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Abstract

When nonparametric statistical tests are used to rank-order a list of alternatives, Simpson-like paradoxes

arise, in which the individual parts give rise to a common decision, but the aggregate of those parts gives

rise to a different decision. Haunsperger (Haunsperger 2003) and Bargagliotti (Bargagliotti, submitted

manuscript, 2008) have shown that the Kruskal-Wallis (Kruskal and Wallis 1952), Mann-Whitney (Mann

and Whitney 1947), and Bhapkar’s V (Bhapkar 1961) nonparametric statistical tests are subject to these

types of paradoxes. We further investigate these ranking paradoxes by showing that when they occur, the

differences in ranking are not statistically significant.
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1 Introduction

Nonparametric statistical test based on ranks can be used to test for differences among alternatives (Lehman

1975). Each test, defined by a test statistic, utilizes a unique nonparametric procedure that analyzes the

ranked data and provides an overall ranking of the alternatives. For example, the Kruskal-Wallis test

(Kruskal and Wallis 1952) defines a test statistic in terms of the rank-sums for each alternative. This rank-

sum procedure yields a rank-ordering of the alternatives (i.e. the alternative with the largest rank sum is

ranked first, the alternative with the second largest ranked sum is ranked second, etc.). Depending on which

procedure is used to analyze the ranks, different rank-orderings of the alternatives may occur (Bargagliotti

and Saari, submitted manuscript, 2008). Particularly interesting types of inconsistencies are Simpson-like

paradoxes, in which the individual data sets give rise to one overall ranking, but the aggregate of the data

sets gives rise to a different ranking (Haunsperger and Saari 1991; Haunsperger 1992; Haunsperger 1996;

Haunsperger 2003; Bargagliotti, submitted manuscript, 2008). Haunsperger (2003) has shown this paradox

exists when the Kruskal-Wallis nonparametric statistical procedure on n samples is used to rank-order a list

of alternatives. Bargagliotti (submitted manuscript, 2008) has shown that these paradoxes also occur when

the Mann-Whitney (Mann and Whitney 1947) and Bhapkar’s V (Bhapkar 1961) procedures are used.

In this paper, we further investigate these ranking paradoxes by exploring the nonparametric statistical test

outcomes and determining whether these paradoxes persist at the test level. Focusing on the Kruskal-Wallis

test, the Mann-Whitney test, and Bhapkar’s V test, we determine whether the test statistics are statistically

significant for data sets whose structures lead to the Simpson-like paradoxes explored in the literature.

Section 2 of the paper illustrates paradoxes occurring at the procedure level in the case where the two identical

ranked data sets are aggregated and analyzed using the Kruskal-Wallis, Mann-Whitney, and V procedures.

Section 3 of the paper explores the statistical significance of the three tests for the data structures introduced

in Section 2. Section 4 explores a necessary condition data structures must meet in order to not be subject to

the ranking paradoxes of Section 2. Section 5 explores a sufficient condition for generating such a paradox.

In each of these sections, we compute the statistical significance for each test statistic for the general forms

of data that meet these conditions. Section 6, the last section of the paper, discusses the implications of

these results.
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2 Replication and Ranking Paradox

It may be the case that data is collected on two or more occasions. In this setting, one could analyze the

data separately or consider incorporating it into one data set before doing the analyses. The Simpson-like

paradox described in Bargagliotti (submitted manuscript, 2008) and Haunsperger (2003) occurs when the

analysis of each of the separate data sets leads to one rank-ordering of the alternatives but the analysis of

the complete data leads to another rank-ordering. Of course this paradox depends on the procedure used to

analyze each of the data sets. The following simple example is directly taken from Haunsperger (2003) to

illustrate the paradox occurring with the Kruskal-Wallis procedure.

Example 1. Consider the following two sets of data, which contain favorability scores for three candidates

C1, C2, and C3:

C1 C2 C3

5.89 5.81 5.80

5.98 5.90 5.99

and

C1 C2 C3

5.69 5.63 5.62

5.74 5.71 6.00

By replacing the lowest entry with the number 1, the second lowest entry with the number 2, etc., the

favorability scores are transformed into rankings. Each of the two sets give rise to the exact same matrix of

ranks:

C1 C2 C3

3 2 1

5 4 6

The Kruskal-Wallis procedure computes the rank-sums for each alternative C1, C2, and C3 to be 8, 6, and

7 respectively. Using these data sets, this means that the intrinsic ranking produced by the Kruskal-Wallis

procedure is C1 � C3 � C2. When the two raw data sets are combined as
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C1 C2 C3

5.89 5.81 5.80

5.98 5.90 5.99

5.69 5.63 5.62

5.74 5.71 6.00

the corresponding re-ranking is

C1 C2 C3

8 7 6

10 9 11

3 2 1

5 4 12

The rank-sums are then 26, 22, and 30 respectively. With these data, the Kruskal-Wallis procedure yields

the overall ranking of C3 � C1 � C2.

The Mann-Whitney procedure considers pairs of alternatives and ranks the data. For example, comparing

C1 and C2

C1 C2

5.89 5.81

5.98 5.90

the Mann-Whitney procedure ranks these data and obtains:

C1 C2

2 1

4 3

Unlike the Kruskal-Wallis procedure, the Mann-Whitney procedure analyzes the ranks by tallying the number

of times an observation for C1 is larger than an observation for C2 and vice versa. Because there are 2

observations per alternative, there are 2 × 2 possible tuples to consider. They are (2,1), (2,3), (4,1), and

(4,3). From these comparisons, we see that C1 beats C2 three times leaving C2 to beat C1 only one time.

Repeating this process for all pairwise comparisons, C1 and C3 each beat each other two times and C2 and
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C3 each beat each other two times. This leads to a non-strict cyclical overall ranking of the alternatives, i.e.

C1 � C2, C2 ∼ C3, C1 ∼ C3.

When considering the whole data set and comparing C1 to C2, the observations are ranked as follows:

C1 C2

6 5

8 7

2 1

4 3

Analyzing these data, the Mann-Whitney procedure has C1 being greater than C2 ten times and C2 being

greater than C1 six times. Repeating this procedure for all pairwise comparisons, one obtains the over-

all ranking C3 � C1 � C2. Again, as with the Kruskal-Wallis procedure, the paradox (procedure results

from the parts not matching the procedure results from the whole) persists using the Mann-Whitney proce-

dure. In addition to illustrating the Simpson-like paradox, Example 1 shows how two different procedures,

Kruskal-Wallis and Mann-Whitney, may lead to different overall rankings. This type of inconsistency is

due to symmetric structures in the data sets. These structures and inconsistencies have been completely

characterized in Bargagliotti and Saari (submitted manuscript, 2008) by building on ideas in Haunsperger

(1992).

Using the V test to analyze the ranks in Example 1, the procedure considers all possible 3-tuples (ai, bj , ck)

where ai is an observation for C1, bj is an observation for C2, and ck is an observation for C3, and counts

the number of 3-tuples for which each alternative has the largest entry. For the 2 × 3 data set in Example

1, alternative C1 has the largest entry in 3 of the 8 possible 3-tuples, C2 has the largest entry in one, and

C3 has the largest entry in 4. Therefore, for this data matrix, the V procedure outputs C3 � C1 � C2 as

the overall ranking of the alternatives. For the full ranked data matrix in the example, there are a total of

43 possible 3-tuples. Alternative C1 has the largest entry in 17, C2 has the largest entry in 11, and C3 has

the largest entry in 36. This analysis of rank procedure thus outputs C3 � C1 � C2 overall ranking of the

alternatives for this matrix. The V procedure does not lead to the same inconsistencies for these particular

data matrices as do the Kruskal-Wallis and Mann-Whitney procedures. As shown in Bargagliotti (submitted

manuscript, 2008), however, examples do exist that cause these same paradoxes to occur using the V test.
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3 Statistical Significance

In cases such as Example 1, Haunsperger (2003) defines the 2×3 matrix of ranks from above as not consistent

under replication (i.e., one does not obtain the same overall ranking when replicating and aggregating the

data set).

The main purpose of the nonparametric tests is to test whether the observations for each alternative are

sampled from the same population or whether the populations differ (Mann and Whitney 1947; Kruskal

and Wallis 1952; Bhapkar 1961). In this section, we take the ranking analysis one step further and explore

the test outcomes for the data parts and the whole to see whether the Simpson-like paradox persists. To

illustrate, we compute the Kruskal-Wallis, Mann-Whitney, and V test statistics for Example 1 above.

The Kruskal-Wallis test statistic is

KW =
12

N(N + 1)

m∑
k=1

nk(rk − r)2,

where N is the number of data, m is the number of columns, nk is the number of data in column k, rk is the

average rank of the data in column k, and r is the average rank of the data. For simplicity, we will restrict

ourselves to the case in which nk = n does not vary with k, so that N = mn. These are the only cases that

are considered in the ranking paradox literature.

An approximation when N is not too small is

p = P
(
χ2

m−1 ≥ KS
)
.

In Example 1, this leads to KW = 0.286, p = 0.867 for the original matrix of ranks, and KW = 0.615,

p = 0.735 for the combined matrix of ranks. For N small, however, the chi-square approximation is not

highly accurate. The values of p for the exact distribution, using the tables in Alexander and Quade (1968),

are 0.917 and 0.770. These values do not change our conclusion, nor do they do so elsewhere in this paper, so

for simplicity, we will continue to use the chi-square approximation. In other words, there is no statistically

significant difference in rankings between the three choices and thus the paradox does not persist beyond

the rankings.
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The Mann-Whitney statistic is

U = min(UCi , UCj )

where UCi= the number of times an entry of Ci beats an entry of Cj , and UCj = the number of times an

entry of Cj beats an entry of Ci. For N large enough, this statistic is normally distributed with µ=n2/2 and

σ2 = n2(2n+ 1)/12 where n is the number of observations per alternative. We thus compute Z = (U−µ)/σ.

For the data in Example 1, we compare only C1 and C2. The number of tuples that C1 and C2 win are 3

and 1 respectively. The other two possible pairwise comparisons have equally matched number of tuples won

for each alternative. In the full ranked data case, every pairwise comparison has one of the two alternatives

winning 10 tuples and the other winning 6. Without loss of generality, we thus only compute the C1 versus

C2 pair of alternatives. This leads to Z = −0.775 with p = 0.439 for two-sided test on the original matrix of

ranks, and Z = −0.577 with p = 0.564 for the combined matrix of ranks. Because the number of observations

is small (n2 < 20) in both data sets, the normal approximation may not be accurate. For small cases, the

p-value can be found by directly computing the distribution of U. In the case of only two observations

per alternative, the p-value is 0.667. In the case of the aggregated data matrix with four observations per

alternative, the p-value is directly tabulated in Mann and Whitney (1947) as 0.343, which doubles for the

two-tailed test to 0.686. In both cases, it is not statistically significant. The hypothesis of uniformity fails

to be rejected for both the part and the whole data set.

The V test statistic is

V = N(2m− 1)

 m∑
j=1

pj

(
uj −

1
m

)2

−

 m∑
j=1

pj

(
uj −

1
m

)2


where m = number of alternatives, N = number of total observations, pj = (number of observations for

alternative j)/N , vj = number of m-tuples j wins, and uj = vj/(number of m-tuples).

As with the Kruskal-Wallis test, an approximation when N is not too small is

p = P
(
χ2

m−1 ≥ V
)
.

In Example 1, with u1 = 3/8, u2 = 1/8, and u3 = 4/8 for the original matrix of ranks, this leads to

V = 0.729 and p = 0.695, and V = 1.52, p = 0.467 for the combined matrix of ranks. Therefore, just as with

the Kruskal-Wallis and Mann-Whitney test, the alternatives are not considered statistically different.
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By calculating the test statistics for the Kruskal-Wallis, Bhapkar’s V , and Mann-Whitney tests for general

data forms, the subsequent sections show that although certain data structures are subject to paradoxes at

the ranking level, they are not subject to the same paradoxes at the test significance level. If the paradox

persisted, this would mean that the parts data sets would lead to one conclusion about the null hypothesis,

but when aggregated together, the statistical conclusion would differ.

4 Conditions for Consistent Outcomes

Haunsperger proves many surprising results about matrices of ranks. In Haunsperger (2003) she defines a

matrix to be row-ordered if the observations of each candidate can be put in an order so that every row of the

matrix gives rise to the same ranking of the m candidates. Haunsperger observes, “Indeed, being row-ordered

is such a strong property that the reader would be justified in complaining that it is unrealistic. Not only is

this claim correct, but the reader might be even more shocked to learn that the only matrices of ranks that

are consistent under replication are row-ordered” (Haunsperger, 2003, p. 265). This is demonstrated by the

following theorem.

Theorem 1 (Haunsperger 2003) An n×m matrix of ranks is consistent under replication if and only if it

can be row-ordered.

We extend this analysis by investigating how low the statistical significance associated with a row-ordered

matrix might be. High significance (that is, small p-values) can be achieved by putting the lowest ranks in

the first column, the next highest in the next column, and so forth. To achieve low significance, consider the

matrix of ranks
C1 C2 C3 . . . Cm

1 2 3 . . . m

m+ 1 m+ 2 m+ 3 . . . 2m

. . . . . . . . . . . . . . .

(n− 1)m+ 1 (n− 1)m+ 2 (n− 1)m+ 3 . . . nm

For data of this form, it is straightforward to show that

KW =
m2 − 1
mn+ 1
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and

V = nm(2m− 1)

 m∑
j=1

1
m

(
uj −

1
m

)2

−

 m∑
j=1

1
m

(
uj −

1
m

)2


where uj =
∑n

i=1 i
j−1(i− 1)m−j/nm. When j = m and i = 1, this formula contains the expression 00. In

this formula and elsewhere in this paper, 00 is defined to equal 1.

Using the chi-square approximation, we calculate the Kruskal-Wallis and V test statistics and their associated

p-values for various values of m and n, as displayed in Tables 1 and 2. Notice that none of the values in the

tables approach statistical significance for either test statistic, except for values when n = 1 in Table 2. But

for these values, the chi-square approximation is particularly poor. In fact, when n = 1, the V statistic can

only take on one value, and so the statistical significance of that value is meaningless.

Table 1: Kruskal-Wallis p-values
m\n 1 2 3 4

2 0.317 0.439 0.513 0.564
3 0.368 0.565 0.670 0.735
4 0.392 0.644 0.764 0.830
5 0.406 0.702 0.827 0.887

Table 2: V test p-values
m\n 1 2 3 4

2 0.221 0.386 0.823 0.540
3 0.189 0.508 0.649 0.727
4 0.154 0.556 0.721 0.804
5 0.126 0.562 0.750 0.840

Considering the matrix of ranks above, a pairwise comparison of Ci and Cj for i 6= j can also be made.

Letting i < j and reordering the entries for Ci and Cj , we obtain the following ranked data:

Ci Cj

1 2

3 4

. . . . . .

2n− 1 2n

The Mann-Whitney test statistic for these data is U = min(UCi
, UCj

) = n(n− 1)/2, where UCi
= the number

of times an entry of Ci beats an entry of Cj , and UCj
= the number of times an entry of Cj beats an entry of

8



Ci. This statistic is normally distributed with µ = n2/2 and σ = n2(2n+ 1)/12 and thus converting to the

standard normal distribution Z = −
√

3/(2n+ 1). This Z value has a maximum magnitude of −0.577 when

n = 1, and thus will never be less than −1.96, the critical value for 0.05 significance level using the normal

distribution. It therefore will never be statistically significant.

Summarizing these ideas leads us to the following general theorem.

Theorem 2 For all m and for all n, a set of row-ordered data exists that leads the Kruskal-Wallis, V, and

Mann-Whitney test to conclude there is not enough evidence to show the observations were sampled from

different distributions.

This illustrates that although a matrix being row-ordered may seem unrealistically strict, in fact it is always

possible to find row ordered data that yields no significant difference in rankings between the candidates.

From that perspective, being row-ordered is not strict at all. For there to be a significant difference between

the candidates, even stricter requirements on the matrix are needed.

5 Statistical Significance of Replicated Data

As a consequence of Theorem 1, a matrix with unanimous rankings across all the rows but one is not

consistent under replication. One might suspect that for a matrix that is almost unanimous in ranking, a

large number of replications would be needed to make the matrix inconsistent. Haunsperger dispels this

suspicion for the Kruskal-Wallis procedure with the following theorem.

Theorem 3 For any n ≥ 1 and m ≥ 2, let r0 be the n×m matrix of ranks

C1 C2 C3 . . . Cm

1 2 3 . . . m

m+ 1 m+ 2 m+ 3 . . . 2m

. . . . . . . . . . . . . . .

(n− 1)m+ 1 (n− 1)m+ 2 (n− 1)m+ 3 . . . nm

Let r be the matrix of ranks made from r0 by switching 2 adjacent entries xij and xi(j+1) for some 1 ≤ i ≤ n,
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1 ≤ j ≤ m − 1. Only two data sets with matrix of ranks r are needed to have their aggregate ranking other

than Cm � Cm−1 � · · · � C1.

Example 2. The proof of the theorem is by construction similar to the following:

r0 =

C1 C2 C3

1 2 3

4 5 6

7 8 9

10 11 12

22 26 30

r =

C1 C2 C3

2 1 3

4 5 6

7 8 9

10 11 12

23 25 30

Notice that C3 � C2 � C1 by Kruskal-Wallis ranking in either case. Now consider the following aggregate

of two matrices, each with the ranking r.

C1 C2 C3

14 1 15

16 17 18

19 20 21

22 23 24

3 2 4

5 6 7

8 9 10

11 12 13

98 90 112
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Observe that the ranking has now changed to C3 � C1 � C2.

The V test and the Mann-Whitney procedure also exhibit the same sensitivity to non row-ordered data sets.

For the data matrices r and r0 in Example 2, the V test and the pairwise comparison yields the ranking

C3 � C2 � C1 while both procedures output C3 � C1 � C2 for the combined matrix.

Exploring the significance for these data matrices, KW = 0.615 with p = 0.735 for matrix r0, KW = 0.500

with p = 0.779 for matrix r, and KW = 0.620 with p = 0.733 for the combined matrix of ranks. Using the

V test, V = 0.638 with p = 0.727 for r0, V = 0.638 with p = 0.727 for r, and V = 0.430 with p = 0.807

for the combined matrix. Using the Mann-Whitney test, for any pair (Ci, Cj) where i < j in matrix r0,

Z = −0.577 with p = 0.282. In the matrix r, comparing C1 with C2 gives Z = −0.289 and p = 0.386.

Comparing C1 or C2 with C3 gives Z = −0.577 with p = 0.282. For the combined matrix, comparing (C1,

C2) gives Z = −0.210 and p = 0.417, comparing (C1, C3) gives Z = −0.420 and p = 0.337, and comparing

(C2, C3) gives Z = −0.840 and p = 0.200.

These results show there is no statistically significant difference between the three candidates in either the

original matrix, the matrix with two ranks switched, or the combined matrix of ranks in Example 2 using

the Kruskal-Wallis test, V test, or the Mann-Whitney test.

To generalize the previous example, consider the matrix of ranks

C1 C2 C3 . . . Cm

2 1 3 . . . m

m+ 1 m+ 2 m+ 3 . . . 2m

. . . . . . . . . . . . . . .

(n− 1)m+ 1 (n− 1)m+ 2 (n− 1)m+ 3 . . . nm

For this matrix,

KW =
m2 − 1
nm+ 1

+
24(1− n)

mn2(nm+ 1)
.

Using the chi-square approximation, we calculated p-values for various values of m and n, as displayed in

Table 3.
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Table 3: Kruskal-Wallis p-values
m\n 1 2 3 4

2 0.317 1.000 0.827 0.773
3 0.368 0.651 0.733 0.779
4 0.392 0.682 0.789 0.846
5 0.406 0.722 0.838 0.894

The V test statistic for this matrix is identical to that of the row-ordered matrix in the previous section, i.e.

V = nm(2m− 1)

 m∑
j=1

1
m

(
uj −

1
m

)2

−

 m∑
j=1

1
m

(
uj −

1
m

)2


where uj =
∑n

i=1 i
j−1(i− 1)m−j/nm. This is because interchanging the first row entries for candidates 1

and 2 does not affect the number of m-tuples either candidate wins.

When comparing alternative C1 pairwise with any other alternative Cj using the generalized matrix of ranks,

the following re-rankings of these data are made:

C1 Cj

2 1

3 4

. . . . . .

2n− 1 2n

For this generalized matrix, Z = ((−n + 2)/n)
√

3/(2n+ 1). Using the normal distribution, the p-values

are displayed for various values of n in Table 4. As n approaches infinity, Z approaches 0 and thus the

p-value approaches 0.5. All other pairwise comparisons are equivalent to those made from the row-ordered

generalized matrix at the beginning of Sec. 4. Therefore, as before, none of the values approach statistical

significance for the Kruskal-Wallis, V test, and the Mann-Whitney.

Table 4: Mann-Whitney outcomes
n Z p-value
2 0.000 0.500
3 −0.218 0.414
4 −0.289 0.387
5 −0.313 0.377
6 −0.320 0.374
7 −0.319 0.375
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Now consider the combined matrix of ranks

C1 C2 . . . Cm

mn+ 2 1 . . . mn+m

mn+m+ 1 mn+m+ 2 . . . mn+ 2m

. . . . . . . . . . . .

mn+ (n− 1)m+ 1 mn+ (n− 1)m+ 2 . . . 2nm

3 2 . . . m+ 1

m+ 2 m+ 3 . . . 2m+ 1

. . . . . . . . . . . .

(n− 1)m+ 2 (n− 1)m+ 3 . . . nm+ 1

For this matrix,

KW =
1

m(2mn+ 1)

(
m3 + 9m2 − 22m+

12m
n
− 24

n
+

24
n2

)
.

Using the chi-square approximation, we calculated p-values for various values of m and n, as displayed in

Table 5.

Table 5: Kruskal-Wallis p-values
m\n 1 2 3 4

2 0.121 0.564 0.749 0.834
3 0.156 0.500 0.653 0.733
4 0.198 0.566 0.728 0.810
5 0.244 0.642 0.801 0.875

Although the theorem includes the n = 1 case, this construction makes no sense when n = 1. When n = 2,

there is no paradox, because one row has the ranks in one order, and the other row in a different order. Among

the cases with n ≥ 3, the smallest p value is 0.653. (Using the tables in Alexander and Quade (1968), the

exact calculation gives a corresponding p-value of 0.683.) Thus, there is no statistically significant difference

between the ranking of the candidates.

Using the V statistic to test for differences among alternatives, we obtain the following complicated formula:

V = nm(2m− 1)

 1
m
F (n,m)2 +

1
m
G(n,m)2 +

1
m

m∑
j=3

M(n,m)2
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−

 1
m
F (n,m) +

1
m
G(n,m) +

1
m

m∑
j=3

M(n,m)

2
 .

In the above equation, the expression for C1 is

F (n,m) =
∑n

i=1(i+ 1)im−2 +
∑2n−1

i=n+1 i
m−1

(2n)m
− 1
m
,

the expression for alternative C2 is

G(n,m) =
∑2n−1

i=1 (i+ 1)im−2 − (n+ 1)nm−2

(2n)m
− 1
m
,

and the expression for Cj where j > 2 is

M(n,m) =
∑n

i=1 i
j−2(i+ 1)(i− 1)m−j +

∑2n
n+1 i

j−1(i− 1)m−j

(2n)m
− 1
m
.

The associated p-values for different values of m and n are displayed in Table 6.

Table 6: V test p-values
m\n 1 2 3 4

2 0.540 0.829 0.906 0.939
3 0.482 0.775 0.859 0.898
4 0.675 0.889 0.940 0.961
5 0.775 0.938 0.971 0.984

Three different pairwise comparisons arise from the general form of the combined matrix of ranks. The

comparisons are (C1, C2), (C2, Cj) where j ≥ 3, (Ci, Cj) where i 6= 2 and j > 2. The comparisons result in

the following pairwise re-ranked data matrices:
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C1 C2

3 1

4 2

6 5

. . . . . .

2n 2n− 1

2n+ 2 2n+ 1

2n+ 3 2n+ 4

2n+ 5 2n+ 6

. . . . . .

4n− 3 4n− 2

4n− 1 4n

C2 Cj

1 3

2 5

6 7

8 9

. . . . . .

n− 2 n+ 1

n n+ 2

n+ 3 n+ 4

. . . . . .

2n− 3 2n− 2

2n− 1 2n

Ci Cj

1 2

3 4

5 6

7 8

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

2n− 3 2n− 2

2n− 1 2n

The (C1, C2) comparison yields Z = −(2/n)
√

3/(4n+ 1), (C2, Cj) where j ≥ 3 has Z = −2
√

3/(2n+ 1),

(Ci, Cj) where i 6= 2 and j > 2 gives Z = −
√

3/(2n+ 1). Table 7 illustrates the values of Z for various size

data along with their respective p-values.

Table 7: Mann-Whitney Test Statistics and p-values
n ZC1,C2 p-value
2 −0.577 0.282
3 −0.320 0.374
4 −0.210 0.417
5 −0.151 0.440

n ZC2,Cj p-value
2 −1.155 0.124
3 −0.961 0.168
4 −0.840 0.200
5 −0.756 0.225

n ZCi,Cj p-value
2 −0.577 0.282
3 −0.480 0.315
4 −0.420 0.337
5 −0.378 0.352

As before, the values are not statistically significant. On the other hand, the p-values for (C2, Cj) where

j ≥ 3 are approaching significance, but the difference between these candidates was not in dispute. In

Example 2, with m = 3 and n = 4, we found that C3 � C2 in r0, r, and the aggregate matrix.

6 Implications and Conclusions

Through our analyses in this paper, we have shown that data matrices that lead to ranking paradoxes when

replicated and aggregated do not lead to statistical paradoxes. Because of this, from a statistical perspective,

although the ranking paradoxes shown in the literature are surprising, we hope that this analysis makes

them less disturbing. We have shown that in the cases in which the paradoxes arise, the difference between

15



the ranking of the candidates is not statistically significant. From another perspective, when there is a

statistically significant difference between the ranking of the candidates, these paradoxes do not occur. In

order for the null hypothesis of uniformity to be rejected, data structures must be more restricted. This

means that for the test statistics to reject the null hypothesis, we must have a structural condition on

the data set that is stronger than the row-ordered condition for the replication paradox to occur. The

significance of what we’ve shown in Section 4 is that being row-ordered is not as strict of a condition as one

might think. In another words, being row-ordered is a fairly weak condition (i.e., it doesn’t mean there is a

significant difference between the candidates), and yet that’s sufficient to avoid paradoxes of inconsistency

under replication. In the data sets that are not quite row-ordered in Section 5 and do produce paradoxes,

there is still no significant difference between the candidates. This shows that the disagreement in the ranking

of the aggregate data with the ranking given by the rows is due to the fact that the process used to aggregate

the data weaken a candidate enough for the ranking to shift. From a statistical perspective, however, there

is no significant difference between the candidates in any case, and the weakening of one candidate does not

change this.

The ranking paradoxes and their lack of statistical significance should be of broad interest to statisticians.

Both the Kruskal-Wallis and the Mann-Whitney tests are considered standard approaches to determining

significant differences among alternatives in the nonparametric case. Although the V procedure is less widely

used, it still provides an interesting comparison to the more popular tests. These results raise important

questions about which of these three tests is most appropriate to use for a given data set. Furthermore, the

analysis in this article only applies to the paradoxes introduced by Haunsperger using her constructions. It

is possible that different constructions might lead to these paradoxes or to entirely new paradoxes. Further

research is also necessary to determine whether paradoxes such as those that have arisen at the procedural

level can arise at the statistical level. It is possible that different data structures might lead to such paradoxes.

Finally, there are many other paradoxes, such as those in apportionment methods or voting methods with

preference schedules, that could be analyzed in the same manner as we have done in this paper. We hope

that this article provokes further investigation into these questions.
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