevalence of 50%, the confounder interval due to a 
size 2 confounder is given by [1.22, 2.0].15  16 

To summarize, for the S confounder interval pro-
posed herein, both lower and upper limits presume that 
P(B) = P(A).  The lower limit is that determined by 
RP(B:A) = RP(E:B) = S while the upper limit is that 
determined by RP(B:A) = 1/RP(E:B) = 1/S.   

11. CONFOUNDER INTERVAL FORMULAS 
Appendix B derives the standardized values for 

P(E|A) and P(E|A') when P(B|A) = P(B|A') = P(B) in 
terms of the slope b1 in the non-interactive model.  
Various combinations of these standardized values are 
also obtained.  The spuriosity conditions obtained ear-
lier can be obtained from these formulas.   

It may be useful to see these standardized values in 
terms of the conditions specifying the predictor and the 
confounder – without including b1.  The limits of S 
confounder intervals when P(B) = P(A) are derived for 
P(E)/P(E|A'), in Appendix C and for  the relative preva-
lence RP(E:A) in Appendix D.  In both cases, the for-
mulas seem to conceal more than they reveal.  Hope-
fully they contain analytical relationships that enable a 
better understanding of the underlying dynamics.   

Figure 6 illustrates the lower limit of relative 
prevalence confounder intervals involving S confound-
ers of size 2, 3 and 4.  As a function of RP(E:A), these 
lower limits are nearly linear.   

                                                           
14

 P(E|B) is a weighted average on the right; P(E|B') on the left. 
1. P(E|B) = P(B|A) �P(E|B,A) + P(B|A') �P(E|B,A').  

2/3 = (1/3)(90%) + (2/3)(55%) = 30% + 36.67% 
2. P(E|B') = P(B'|A) �P(E|B',A) + P(B'|A') �P(E|B',A'). 

1/3 = (2/3)(45%) + (1/3)(10%) = 30% + 3.33% 
15

 The first confounder interval was obtained on 12/23/2003 using an 
Excel model with co-planar rates for RP(E:A) = 1.25, P(A) = 0.5.   
16

  We avoid using ‘model’ in talking about an S confounder to 
emphasize that standardized values are based on a model – not the 
specifications of the S-confounder.  We avoid using ‘adjusted’ to 
emphasize that the data itself is not being adjusted.  
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Figure 6: Confounder Lower Limits: P(B)=P(A)=0.5 
Confounder Intervals: Lower Limits

P(B)=P(A)=0.5.   XRP(B:A)=XRP(E:B)=S
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Although the language of direct, whole and indirect 
effects is properly used only for differences, the terms 
can be appropriated for ratios provided the equation 
relating these items is set aside.  Consider a whole 
effect given in terms of a ratio, RP(E:A), the observed 
relative prevalence association between A and E.  Ap-
pendix B presents the direct effect in terms of a ratio 
given this whole effect and an S confounder.   
 Figure 7 shows the upper and lower limits of a 
confounder interval as a function of confounder size. 

Figure 7: Confounder Interval for Size S 

Confounder Interval: 
RP(E:A) = 2, P(A) = 0.25
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Some combinations of values may drive these 

equations into regions involving unacceptable values 
where the upper limit goes infinite or drops below 1, or 
where the lower limit goes below zero.   

12. DISCUSSION 
These relationships may be useful in educating data 

analysts and journalists on the possible influence of 
unobserved confounders even though these relation-
ships just restate the size of the original association, 
RP(E:A), in different terms (since there is not yet any 
objective basis for selecting confounder sizes).   

Furthermore, these relationships may be useful in 
setting rules or standards for publication by journal 
editors.  They may even be useful in modeling to set a 
minimum criterion for including a predictor so as to 
avoid including predictors that may be statistically 

significant, but are too weak to withstand nullification 
by a confounder of a given size.   

A deeper question involves the ability of relative 
prevalence to measure the causal status of the predictor.  
More work may be needed on this foundational issue.  

13. RECOMMENDATIONS 
The following are recommendations for handling count-
based associations obtained from observational studies.   
1. Those presenting relative risks or prevalences 

should indicate the minimum size S confounder that 
would nullify the observed association.  

2. Those using relative risks or prevalences to make 
decisions for publication or for action should set 
minimum standards of the confounder size which an 
acceptable association must resist without being nul-
lified or reversed – or what size confounder one 
should use in giving confounder intervals.   

3. More analysis is needed on the use of a double ratio 
such as relative risk to measure the strength of evi-
dence on the causal status of the predictor.  
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 On web at http://bayes.cs.ucla.edu/frl_papers.html. 
18

 On web at www.agcom.purdue.edu/AgCom/homepages/tally 
/Science%20in%20Society%20web/96Taubesarticle.html 
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APPENDIX A: REGRESSION COEFFICIENTS 

The following are four forms of the slope b1(E|A,B) in a 
non-interactive OLS regression model involving binary 
data.  These four forms are taken from Appendix E in 
Schield and Burnham (2003).   

The first form involves differences of double ratios. 

A1. 
)]:():([1

)]:():([):(
1 BADPABDP

BEDPABDPAEDP
b

•

•

−
−= .  

The denominator is never negative.   

 

The second form involves the attributable fraction in 
the population.  This is closely related to Phi.  See 
Schield and Burnham (2002).   

A2 
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The third and fourth forms involve double ratios.   

A3. Double-ratio form with P(B|A') in numerator: 

]1):()(][1):()([

)]}:()(:()'|([]1):()'|()[:(){(
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A4. Double-ratio form, P(A) and P(B) in numerator: 

]1):()(][1):()(][1):()()}[:():([1{

)]}:():()([]1):()():()()[:(){(
1 +•+•+••−

••−+•+•
=

BEXRPBBPAEXRPAPABXRPAPBADPABDP

ABXRPBEXRPBPBEXRPBPABXRPAPAEXRPEP
b

 
Cases with zero denominators are ignored.  Non-zero 
denominators are always positive when XRP(B:A), 
XRP(E:B) and XRP(E:A) are positive. 
 
To allow validation using Derive, the following appen-
dices involve a proper-name notation described in Ap-
pendix B of Schield and Burnham (2003).   
 
Note that in Appendix B, relationships are worked out 
two ways.  First, by treating P(B) as a variable, B.  
There is no rule saying that standardization must be 
done using the common prevalence, P(B).  Second by 
using the common prevalence, P(B).  This gives both 
subgroups the same mixture as the combined group so 
P(B|A) = P(B|A') = P(B).  
 
Thus B2d comes from B2c, B3d from B3c, B4e from 
B4d, B5e from B5d, B6b from B6a, B6e from B6d, B7b 
from B7a, B8b from B8a and B9b from B9a.   

APPENDIX B:  EXPECTED (b1) 

Values expected when XP=XQ=B (using an ‘eB’ suf-
fix) and when XP=XQ=XF (using an ‘eXF’ suffix).  

B1.   E(A, B) = AF + b1(A-AH) + b2(B-BH)19 

B2a. AP = E(A=1, B=XP) 
B2b. AP = AF + b1(1-AH) + b2(XP-BH) 
B2c. APeB = AF + b1�AG + b2(B-BH) 
B2d. APeXF = AF + b1�AG 

B3a. AQ = E(A=0, B=XQ) 
B3b. AQ = AF + b1(0-AH) + b2(XQ-BH) 
B3c. AQeB = AF - b1�AH + b2(B-BH) 
B3d. AQeXF = AF - b1�AH 

B4a.  AFeB = APeB�AH + AQeB�AG 
B4b.  AFeB = [AF + b1�AG + b2(B-BH)] AH  

  + [AF - b1�AH + b2(B-BH)] AG 
B4c. AFeB = [AF + b1(1-AH) + b2(B-BH)] AH  

  + [AF - b1�AH + b2(B-BH)] (1-AH) 
B4d.  AFeB = AF + b2(B-BH) 
B4e.  AFeXF = AF 

B5a. AP-AQ = [AF + b1(1-AH) + b2(XP-BH)]  
   - [AF + b1(0-AH) + b2(XQ-BH)] 

B5b. AP-AQ = + b1 + b2(XP-XQ)  
B5c. APeB - AQeb = [AF + b1�AG + b2(B-BH)]  

    - [AF - b1�AH + b2(B-BH)] 
B5d. APeB  -  AQeB  =  b1(AG+AH) = b1 
B5e. APeXF - AQeXF =  b1 

B6a. ARREeB = APeB / AQeB =  
[AF+b1�AG+b2(B-BH)]/[AF-b1�AH + b2(B-BH)] 

B6b. ARREeXF= APeXF / AQeXF  
  = [AF + b1�AG] / [AF - b1�AH] 

B6c.  ARREeB -1 = {[AF + b1�AG + b2(B-BH)]  
    / [AF - b1�AH + b2(B-BH)]} – 1 

B6d. ARREeB -1 = b1 / [AF - b1�AH + b2(B-BH)]  
B6e.  ARREeXF-1 = b1 / (AF - b1�AH)  

B7a. APeB/AFeB=[AF+b1�AG+b2(B-BH)] 
      /[AF+ b2(B-BH)] 
B7b. APeXF/AFeXF = [AF + b1(1-AH)] / AF 

B8a. AFeB/AQeB= [AF+ b2(B-BH)] 
     / [AF - b1�AH + b2(B-BH)] 
B8b. AFeXF/AQeXF = AF/[AF - b1�AH)] 

B9a. AAFPeB = (AFeB-AQeB)/AFeB  
     = b1�AH /[AF+ b2(B-BH)] 
B9b. AAFPeXF = b1�AH/AF  

If B has no effect on the A-E relationship (b2 = 0), then 
ARREeB = ARREeXF and the choice of B=BH makes 
no difference.  But if B has an effect (b2 ≠ 0) on E, then 
the choice of B does make a difference.   
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  E(A,B) = b0 + b1�A + b2�B.    AF = b0 + b1�AH + b2�BH 
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APPENDIX C:  AF/AQeXF 

Expanding Eq B6b using b1 from Eq. A4 gives: 

C1a.   T0 = 1 + T1(T2 + T3�T4 - T3 - T4) 

C1b. T0 =  1/(AH�ARREeXF+AG) 
C1c. T1 =  1/(1-XPhi2) 
C1d. T2 = 1/(AH�ARRE + AG) 
C1e.  T3 = 1/(BH�BRRE + BG) 
C1f.  T4 = 1/(AH�XRPB + AG) 

C1g. 
2

2
2

)1)1()(1(

)1()1(

+−−
−−=

XRPBAHBH

XRPBBHAHAH
XPhi  

C2a. AF/AQ = AH�ARRE + AG20 
C2b. BF/BQ = BH�ARRE + BG 
C2c. XF/XQ = AH�XRPB + AG = BH/XQ 
C2d. AF/AQeXF = AH�ARREeXF1 + AG  

C3a. T0 = AQeXF/AF 
C3b. T2 = AQ/AF 
C3c. T3 = BQ/AF 
C3d  T4 = XQ/BH 

Only T2 depends on AP.  Define K1. 
C4a. K1 = - [1  +  T1(T3�T4 - T3 - T4)]21 
C4b. T0 = (T1�AQ/AF) - K1 
C4c. 1/T0 = 1/[(T1�AQ/AF) - K1] 
C4d. 1/T0 = (AF/AQ)/ [T1 – (K1�AF/AQ)] 
C4e.  AF/AQeXF = (AF/AQ)/[T1 - (K1�AF/AQ)] 

Special Cases: 

If K1 = 0, then  
C5a.  AF/AQeXF = (AF/AQ) / T1 
C5b.  AH�ARREeXF = [(AH�ARRE+AG)/T1] - AG 
C5c.  ARREeXF = [(ARRE+AG/AH)/T1] – AG/AH 

If T1 = 0, then  
C6a.  (AH�ARREeXF + AG) = - 1/K1 
C6b.  AH�ARREeXF = (-1/K1) - AG 
C6c.  ARREeXF = - [(1/K1) + AG]/AH 

If ARRE=1 (spurious independence where AF=AQ),  
C7a.  (AH�ARREeXF + AG) = 1 / (T1 - K1) 
C7b.  ARREeXF = {[1/(T1 - K1)] - AG}/AH 

If ARRE = 1, AH=1/2 and XPhi=0 so T1=1, then  
C8a.  ARREeXF = (1+K1)/(1 - K1) 
ARREeXF = 0 for K1=-1, 1 for K1=0 and ∞ for K1= 1. 

If ARREeXF = ARRE so AF/AQeXF = AF/AQ, then B 
has no influence on the ratio association between A and 
E as evaluated at B = XF.  Thus,  
C9a  T1 - (K1�AF/AQ)  = 1   From C4e 
C9b  (T1-1)/K1 = AF/AQ 

                                                           
20

 AH(AP/AQ)+AG) = [AH�AP + AQ�AG]/AQ = AF/AQ 
21

 K1 = -{1 + [BP/AF + XP/BH - 1]/[(1-XPhi2)(BP�XP)/(AF�BH)]} 

APPENDIX D:  ARREeXF 

Let S be the size of the confounder where BH = AH. 
D1a  Let U = 1/(AH�S + AG) 
D1b. Let V = 1/(AH/S + AG) 
D1c. XPhi2 = [AH(XRPB-1)]2/[AH(XRPB-1)+1]2 

Lower Limit:  Let BRRE = S, XRPB=S and BH = AH, 
D2a. T3 = U = T4.   
From Equation C4a:  
D2b. K1= - [1 + T1(U2-U-U)] = - [1 + (T1�U)(U-2)] 
D2c.  AF/AQeXF = (AF/AQ) 
    / {T1 + [1+ (T1�U)(U-2)](AF/AQ)} 
D2d.  AH�ARREeXF+ AG = {(AH�ARRE+AG) 
  / {T1 + [1+ (T1�U)(U-2)](AH�ARRE+AG)}} 

Upper Limit: Let BRRE=S, XRPB=1/S and BH = AH,  
D3a. T3 = U, and T4 = V 
D3b. K1 = - [1 + T1(U�V – U – V)] 
D3c.  AF/AQeXF = (AF/AQ) 
   / {T1 + [1+T1(U�V - U - V)](AF/AQ)} 
D3d.  AH�ARREeXF + AG  = (AH�ARRE + AG) 
  / {T1+[1+T1(U�V-U-V)](AH�ARRE + AG)} 

Special Cases: 
Let AH = 0.5: 
D4a. XPhi2 = (XRPB-1)2 / (XRPB+1)2  
D4b. 1-XPhi2 = 4�XRPB/[(XRPB+1)2] 
D4c. T1 = 1/(1-XPhi2) = [(XRPB+1)2]/ (4�XRPB) 
Lower Limit: 
D5a. T1Low = 1/(1-XPhi2) = [(S+1)2]/ 4S 
D5b.  ARREeXF + 1 = {(ARRE+1) 
 /{T1Low + [1+T1Low�U(U-2)][(ARRE+1)/2]}} 
Upper Limit: 
D6a. T1High = 1/(1-XPhi2) = [(1/S+1)2]/ (4/S) 
D6b.  ARREeXF +1 = (ARRE+1) 
 / {T1Hi + [1 + T1Hi(U�V-U-V)][(ARRE+1)/2]} 
 
Let AH = 0.5 and S = 2 so U = 2/3 and V = 4/3. 
Lower Limit: 
D7a. T1Low = [(S+1)2]/ 4S = 9/8 
D7b. ARREeXF + 1 = (ARRE+1)  
  / {(9/8) + [1+(9/8)(2/3)(-4/3)][(ARRE+1)/2]} 
D7c.  ARREeXF + 1 = (ARRE+1)  
   / {(9/8) + (0)[(ARRE + 1)/2]} 
So when ARRE = 2,  
D7d. ARREeXF = {3/(9/8)} -1 = (8/3)-1 = 1.67 

Upper Limit: 
D8a. T1High = [(1/S+1)2]/ (4/S) = (9/4)/(4/2) = 9/8 
D8b.  ARREeXF +1 = (ARRE+1)  
 / {(9/8) + [1 + (9/8)(8/9-2/3-4/3)][(ARRE+1)/2]} 
D8c.  ARREeXF +1 = (ARRE+1)  
  / {(9/8) - (1/4)[(ARRE+1)/2]} 
So when ARRE = 2,  
D8d. ARREeXF = {3/[9/8-3/8]} -1 = 4 - 1 = 3.0 

For a size S=2 confounder, the confounder interval for 
ARRE = 2 with AH = 0.5 is [1.67, 3.0].    
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