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Abstract: Haunsperger (2003) has shown that when the Kruskal-Wallis

nonparametric statistical test on n samples is used to rank-order a list of

alternatives, Simpson-like paradoxes arise, in which the individual parts give

rise to a common decision, but the aggregate of those parts gives rise to a

different decision. We further investigate these ranking paradoxes by show-

ing that when they occur, the differences in ranking are not statistically

significant.

In a series of articles [2, 3, 4, 5] Haunsperger has shown that when the

Kruskal-Wallis nonparametric statistical test on n samples is used to rank-

order a list of alternatives, Simpson-like paradoxes arise, in which the indi-

vidual parts give rise to a common decision, but the aggregate of those parts

gives rise to a different decision. In this paper, we further investigate these

ranking paradoxes by finding the statistical significance of the differences in

ranking when these paradoxes occur.

Example 1 [5]: Consider the two sets of data

1



C1 C2 C3

5.89 5.81 5.80
5.98 5.90 5.99

and

C1 C2 C3

5.69 5.63 5.62
5.74 5.71 6.00

each of which gives rise to the exact same matrix of ranks

C1 C2 C3

3 2 1
5 4 6
8 6 7

and, hence, the same ordering C1 ! C3 ! C2 by Kruskal-Wallis ranking.

When the two data sets are combined

C1 C2 C3

5.89 5.81 5.80
5.98 5.90 5.99
5.69 5.63 5.62
5.74 5.71 6.00

and reranked,

C1 C2 C3

8 7 6
10 9 11
3 2 1
5 4 12

26 22 30

the ranking has changed to C3 ! C1 ! C2. In cases such as Example 1,

Haunsperger says that the 2×3 matrix of ranks from before is not consistent

under replication.

Let’s take the analysis one step further and calculate the Kruskal-Wallis
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statistic for Example 1:

KW =
12

N(N + 1)

mX

k=1

nk(rk − r)2,

where N is the number of data, m is the number of columns, nk is the number

of data in column k, rk is the average rank of the data in column k, and r is

the average rank of the data. For simplicity, we will restrict ourselves to the

case in which nk = n does not vary with k, so that N = mn. These are the

only cases that Haunsperger considers in her papers.

An approximation when N is not too small is

p = P
°
χ2

m−1 ≥ KS
¢

.

In Example 1, this leads to KW = 0.2857, p = 0.867 for the original matrix

of ranks, and KW = 0.6154, p = 0.735 for the combined matrix of ranks. In

other words, there is no statistically significant difference in rankings between

the three choices. Since N is small in these cases, the chi-square approxi-

mation is not highly accurate. The values of p for the exact distribution,

using the tables in [1], are 0.917 and 0.770. These values do not change our

conclusion, nor do they do so elsewhere in this paper, so we will continue to

use the chi-square approximation.

Haunsperger proves many surprising results about matrices of ranks. In

[5] she defines a matrix to be row-ordered if the observations of each candidate

can be put in an order so that every row of the matrix gives rise to the

same ranking of the m candidates. Haunsperger observes, “Indeed, being

row-ordered is such a strong property that the reader would be justified
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in complaining that it is unrealistic. Not only is this claim correct, but the

reader might be even more shocked to learn that the only matrices of of ranks

that are consistent under replication are row-ordered.” This is demonstrated

by the following theorem.

Theorem 1 [5]. An n × m matrix of ranks is consistent under replication if

and only if it can be row-ordered.

We extend this analysis by investigating how low the statistical signifi-

cance associated with a row-ordered matrix might be. High significance can

be achieved by putting the lowest ranks in the first column, the next highest

in the next column, and so forth. To achieve low significance, consider the

matrix of ranks

1 2 3 . . . m
m + 1 m + 2 m + 3 . . . 2m
. . . . . . . . . . . . . . .
(n − 1)m + 1 (n − 1)m + 2 (n − 1)m + 3 . . . nm

For this matrix, it is straightforward to show that

KW =
m2 − 1

mn + 1

Using the chi-square approximation, we calculated p-values for various

values of m and n, as displayed in the following table.

m\n 1 2 3 4
2 0.3173 0.4386 0.5127 0.5637
3 0.3679 0.5647 0.6703 0.7351
4 0.3916 0.6444 0.7641 0.8297
5 0.4060 0.7024 0.8266 0.8874

Notice that none of the values in the table approach statistical signifi-

cance. For the smaller values of m and n, the approximate values in the
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table are inaccurate. For example, for m = 2 and n = 1, the true p-value

is 0.5. This illustrates that although a matrix being row-ordered may seem

unrealistically strict, in fact it is possible for a matrix to be row ordered and

yet for there to be no significant difference in ranking between the candidates.

From that perspective, being row-ordered is not strict at all. For there to be

a significant difference between the candidates, even stricter requirements on

the matrix are needed.

As a consequence of Theorem 1, a matrix with unanimous ranking across

all the rows but one is not consistent under replication. One might suspect

that for a matrix that is almost unanimous in ranking, a large number of

replications would be needed to make the matrix inconsistent. Haunsperger

dispels this suspicion with the following theorem.

Theorem 4. For any n ≥ 1 and m ≥ 2, let r0 be the n × m matrix of ranks

1 2 3 . . . m
m + 1 m + 2 m + 3 . . . 2m
. . . . . . . . . . . . . . .
(n − 1)m + 1 (n − 1)m + 2 (n − 1)m + 3 . . . nm

Let r be the matrix of ranks made from r0 by switching 2 adjacent entries

xij and xi(j+1) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1. Only two data sets

with matrix of ranks r are needed to have their aggregate ranking other than

Cm ! Cm−1 ! · · · ! C1.

Example 2: The proof of Theorem 4 is by construction similar to the fol-

lowing:
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r0 =

C1 C2 C3

1 2 3
4 5 6
7 8 9
10 11 12
22 26 30

r =

C1 C2 C3

2 1 3
4 5 6
7 8 9
10 11 12
23 25 30

Notice that C3 ! C2 ! C1 by Kruskal-Wallis ranking in either case. Now

consider the following aggregate of two matrices, each with the ranking r0.
C1 C2 C3

14 1 15
16 17 18
19 20 21
22 23 24
3 2 4
5 6 7
8 9 10
11 12 13
98 90 112

Observe that the ranking has now change to C3 ! C1 ! C2. But KW =

0.615, p = 0.735 for original matrix of ranks, KW = 0.5, p = 0.779 for

matrix with ranks switched, and KW = 0.62, p = 0.733 for combined matrix

of ranks. Thus there is no statistically significant difference between the three

candidates in either the original matrix, the matrix with two ranks switched,

or the combined matrix of ranks.
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Let us look at the situation in general. Consider the matrix of ranks

2 1 3 . . . m
m + 1 m + 2 m + 3 . . . 2m
. . . . . . . . . . . . . . .
(n − 1)m + 1 (n − 1)m + 2 (n − 1)m + 3 . . . nm

For this matrix,

KW =
m2 − 1

nm + 1
+

24(1 − n)

m(nm + 1)n2
.

This decreases with n, so has its maximum value at n = 1, where

KW = m − 1.

In this case, however, the statistic can only take on one value, and hence is

not meaningful. In the next largest case, with n = 2, the statistic has the

value

KW =
m3 − m − 6

m(2m + 1)
.

The chi-square approximation yields a minimum p-value of 0.651 when m =

3. Using the tables in [1], the exact calculation for m = 3, n = 2 gives a

p-value of 0.803.

Now consider the combined matrix of ranks

mn + 2 1 . . . mn + m
mn + m + 1 mn + m + 2 . . . mn + 2m
. . . . . . . . . . . .
mn + (n − 1)m + 1 mn + (n − 1)m + 2 . . . 2nm
3 2 . . . m + 1
m + 2 m + 3 . . . 2m + 1
(n − 1)m + 2 (n − 1)m + 3 . . . nm + 1

For this matrix,

KW =
1

m(2mn + 1)

µ
m3 + 9m2 − 22m +

12m

n
− 24

n
+

24

n2

∂
.
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Using the chi-square approximation, we calculated p-values for various values

of m and n, as displayed in the following table.
m\n 1 2 3 4

2 0.1213 0.5637 0.7488 0.8336
3 0.1561 0.5004 0.6525 0.7334
4 0.1979 0.5663 0.7276 0.8095
5 0.2438 0.6421 0.8010 0.8745

Although the theorem includes the n = 1 case, this construction makes

no sense when n = 1. When n = 2, there is no paradox, because one row has

the ranks in one order, and the other row in a different order. Among the

cases with n ≥ 3, the smallest p value is 0.6525. (Using the tables in [1], the

exact calculation gives a corresponding p-value of 0.683.) Thus, there is no

statistically significant difference between the ranking of the candidates.

Although the paradoxes shown by Haunsperger are surprising, we hope

that this analysis makes them less disturbing. We have shown that in the

cases in which the paradoxes arise, the difference between the ranking of

the candidates is not statistically significant. Conversely, when there is a

statistically significant difference between the ranking of the candidates, these

paradoxes do not occur.

The analysis in this article only applies to the the paradoxes of Haunsperger

using her constructions. It is possible that different constructions might lead

to these paradoxes or to entirely new paradoxes, in which case the analysis

in this article does not apply. We hope that this article provokes further

investigation into this area.
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