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Abstract

The direct effect of one event on another can be
defined and measured by holding constant all inter-
mediate variables between the two. Indirect effects
present conceptual and practical difficulties (in
nonlinear models), because they cannot be isolated
by holding certain variables constant. This paper
presents a new way of defining the effect transmitted
through a restricted set of paths, without controlling
variables on the remaining paths. This permits the
assessment of a more natural type of direct and
indirect effects, one that is applicable in both linear
and nonlinear models and that has broader policy-
related interpretations. The paper establishes
conditions under which such assessments can be
estimated consistently from experimental and non-
experimental data, and thus extends path-analytic
techniques to nonlinear and nonparametric models.

Keywords: Direct effect, Causal inference, Coun-
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1. Introduction

The distinction between total, direct, and indirect
effects is deeply entrenched in causal conversations,
and attains practical importance in many applica-
tions, including policy decisions, legal definitions
and health care analysis. Structural equation mod-
eling (SEM) (Goldberger 1972), which provides a
methodology of defining and estimating such effects,
has been restricted to linear analysis, and no compa-
rable methodology has been devised to extend these
capabilities to models involving nonlinear dependen-
cies,! as those commonly used in AI applications
(Hagenaars 1993, p. 17).

The causal relationship that is easiest to interpret,
define and estimate is the total effect. Written as
P(Y, =y), the total effect measures the probability
that response variable Y would take on the value y
when X is set to z by external intervention.? This

LA notable exception is the counterfactual analysis of
Robins and Greenland (1992) which is applicable to nonlinear
models, but does not incorporate path-analytic techniques.

2The subscripted notation Y is borrowed from the
potential-outcome framework of Rubin (1974). Pearl (2000)
used, interchangeably, Pr(y), P(y|do(z)), P(y|%), and P(yz),

probability function is what we normally assess in
a controlled experiment in which X is randomized
and in which the distribution of Y is estimated for
each level z of X.

In many cases, however, this quantity does not
adequately represent the target of investigation and
attention is focused instead on the direct effect of X
on Y. The term “direct effect” is meant to quantify
an influence that is not mediated by other variables
in the model or, more accurately, the sensitivity of ¥’
to changes in X while all other factors in the analysis
are held fixed. Naturally, holding those factors fixed
would sever all causal paths from X to Y with the
exception of the direct link X — Y, which is not
intercepted by any intermediaries.

Indirect effects cannot be defined in this manner,
because it is impossible to hold a set of variables
constant in such a way that the effect of X on Y
measured under those conditions would circumvent
the direct pathway, if such exists. Thus, the defini-
tion of indirect effects has remained incomplete, and,
save for asserting inequality between direct and to-
tal effects, the very concept of “indirect effect” was
deemed void of operational meaning (Pearl 2000, p.
165).

This paper shows that it is possible to give an op-
erational meaning to both direct and indirect effects
without fixing variables in the model, thus extend-
ing the applicability of these concepts to nonlinear
and nonparametric models. The proposed general-
ization is based on a more subtle interpretation of
“effects”, here called “descriptive” (see Section 2.2),
which concerns the action of causal forces under nat-
ural, rather than experimental conditions, and pro-
vides answers to a broader class of policy-related
questions. This interpretation yields the standard
path-coefficients in linear models, but leads to differ-
ent formal definitions and different estimation proce-
dures of direct and indirect effects in nonlinear mod-
els.

Following a conceptual discussion of the descrip-
tive and prescriptive interpretations (Section 2.2),
Section 2.3 illustrates their distinct roles in decision-
making contexts, while Section 2.4 discusses the de-
scriptive basis and policy implications of indirect

and showed their equivalence to probabilities of subjunctive
conditionals: P((X =) O— (Y =y)) (Lewis 1973).
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effects. Sections 3.2 and 3.3 provide, respectively,
mathematical formulation of the prescriptive and de-
scriptive interpretations of direct effects, while Sec-
tion 3.4 establishes conditions under which the de-
scriptive (or “natural”) interpretation can be esti-
mated consistently from either experimental or non-
experimental data. Sections 3.5 and 3.6 extend the
formulation and identification analysis to indirect ef-
fects. In Section 3.7, we generalize the notion of
indirect effect to path-specific effects, that is, effects
transmitted through any specified set of paths in the
model.

2. Conceptual Analysis

2.1 Direct Versus Total Effects

A classical example of the ubiquity of direct effects
(Hesslow 1976) tells the story of a birth-control pill
that is suspect of producing thrombosis in women
and, at the same time, has a negative indirect effect
on thrombosis by reducing the rate of pregnancies
(pregnancy is known to encourage thrombosis). In
this example, interest is focused on the direct effect
of the pill because it represents a stable biological
relationship that, unlike the total effect, is invari-
ant to marital status and other factors that may af-
fect women’s chances of getting pregnant or of sus-
taining pregnancy. This invariance makes the direct
effect transportable across cultural and sociological
boundaries and, hence, a more useful quantity in
scientific explanation and policy analysis.

Another class of examples involves legal disputes
over race or sex discrimination in hiring. Here, nei-
ther the effect of sex or race on applicants’ quali-
fication nor the effect of qualification on hiring are
targets of litigation. Rather, defendants must prove
that sex and race do not directly influence hiring
decisions, whatever indirect effects they might have
on hiring by way of applicant qualification. This is
made quite explicit in the following court ruling:

“The central question in any employment-
discrimination case is whether the em-
ployer would have taken the same action
had the employee been of a different race
(age, sex, religion, national origin etc.) and
everything else had been the same.” (Car-
son versus Bethlehem Steel Corp., 70 FEP
Cases 921, 7th Cir. (1996), Quoted in
Gastwirth 1997.)

Taking this criterion as a guideline, the direct effect
of X on Y (in our case X=gender Y =hiring) can
roughly be defined as the response of Y to change

in X (say from X = z* to X = z) while keeping
all other accessible variables at their initial value,
namely, the value they would have attained under
X = z*.? This doubly-hypothetical criterion will be
given precise mathematical formulation in Section
3., using the language and semantics of structural
counterfactuals (Pearl 2000; chapter 7).

As a third example, one that illustrates the policy-
making ramifications of direct and total effects, con-
sider a drug treatment that has a side effect —
headache. Patients who suffer from headache tend
to take aspirin which, in turn may have its own ef-
fect on the disease or, may strengthen (or weaken)
the impact of the drug on the disease. To deter-
mine how beneficial the drug is to the population
as a whole, under existing patterns of aspirin usage,
the total effect of the drug is the target of analysis,
and the difference P(Y, = y) — P(Y,» = y) may
serve to assist the decision, with x and z* being any
two treatment levels. However, to decide whether
aspirin should be encouraged or discouraged during
the treatment, the direct effect of the drug on the dis-
ease, both with aspirin and without aspirin, should
be the target of investigation. The appropriate ex-
pression for analysis would then be the difference
P(Y,, =y) — P(Yy+, = y), where z stands for any
specified level of aspirin intake.

In linear systems, direct effects are fully specified
by the corresponding path coefficients, and are inde-
pendent of the values at which we hold the the inter-
mediate variables (Z in our examples). In nonlinear
systems, those values would, in general, modify the
effect of X on Y and thus should be chosen care-
fully to represent the target policy under analysis.
This lead to a basic distinction between two types
of conceptualizations: prescriptive and descriptive.

2.2 Descriptive Versus Prescriptive Inter-
pretation

We will illustrate this distinction using the
treatment-aspirin example described in the last sec-
tion. In the prescriptive conceptualization, we ask
whether a specific untreated patient would improve
if treated, while holding the aspirin intake fixed at
some predetermined level, say Z = z. In the descrip-
tive conceptualization, we ask again whether the un-
treated patient would improve if treated, but now
we hold the aspirin intake fixed at whatever level
the patient currently consumes under no-treatment
condition. The difference between these two concep-

3Robins and Greenland (1992) have adapted essentially
the same criterion (phrased differently) for their interpreta-
tion of “direct effect” in epidemiology.
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tualizations lies in whether we wish to account for
the natural relationship between the direct and the
mediating cause (that is, between treatment and as-
pirin) or to modify that relationship to match policy
objectives. We call the effect computed from the de-
scriptive perspective the natural effect, and the one
computed from the prescriptive perspective the con-
trolled effect.

Consider a patient who takes aspirin if and only
if treated, and for whom the treatment is effective
only when aspirin is present. For such a person, the
treatment is deemed to have no natural direct ef-
fect (on recovery), because, by keeping the aspirin
at the current, pre-treatment level of zero, we ensure
that the treatment effect would be nullified. The
controlled direct effect, however, is nonzero for this
person, because the efficacy of the treatment would
surface when we fix the aspirin intake at non-zero
level. Note that the descriptive formulation requires
knowledge of the individual natural behavior—in
our example, whether the untreated patient actu-
ally uses aspirin—while the prescriptive formulation
requires no such knowledge.

This difference becomes a major stumbling block
when it comes to estimating average direct effects in
a population of individuals. At the population level,
the prescriptive formulation is pragmatic; we wish
to predict the difference in recovery rates between
treated and untreated patients when a prescribed
dose of aspirin is administered to all patients in the
population—the actual consumption of aspirin un-
der uncontrolled conditions need not concern us. In
contrast, the descriptive formulation is attributional;
we ask whether an observed improvement in recov-
ery rates (again, between treated and untreated pa-
tients) is attributable to the treatment itself, as op-
posed to preferential use of aspirin among treated
patients. To properly distinguish between these two
contributions, we therefore need to measure the im-
provement in recovery rates while making each pa-
tient take the same level of aspirin that he/she took
before treatment. However, as Robins and Green-
land (1992) pointed out, such control over individual
behavior would require testing the same group of pa-
tients twice (i.e., under treatment and no treatment
conditions), and cannot be administered in experi-
ments with two different groups, however random-
ized. (There is no way to determine what level of
aspirin an untreated patient would take if treated,
unless we actually treat that patient and, then, this
patient could no longer be eligible for the untreated
group.) Since repeatable tests on the same individu-
als are rarely feasible, the descriptive measure of the
direct effect is not generally estimable from standard

experimental studies. In Section 3.4 we will analyze
what additional assumptions are required for consis-
tently estimating this measure, the average natural
direct effect, from either experimental or observa-
tional studies.

2.3 Policy Implications of the Descriptive
Interpretation

Why would anyone be interested in assessing the av-
erage natural direct effect? Assume that the drug
manufacturer is considering ways of eliminating the
adverse side-effect of the drug, in our case, the
headache. A natural question to ask is whether
the drug would still retain its effectiveness in the
population of interest. The controlled direct effect
would not give us the answer to this question, be-
cause it refers to a specific aspirin level, taken uni-
formly by all individuals. Our target population is
one where aspirin intake varies from individual to
individual, depending on other factors beside drug-
induced headache, factors which may also cause the
effectiveness of the drug to vary from individual to
individual. Therefore, the parameter we need to as-
sess is the average natural direct effect, as described
in the Subsection 2.2.

This example demonstrates that the descriptive
interpretation of direct effects is not purely “de-
scriptive”; it carries a definite operational implica-
tions, and answers policy-related questions of prac-
tical significance. Moreover, note that the policy
question considered in this example cannot be repre-
sented in the standard syntax of do(z) operators—it
does not involve fixing any of the variables in the
model but, rather, modifying the causal paths in
the model. Even if “headache” were a genuine vari-
able in our model, the elimination of drug-induced
headache is not equivalent to setting “headache” to
zero, since a person might get headache for reason
other than the drug. Instead, the policy option
involves the de-activation of the causal path from
“drug” to “headache”.

In general, the average natural direct effect would
be of interest in evaluating policy options of a more
refined variety, ones that involve, not merely fixing
the levels of the variables in the model, but also
determining how these levels would influence one
another. Typical examples of such options involve
choosing the manner (e.g., instrument, or timing) in
which a given decision is implemented, or choosing
the agents that should be informed about the de-
cision. A firm often needs to assess, for example,
whether it would be worthwhile to conceal a certain
decision from a competitor. This amounts, again, to
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evaluating the natural direct effect of the decision
in question, unmediated by the competitor’s reac-
tion. Theoretically, such policy options could con-
ceivably be represented as (values of) variables in a
more refined model, for example one where the con-
cept “the effect of treatment on headache” would
be given a variable name, and where the manufac-
turer decision to eliminate side-effects would be rep-
resented by fixing this hypothetical variable to zero.
The analysis of this paper shows that such unnat-
ural modeling techniques can be avoided, and that
important nonstandard policy questions can be han-
dled by standard models, where variables stands for
directly measurable quantities.

2.4 Descriptive Interpretation of Indirect
Effects

The descriptive conception of direct effects can eas-
ily be transported to the formulation of indirect
effects; oddly, the prescriptive formulation is not
transportable. Returning to our treatment-aspirin
example, if we wish to assess the natural indirect ef-
fect of treatment on recovery for a specific patient,
we withhold treatment and ask, instead, whether
that patient would recover if given as much aspirin
as he/she would have taken if he/she had been un-
der treatment. In this way, we insure that whatever
changes occur in the patient’s condition are due to
treatment-induced aspirin consumption and not to
the treatment itself. Similarly, at the population
level, the natural indirect effect of the treatment is
interpreted as the improvement in recovery rates if
we were to withhold treatment from all patients but,
instead, let each patient take the same level of as-
pirin that he/she would have taken under treatment.
As in the descriptive formulation of direct effects,
this hypothetical quantity involves nested counter-
factuals and will be identifiable only under special
circumstances.

The prescriptive formulation has no parallel in in-
direct effects, for reasons discussed in the introduc-
tion section; there is no way of preventing the di-
rect effect from operating by holding certain vari-
ables constant. We will see that, in linear systems,
the descriptive and prescriptive formulations of di-
rect effects lead, indeed, to the same expression in
terms of path coefficients. The corresponding lin-
ear expression for indirect effects, computed as the
difference between the total and direct effects, coin-
cides with the descriptive formulation but finds no
prescriptive interpretation.

The operational implications of indirect effects,
like those of natural direct effect, concern nonstan-
dard policy options. Although it is impossible, by

controlling variables, to block a direct path (i.e., a
single edge), if such exists, it is nevertheless possi-
ble to block such a path by more refined policy op-
tions, ones that deactivate the direct path through
the manner in which an action is taken or through
the mode by which a variable level is achieved. In
the hiring discrimination example, if we make it ille-
gal to question applicants about their gender, (and
if no other indication of gender are available to the
hiring agent), then any residual sex preferences (in
hiring) would be attributable to the indirect effect
of sex on hiring. A policy maker might well be in-
terested in predicting the magnitude of such pref-
erences from data obtained prior to implementing
the no-questioning policy, and the average indirect
effect would then provide the sought for prediction.
A similar refinement applies in the firm-competitor
example of the preceding subsection. A firm might
wish to assess, for example, the economical impact
of bluffing a competitor into believing that a cer-
tain decision has been taken by the firm, and this
could be implemented by (secretly) instructing cer-
tain agents to ignore the decision. In both cases, our
model may not be sufficiently detailed to represents
such policy options in the form of variable fixing
(e.g., the agents may not be represented as inter-
mediate nodes between the decision and its effect)
and the task amounts then to evaluating the aver-
age natural indirect effects in a coarse-grain model,
where a direct link exists between the decision and
its outcome.

3. Formal Analysis

3.1 Notation

Throughout our analysis we will let X be the control
variable (whose effect we seek to assess), and let YV’
be the response variable. We will let Z stand for the
set of all intermediate variables between X and Y
which, in the simplest case considered, would be a
single variable as in Figure 1(a). Most of our results
will still be valid if we let Z stand for any set of
such variables, in particular, the set of Y’s parents
excluding X.

We will use the counterfactual notation Yz (u) to
denote the value that ¥ would attain in unit (or sit-
uation) U = u under the control regime do(X = z).
See Pearl (2000, Chapter 7) for formal semantics of
these counterfactual utterances. Many concepts as-
sociated with direct and indirect effect require com-
parison to a reference value of X, that is, a value
relative to which we measure changes. We will des-
ignate this reference value by x*.
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3.2 Controlled Direct Effects (Review)

Definition 1 (Controlled wunit-level
qualitative)

direct-effect;

A wvariable X is said to have a controlled direct
effect on variable Y in model M and situation U = u
if there exists a setting Z = z of the other variables
in the model and two values of X,x* and x, such
that

Ym*z(u) # Yacz(u) (1)

In words, the value of Y under X = z* differs from
its value under X = x© when we keep all other vari-
ables Z fixed at z. If condition (1) is satisfied for
some z, we say that the transition event X = x has
a controlled direct-effect on'Y , keeping the reference
point X = x* implicit.

Clearly, confining Z to the parents of Y (excluding
X) leaves the definition unaltered.

Definition 2 (Controlled wunit-level
quantitative)

Given a causal model M with causal graph G, the
controlled direct effect of X =x onY inunitU = u
and setting Z = z 1is given by

direct-effect;

CDE,(z,z*;Y,u) =Y. (u) — Yy, (u) (2)

where Z stands for all parents of Y (in G) excluding
X.

Alternatively, the ratio Y, (u)/Y,«.(u), the pro-
portional difference (Y,,(u) — Y+, (u))/Ye+-(u), or
some other suitable relationship might be used to
quantify the magnitude of the direct effect; the dif-
ference is by far the most common measure, and will
be used throughout this paper.

Definition 3 (Awverage controlled direct effect)
Given a probabilistic causal model (M, P(u)), the
controlled direct effect of event X = x on'Y is de-
fined as:

CDEZ(I’,I’*; Y) = E(Ya)z - YI*Z) (3)

where the expectation is taken over u.

The distribution P(Y,, = y) can be estimated
consistently from experimental studies in which both
X and Z are randomized. In nonexperimental
studies, the identification of this distribution re-
quires that certain “no-confounding” assumptions
hold true in the population tested. Graphical cri-
teria encapsulating these assumptions are described
in Pearl (2000, Sections 4.3 and 4.4).

3.3 Natural Direct Effects: Formulation

Definition 4 (Unit-level effect;
qualitative)

An event X = x is said to have a natural direct
effect on wvariable Y in situation U = wu if the

following inequality holds

Y- (U) 7é Yz,Zm* (u) (U,) (4)

In words, the value of Y under X = z* differs from
its value under X = = even when we keep Z at the
same value (Z,+(u)) that Z attains under X = x*.

natural  direct

We can easily extend this definition from events
to variables by defining X as having a natural di-
rect effect on Y (in model M and situation U = u)
if there exist two values, z* and z, that satisfy (4).
Note that this definition no longer requires that we
specify a value z for Z; that value is determined
naturally by the model, once we specify z,z*, and
u. Note also that condition (4) is a direct literal
translation of the court criterion of sex discrimina-
tion in hiring (Section 2.1) with X = z* being a
male, X = x a female, Y = 1 a decision to hire, and
Z the set of all other attributes of individual .

If one is interested in the magnitude of the natural
direct effect, one can take the difference

and designate it by the symbol NDE(z,z*;Y,u)
(acronym for Natural Direct Effect). If we are fur-
ther interested in assessing the average of this dif-
ference in a population of units, we have:

Definition 5 (Average natural direct effect)

The average natural direct effect of event X = x on
a response variable Y, denoted NDE(x,xz*;Y), is
defined as

NDE(z,2";Y) =E(Y;,z,.) — E(Yg+) (6)

Applied to the sex discrimination example of Sec-
tion 2.1, (with z* = male, z = female, y =
hiring, z = qualifications) Eq. (6) measures the ex-
pected change in male hiring, E(Y,«), if employ-
ers were instructed to treat males’ applications as
though they were females’.

3.4 Natural Direct Effects: Identification

As noted in Section 2., we cannot generally evaluate
the average natural direct-effect from empirical data.
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Formally, this means that Eq. (6) is not reducible to
expressions of the form

P(Y,=y) or P(Y,.=y);

the former governs the causal effect of X on Y (ob-
tained by randomizing X') and the latter governs the
causal effect of X and Z on Y (obtained by random-
izing both X and 7).

We now present conditions under which such re-
duction is nevertheless feasible.

Theorem 1 (Ezperimental identification)
If there exists a set W of covariates, nondescendants
of X or Z, such that

Y. WL Z.«|W for all z and = (7)

(read: Yy, is conditionally independent of Z,«, given
W), then the average natural direct-effect is experi-
mentally identifiable, and it is given by

NDE(z,z*;Y)
= [E(Yaz|w) — E(Yye.

W)|P(Zs- = zjw) P(w)
®)

Proof
The first term in (6) can be written

E(Yx,ZE*)
= ZZE(YM|ZHC* =2, W =w)
P(Zy = 2|lW =w)P(W =w) (9)
Using (7), we obtain:
E(Yz z,.)

=3 Y E(Y,. =y|W =w)

P(Zy = 2|W =w)P(W =w)  (10)

Each factor in (10) is identifiable; E(Y,, = y|W =
w), by randomizing X and Z for each value of W,
and P(Zgz« = z|W = w) by randomizing X for each
value of W. This proves the assertion in the theo-
rem. Substituting (10) into (6) and using the law
of composition E(Y,+) = E(Y;-z,.) (Pearl 2000, p.
229) gives (8), and completes the proof of Theorem
1. O

The conditional independence relation in Eq. (7)
can easily be verified from the causal graph associ-
ated with the model. Using a graphical interpreta-
tion of counterfactuals (Pearl 2000, p. 214-5), this
relation reads:

(YILZIW)Gx, (11)

In words, W d-separates Y from Z in the graph
formed by deleting all (solid) arrows emanating from
X and Z.

Figure 1(a) illustrates a typical graph associated
with estimating the direct effect of X on Y. The
identifying subgraph is shown in Fig. 1(b), and il-
lustrates how W d-separates Y from Z. The sepa-
ration condition in (11) is somewhat stronger than
(7), since the former implies the latter for every
pair of values, z and z*, of X (see (Pearl 2000, p.
214)). Likewise, condition (7) can be relaxed in sev-
eral ways. However, since assumptions of counter-
factual independencies can be meaningfully substan-
tiated only when cast in structural form (Pearl 2000,
p. 244-5), graphical conditions will be the target of
our analysis.

SR o7l
/%7\‘Qq4 \
// \‘
/ ‘)/!\W
\ v
I
Ul\\ /r
S /o’ U2
';‘7‘,
@ (b)

Figure 1: (a) A causal model with latent variables
(U’s) where the natural direct effect can be identi-
fied in experimental studies. (b) The subgraph Gxz
illustrating the criterion of experimental identifiabil-
ity (Eq. 11): W d-separates Y from Z.

The identification of the natural direct effect from
nonezperimental data requires stronger conditions.
From Eq. (8) we see that it is sufficient to identify
the conditional probabilities of two counterfactuals:
P(Y,, =y|W = w) and P(Z,» = z|W = w), where
W is any set of covariates that satisfies Eq. (7) (or
(11)). This yields the following criterion for identi-
fication:

Theorem 2 (Nonexperimental identification)

The average natural direct-effect NDE(x,x*;Y) is
identifiable in nonexperimental studies if there exists
a set W of covariates, nondescendants of X or Z,
such that, for all values z and x we have:

(3) Yo, WL Zp|W
(i) P(Yy. = y|W = w) is identifiable

(ii5) P(Zp« = z|W = w) is identifiable

Moreover, if conditions (i)-(ii1) are satisfied, the nat-
ural direct effect is given by (8).
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Explicating these identification conditions in
graphical terms (using Theorem 4.41 in (Pearl
2000)) yields the following corollary:

Corollary 1 (Graphical identification criterion)
The average natural direct-effect NDE(z,x*;Y) is
identifiable in nonexperimental studies if there exist
four sets of covariates, Wy, W1, Ws, and W3, such
that

() (YALZ|Wo)Gxz

(i) (Y LLX[Wo, Wh)a,,

(did)

(iv)

(v) Wo, Wi, and W3 contain no descendant of X
and Wa contains no descendant of Z.

(
(
(YALZ|X, Wo, W1, Wa)a,
(

ZILX|Wo, W3)ayx

(Remark: Gy denotes the graph formed by delet-
ing (from G) all arrows emanating from X or enter-
ing Z.)

As an example for applying these criteria, consider
Figure 1(a), and assume that all variables (includ-
ing the U’s) are observable. Conditions (i)-(iv) of
Corollary 1 are satisfied if we choose:

WO = {W}, W1 = {Ul,Uz}, W2 = [7) and W3 = {U4}

or, alternatively,
WO = {UQ}, W1 = {Ul}, W2 = @ and W3 = {Ug,U4}

It is instructive to examine the form that expres-
sion (8) takes in Markovian models, (that is, acyclic
models with independent error terms) where condi-
tion (7) is always satisfied with W = 0, since Y, is
independent of all variables in the model. In Marko-
vian models, we also have the following three rela-
tionships:

since X U Z is the set of Y'’s parents,
Zge = 2) ZP (z]z*,5)P(s), (13)
Py z,. =y Zzpy|wz z|x*, s)P(s)
(14)

where S stands for the parents of Z, excluding X,
or any other set satisfying the back-door criterion
(Pearl 2000, p. 79). This yields the following corol-
lary of Theorem 1:

Corollary 2 The average natural direct effect in
Markovian models is identifiable from nonexperi-
mental data, and it is given by

NDE(z,z*;Y)

—ZZ Yz, z) —

E(Y|z", 2)|P(z]z", 5)P(s)
(15)

where S stands for any set satisfying the back-door
criterion between X and Z.

Eq. (15) follows by substituting (14) into (6) and
using the identity E(Yy+) = E(Yy+z,. ).

T
X X

Y Y
@ (b)

Figure 2: Simple Markovian models for which the
natural direct effect is given by Eq. (15) (for (a))
and Eq. (17) (for (b)).

Further insight can be gained by examining simple
Markovian models in which the effect of X on Z is
not confounded, that is,

P(Zy« = z) = P(z|z")

In such models, a simple version of which is illus-
trated in Fig. 2(b), Eq. (13) can be replace by (16)
and (15) simplifies to

Z[E(Y|$, Z) -

z

(16)

NDE(z,z*;Y) = E(Y|z*, 2)|P(z|z")

(17)

This expression has a simple interpretation as a
weighted average of the controlled direct effect
E(Y|z,z)—E(Y|z*, z), where the intermediate value
z is chosen according to its distribution under z*.

3.5 Natural Indirect Effects: Formulation

As we discussed in Section 2.4, the prescriptive for-
mulation of “controlled direct effect” has no parallel
in indirect effects; we therefore use the descriptive
formulation, and define natural indirect effects at
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both the unit and population levels. Lacking the
controlled alternative, we will drop the title “nat-
ural” from discussions of indirect effects, unless it
serves to convey a contrast.

Definition 6 (Unit-level indirect effect; qualitative)
An event X = x is said to have an indirect effect
on variable Y in situation U = u if the following
inequality holds

Ve (1) # Ve 7 () () (18)
In words, the value of Y changes when we keep X
fized at its reference level X = x* and change Z to

a new value, Z,(u), the same value that Z would
attain under X = x.

Taking the difference between the two sides of Eq.
(18), we can define the unit level indirect effect as

NIE(z,z%;Y,u) = Yoo z,(u) (@) = Yor(u) - (19)

and proceed to define its average in the population:

Definition 7 (Average indirect effect)
The average indirect effect of event X = x on vari-
able Y, denoted NIE(z,xz*;Y"), is defined as

NIE(z,2*;Y) = E(Yy~ z,) — E(Yy+) (20)

Comparing Eqs. (6) and (20), we see that the in-
direct effect associated with the transition from z*
to x is closely related to the natural direct effect as-
sociated with the reverse transition, from = to z*.
In fact, recalling that the difference E(Y,) — E(Y,+)
equals the total effect of X =z on Y,

TE(z,2*;Y) = E(Y,) — E(Y,+) (21)

we obtain the following theorem:

Theorem 3 The total, direct and indirect effects
obey the following relationships

TE(z,z*;Y) = NIE(x,2";Y) — NDE(z*,x;Y) (22)
TE(x,z*;Y)=NDE(z,z";Y) - NIE(z",z;Y) (23)

In words, the total effect (on Y') associated with
the transition from x* to x is equal to the difference
between the indirect effect associated with this tran-
sition and the (natural) direct effect associated with
the reverse transition, from x to x*.

As strange as these relationships appear, they pro-
duce the standard, additive relation

TE(x,z*;Y) = NIE(z,z*;Y) + NDE(z,z";Y)
(24)

when applied to linear models. The reason is clear;
in linear systems the effect of the transition from z*
to x is proportional to x—z*, hence it is always equal
and of opposite sign to the effect of the reverse tran-
sition. Thus, substituting in (22) (or (23)), yields
(24).

3.6 Natural Indirect Effects: Identification

Eqgs. (22) and (23) show that the indirect effect is
identified whenever both the total and the (natu-
ral) direct effect are identified (for all z and z*).
Moreover, the identification conditions and the re-
sulting expressions for indirect effects are identical
to the corresponding ones for direct effects (Theo-
rems 1 and 2), save for a simple exchange of the
indices  and z*. This is explicated in the following
theorem.

Theorem 4 If there exists a set W of covariates,
nondescendants of X or Z, such that
You, L Z|W (25)

for all x and z, then the average indirect-effect is
experimentally identifiable, and it is given by

NIE(z,z*;Y)
= S B 0)[P(Ze = 2lu) — P(Ze- = 2|u)]P(w)

Moreover, the average indirect effect is identified in
nonezxperimental studies whenever the following ez-
pressions are identified for all z and w:

E(Yy+ |w), P(Z, = z|lw) and P(Z,~ = z|w),
with W satisfying Eq. (25).

In the simple Markovian model depicted in Fig.
2(b), Eq. (26) reduces to

NIE(z,z*;Y) = ZE(Y|:L’*,Z)[P(Z|:L’) — P(z|z")] (27)

Contrasting Eq. (27) with Eq. (17), we see that the
expression for the indirect effect fixes X at the ref-
erence value z*, and lets z vary according to its dis-
tribution under the post-transition value of X = x.
The expression for the direct effect fixes X at x, and
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lets z vary according to its distribution under the
reference conditions X = z*.

Applied to the sex discrimination example of Sec-
tion 2.1, Eq. (27) measures the expected change in
male hiring, E(Y,-), if males were trained to ac-
quire (in distribution) equal qualifications (Z = z)
as those of females (X = x).

3.7 General Path-specific Effects

The analysis of the last section suggests that path-
specific effects can best be understood in terms of
a path-deactivation process, where a selected set of
paths, rather than nodes, are forced to remain inac-
tive during the transition from X = z* to X = z.
In Figure 3, for example, if we wish to evaluate
the effect of X on Y transmitted by the subgraph
g: X > Z —> W — Y, we cannot hold Z or W
constant, for both must vary in the process. Rather,
we isolate the desired effect by fixing the appropri-
ate subset of arguments in each equation. In other
words, we replace ¢ with z* in the equation for W,
and replace z with z*(u) = Z,+(u) in the equation
for Y. This amounts to creating a new model, in
which each structural function f; in M is replaced
with a new function of a smaller set of arguments,
since some of the arguments are replaced by con-
stants. The following definition expresses this idea
formally.

Definition 8 (path-specific effect)

Let G be the the causal graph associated with model
M, and let g be an edge-subgraph of G containing
the paths selected for effect analysis. The g-specific
effect of x on Y (relative to reference x*) is defined
as the total effect of x on'Y in a modified model My
formed as follows. Let each parent set PA; in G be
partitioned into two parts

PA; ={PAi(g), PAi(9)} (28)

where PA;(g) represents those members of PA; that
are linked to X; in g, and PA;(g) represents the
complementary set, from which there is no link to
X; in g. We replace each function f;(pa;,u) with a
new function f(pa;,u;g), defined as

i (pai,us; g) = fi(pai(g), pai(9),u)  (29)
where paf(g) stands for the values that the variables
in PA;(g) would attain (in M and u) under X = z*
(that is, pai(g) = PAi(g)s+). The g-specific effect
of x on'Y, denoted SE,(x,z*;Y,u)n is defined as

SEq(z,z";Y,u)y = TE(z, 2" Y, u)m; . (30)

X X
2 \
w Z Wt— 907
\ /\ i
.Y Y
@) (b)

Figure 3: The path-specific effect transmitted
through X - Z - W — Y (heavy lines) in (a)
is equal to the total effect transmitted through the
model in (b), treating z* and z*(u) as constants.
(By convention, u is not shown in the diagram.)

We demonstrate this construction in the model of
Fig. 3 which stands for the equations:

z = fz(z,uz)
w fw(Z,l',Uw)

y = fy(Z,U),Uy)

where uz,uw, and uy are the components of u that
enter the corresponding equations. Defining z*(u) =
fz(z*,uz), the modified model M reads:

z = fz(z,uz)
w = fw(z, 2%, uw) and
y = fr(z"(u),w,uy) (31)

and our task amounts to computing the total effect
of zonY in M, or

TE(z,z*;Y, u)M; =
= fr(@*(w), fw(fz(z,uz), 2", uw), uy)
Y (u) (32)

It can be shown that the identification conditions
for general path-specific effects are much more strin-
gent than those of the direct and indirect effects.
The path-specific effect shown in Figure 3, for ex-
ample, is not identified even in Markovian models.
Since direct and indirect effects are special cases
of path-specific effects, the identification conditions
of Theorems 2 and 3 raise the interesting question
of whether a simple characterization exists of the
class of subgraphs, g, whose path-specific effects are
identifiable in Markovian models. I hope inquisitive
readers will be able to solve this open problem.
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4. Conclusions

This paper formulates a new definition of path-
specific effects that is based on path switching, in-
stead of variable fixing, and thus extends the inter-
pretation and evaluation of direct and indirect ef-
fects to nonlinear models. It is shown that, in non-
parametric models, direct and indirect effects can be
estimated consistently from both experimental and
nonexperimental data, provided certain conditions
hold in the causal diagram. Markovian models al-
ways satisfy these conditions. Using the new defi-
nition, the paper provides an operational interpre-
tation of indirect effects, the policy significance of
which was deemed enigmatic in recent literature.

On the conceptual front, the paper uncovers a
class of nonstandard policy questions that cannot be
formulated in the usual variable-fixing vocabulary
and that can be evaluated, nevertheless, using the
notions of direct and indirect effects. These policy
questions concern redirecting the flow of influence
in the system, and generally involve the deactiva-
tion of existing influences among specific variables.
The ubiquity and manageability of such questions in
causal modeling suggest that value-assignment ma-
nipulations, which control the outputs of the causal
mechanism in the model, are less fundamental to the
notion of causation than input-selection manipula-
tions, which control the signals driving those mech-
anisms.
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