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Abstract 
This paper demonstrates a resampling-based method for sensitivity analysis, to quantify the risk that a hypothesis test 

result may be in error, as a consequence of a confounder’s influence.  Due to confounding, test statistics that apparently 

occur on the tail of the null distribution, and so are “significant”, may in fact be in non-critical regions—if the null 

distribution is corrected to reflect the confounder’s impact on sample measurements.  The proposed method is 

analogous to creating a power curve, based on the varying risks of Type II error depending on the relative proximity of 

the true population mean to the null mean.   Similarly, we display varying risks of reaching false positive conclusions, 

due to confounding, depending on the relative severity of the bias.   The proposed method is introduced in the context 

of a multi-stage experiment, which is intended to illustrate the general conditions for using the method, and showing 

how to apply it.   

 

Key Words: Resampling, simulation, confounders, sensitivity analysis 

 

 

1.  Introduction and Model Description 

 
This paper demonstrates how resampling techniques can be used to assess the potential impact of suspected 

confounding on the results of a hypothesis test.  The focus of the proposed method is a posteriori.   Where possible, 

good experimental designs (such as decisions on sample size and/or blocking) are clearly recommended, but controlled 

experiments are not always possible.  Even where they are possible, a new or previously unknown confounding factor 

may be identified after the data are collected.   

 

A preliminary version of the resampling-based method described here was developed in the context of research by the 

author on a certain commercial tool used for evaluating critical thinking.  Resampling procedures were used to model 

the instrument’s susceptibility to confounding, which might explain some seemingly contradictory results found in the 

literature where that instrument has been used (Goodman 2008).  The present paper is intended to generalize and 

formalize the basic methods introduced in that cited case.  

    

By applying the methods proposed here, one can generate a set of conditional probabilities, of the sort illustrated 

below.   The following table and figure display the varying risks of reaching false positive conclusions, in consequence 

of varying possible severities of confounding effects that are suspected to be present.  (It is presumed that the exact 

severities of these effects, if any, are not specifically known.)   The type of output described here is analogous to 

creating a power curve, based on the varying risks of Type II error depending on the relative proximity of the true 

population mean to the null mean (although the true distance is probably unknown).   Analogously, we here display the 

varying risks of reaching false positive conclusions, due to the relative severities of confounding effects that are 

suspected to be present.   
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Figure 1:  Possible Output Formats for Analyses of Sensitivity to Confounding 

 

In the graph on the right, the particular x scale depends on the causal, confounding factors whose presence is suspected.  

There is no standard scale to fit all cases.  Often, a bit of confounding can be tolerated—namely, when the probability 

of a false positive test result is just about what we expect (i.e., approximately equal to ).   As the confounding severity 

increases, then the effective, true value of  will start to increase, meaning that there is a greater probability of a false 

positive result than the researcher may realize.   For example, in the figure, if the extent of confounding is 0.15, then 

when the p-value is calculated (based on conventional—but flawed—assumptions about H0 ) the calculated p-value will 

appear to be less than (  = 0.05) 9% of the time, so 9% is the true, effective value of alpha for the test.   

 

2.  Literature Note 

 
Important issues of how (and why) to assess the sensitivity of test results to unmeasured confounders (or to “adjust” for 

their effects) have been raised in a long literature— particularly for research (e.g. observational and epidemiological) 

where rigid controls and randomization are not feasible.  A classical example is found in Cornfield’s 1959 work on 

smoking and lung cancer (cited in Steenland & Greenland, 2004).  Addressing the possibility that the apparently strong 

correlation between those two variables could be due just to confounding, Cornfield determined that this probability is 

remotely small.   

 

However, as lamented by Sander Greenland (a major contributor to this literature) (2005), the analysis of potential bias 

by confounding “has never taken root in basic statistics teaching and is hence uncommon” in many important 

applications.   More often, a few relevant “study limitations” related to possible confounding are discussed informally 

and qualitatively in authors’ papers.  Possibly contributing to this state of affairs is the complexity of trying, in practice, 

to formally parameterize the nature or impact of a suspected confounder (let alone of multiple suspected confounders), 

and of applying some of the analytical models suggested in the literature.   

 

This paper proposes a fresh, hands-on approach.  While generally in the class of methods based on sensitivity analyses 

(compare Lin et al, 1998, Margolis et al, 1999, and Schneeweiss, 2006), it hopefully can be perceived as more readily 

adaptable, in practice, by researchers in various fields, to encourage more widespread analysis of possible confounder 

bias in one’s research. 

 

3.  Purpose and Research Questions 

 
The purpose of the research is to begin to formalize and generalize the procedures described in the introduction for 

measuring and reporting the sensitivity of particular hypothesis tests to confounding due to causal factors whose 
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existence and potential impacts are suspected.  Based on real, experimental data that were collected for this purpose, it 

was examined (a) how well does the proposed model fit the data, and (b) what does the model tell us about the 

experimental results that might not be obvious in any case, without recourse to the new model. 

 

4.  Methods 

 

4.1 Multi-stage Approach 
The following multi-stage approach was applied:  (1) An actual experiment leading to (2) a hypothesis test was 

conducted—but with a simulated “storyline” to model how confounding might enter, unknown, into the measurements, 

thus invalidating the test results.  (3) Then a “meta-experiment” was conducted, to confirm that confounding did indeed 

bias the previous experimental results.  (4) Given this confirmation of confounding, a procedure was developed to 

assess the test’s sensitivity (in (2)) to precisely the type of confounding that was identified.  That is, how much of the 

confounding effect would have been sufficient to bias the original experiment?  The overall structure of the multi-stage 

experiment is illustrated below. 

 

 

 
 

Figure 2:  Basic Structure of the Multi-stage Experiment 

 

4.2 Step One 
Eighty objects (snowballs, comprising Batch 1 in the figure) were constructed with fresh, pliable snow, to match as 

closely as possible the dimensions of an exemplar.  Each object’s circumference was measured and recorded, using the 

method of wrapping a (non-stretchable) cord around the circumference, and then measuring the length of the used 

portion of the cord against a ruler.   By the next day, the quality of the snow had changed, becoming less pliable.  The 

“storyline” hypothesis was that, if snowballs were constructed with the day-old snow exactly as with the original, fresh 

snow in Batch 1, the measured circumferences should not be significantly changed.   

 

4.3 Step Two 
A new batch (Batch 2t) of 80 snowballs was then constructed, using the now-older and less pliable snow, to match as 

closely as possible the same dimensions as in Batch 1.  Each object’s circumference was measured and recorded as in 

Batch 1—except this time wrapping an elasticized cord (such as used in sewing) around the circumference of each 

object, and then measuring the length of the used portion of the cord against a ruler.    For the storyline:  Presume that 

the experimenter was unaware that the cord was different from the one used for Batch 1, or else did not realize that it 

might matter.  A conventional test was used to compare the mean circumferences (as measured) for the two batches of 
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objects, Batch 1 and Batch 2t.  Not surprisingly (stepping outside the storyline), an apparent difference in means was 

found between the two batches. 

   

 

4.4 Step Three 
Outside the storyline, we presume that the apparent difference in means between Batches 1 and 2t was really due to 

confounding introduced by the change in cords used for measuring.  But it is conceivable that the mean circumferences 

really did change between the two measuring sessions.  Batch 2c was therefore constructed as a control, to ensure that 

no real change did occur in the actual circumferences being measured.   Namely, 80 more objects (snowballs) were 

created under similar conditions to Batch 2t, but this time the original, non-stretchable cord was used for measuring 

circumferences.  Not surprisingly, the mean circumferences were the same as for the original batch.  

 

4.5 Step Four 
(a) Having now established that confounding likely caused the apparent difference in means between Batches 1 and 2t, 

external data were sought to help quantify the degree of confounding error that might have been introduced in the first 

(“storyline”) experiment.  Namely, a constant, snowball-size circumference was measured 10 times using the original 

cord method, and then 10 times with the elasticized cord method; the discrepancy between the average apparent 

measurements by each method was recorded. 

 

(b) Given the assessment (in (a)) of possible measurement error, a resampling-based method was used to see how 

sensitive the original hypothesis test (in step two) would be to generating false positive results, given possible degrees 

of confounding due to the measurement error just discussed.   In particular, it was assessed whether the apparent false 

positive in the storyline experiment would be a likely outcome, given the possible degrees of confounding..  

 

 
 

Figure 3:  The Simulation Model 

 

4.6 The Simulation Model 
The basis for Step 4, above, was the author’s simulation model, as partially illustrated in Figure 3.  Data for the 

original, Batch 1 sample comprised the left column of the figure.  New Batch 1 samples can be simulated based on 

sampling with replacement from the original data set (since the latter is presumed to be the best available indicator of 

the initial population distribution).  The second column of the figure (partly) shows one such resample from the original 

data.  On the null hypothesis for comparing the mean circumferences in Batch 1 and Batch 2, the Batch 2 sample could 

be simulated by another resampling (without adjustments) from the original data set.   The “Case” columns correspond 

to possible degrees of confounding that could be introduced to “adjust” the non-adjusted resampling data, to better 

reflect what is likely to be measured in Batch 2 (due to confounding effects)—in spite of the fact that the distribution of 

the underlying resample followed the null hypothesis of “no change”.   The rightmost column shows the apparent p-

value for the test of interest, for the different cases—e.g.., comparing the mean of the new, simulated Batch 1 sample 

with the mean of the new, simulated Batch 2 sample, as adjusted by varying degrees of confounding.    The proposed 
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method does not restrict the test statistic to be calculated; for example in epidemiological studies, rate ratios or odds 

ratios might be calculated.  

 

There is no constant rule for how the above “adjustments” columns should be constructed; this should follow from an 

experimenter’s knowledge or suspicions of what causal factors might be leading to confounding, and how they might 

operate.  In the case of the “storyline” experiment, it could be expected that a stretchable cord would expand when 

wrapped around each snowball, and then contract to a smaller length when subsequently placed against a ruler to record 

a measurement; so negative “adjustments” of measured results seem plausible.  Possible percentages of adjustments 

were made with respect to the expected sample mean values under H0, because the confounding effect was not expected 

to be systematically greater for sample measurements that happened to fall above the null mean than for those that 

happened to fall below the null mean.  The precise model used for the confounding effects would need to be defended, 

in practice; but by explicitly showing the steps and formulas that embody the suspected biases, this could facilitate 

important discussions, and lead to improvements in the model.   

 

Note that Figure 3 only shows possible outcomes of a single simulation of (in this case) one Batch 1 sample versus one 

Batch 2 comparison, with various possible levels of confounding.  If thousands of such resamples are generated the 

results might look like Figure 4.   Each row simulates the possible results of one experiment, under various possible 

scenarios for confounding.  For each scenario, the resulting p-values shown at right are based on conducting an 

intended hypothesis test as if not acknowledging or realizing that the confounding scenario is biasing the results.    If 

under a scenario, the proportion of samples that portray a p-value <  is actually greater than the proportion indicated 

by  itself, then the confounding scenario has introduced a notable bias in the test results. 

 

 
 

Figure 4:  Outcomes of Many Resamples 

 

 

5.  Results and Discussion 

 
For the “storyline” experiment, the mean circumferences as measured were 26.3cm and 20.7 cm, respectively, for 

batches 1 and 2t.  Based on a conventional t test, the difference was highly significant (p-value ≈ 0.000).   (Both 

samples were large and the distributions were both reasonably normal; the results were the same whether equal, or 

unequal, variances were assumed.)  For the meta-experiment step (see Step 3 in Figure 2), the mean circumferences as 

measured were 26.3cm and 26.7 cm, respectively, for batches 1 and 2c.   This difference was not significant—

suggesting that the apparent difference between batches 1 and 2t was spurious; i.e. not due to a real change in 

circumferences.   

  

Using the procedure described in Step 4 (see Section 4.5), it was estimated that the effect of switching from using the 

original cord (in Step 1) to using the elasticized cord (in Step 2) was likely to decrease the (apparent) measured value of 

the mean circumference by as much as 13%.  (The estimate is not precise, since the measured constant circumference 

did not include such features of actual snowballs as bumps and indentations, and potentials for deforming or breaking, 

etc.) 
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Based on the output of the proposed resampling method, the original hypothesis test described in Step 2 (see Section 

4.3) was highly sensitive to confounding.  (See Figure 5.) Of course, one might have expected that a conventional test 

for differences in means between batch 1 and batch 2t circumferences would yield false positive results, on learning in 

the previous paragraph that confounding has affected one of the two group’s measurements by about 13%.  However, it 

may not be as obvious that even a far smaller elasticity of the measuring tool could have grossly inflated the risk of 

Type I error. E.g. a measuring-tool elasticity of just 1% would have rendered the true, effective  ≈ 27%; a measuring-

tool elasticity of even ½ % would have rendered the true, effective  ≈ 15%.   In short, the test used was highly 

sensitive to virtually any degree of confounding, due to introducing elasticity into the measuring instrument.    

 

 
 

Figure 5:  Output of the Analysis 

 
Had this been a real case, any future researchers about snowballs would now be informed of the need for to better 

control for elasticity of the instrument, in the experimental design, and they would realize how sensitive the test is to 

that factor.  Note that if, alternatively, someone had approached the unexpected results of batch two in the above case 

as coming from a simple, one-time “measurement error”, then he or she might not be as cognizant of the need to 

control for confounding errors based on tool elasticity involving far less severity of this factor.  In this way, the above 

output contributes new, useful information. 

 

One consideration for future research is how to apply this method if, in turn, one uses a resampling-based method to 

determine the original p-values-as-measured.   The models in Figures 3 and 4 were relatively easy to automate, since 

for each new simulated sample, software could directly calculate and record the both the revised test statistic of interest, 

and the corresponding p-value.  But if the p-values for each pass are in turn determined by resampling, would the result 

be a “nested resampling” process that is onerous to perform?    

 

It might also be useful to explore a method that starts from a test statistic, as generated from a conventional test, and 

asks:  What is the true p-value for that test statistic, in light of the confounding factor?  This is an alternative from the 

method proposed here, which assigns the p-value based on the original test assumptions, and then determines the true 

probability of obtaining such p-values that appear to be less than .  The relative advantages of these two methods 

would also be worth exploring. 
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