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PREFACE  
 
 
Can you say "reliability" without saying "validity"?  (Can you say "Rosencrantz" 
without saying "Guildenstern"?)  I hope so, because this book is all about 
reliability, except for five appendices in which I discuss validity and for occasional 
comments in the text proper regarding the difference between reliability and 
validity.  But isn't validity more important than reliability?  Of course; a reliable 
instrument that doesn't measure what you want it to measure is essentially 
worthless.  The problem is that the validity of a measurement device ultimately 
relies on the subjective judgment of experts in the field (all of the current 
emphasis on construct validity to the contrary notwithstanding), and my primary 
purpose in writing this book is to pursue those statistical features of measuring 
instruments that tell you whether or not, or to what extent, such instruments are 
consistent. 
 
There are 14 chapters in the book.  Chapter 1 is an introductory treatment of the 
concept of reliability, with special attention given to its many synonyms and 
nuances.  The following chapter addresses the associated concept of 
measurement error, with an extended discussion of  "randomness".  Chapter 3 is 
devoted to classical reliability theory and is the most technical section of the 
book, but if you think back to your high school mathematics you will recognize 
the similarity to plane geometry, with its counterpart definitions, axioms, and 
theorems.  (It is assumed that you are also familiar with descriptive statistics 
such as means, variances, and correlation coefficients, and with the basic 
principles of inferential statistics.) 
 
Chapters 4 and 5 treat, respectively, the concept of attenuation and the 
interpretation of individual measurements.  In Chapter 6 I try to summarize the 
literature regarding the reliability of difference scores of various types and the 
controversies concerning some of those types. 
 
The matter of the reliability of individual test items is explored in Chapter 7.  
Discussion of the internal consistency reliability of the total score on a test that 
consists of more than one item (the usual case) follows naturally in Chapter 8, 
where the primary emphasis is on coefficient alpha (Cronbach's alpha).  That 
chapter (Chapter 8) also includes a brief section in which I point out the 
methodological equivalence of internal consistency reliability and both inter-rater 
and intra-rater reliability. 
 
Chapter 9 on intraclass correlations is my favorite chapter.  Although their 
principal application has been to the reliability of ratings, they come up in all  
sorts of interesting contexts, including those concerned with the unit of analysis 
and the independence of observations. 
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Relative agreement vs. absolute agreement and ordinal vs. interval 
measurement provide the focus of Chapter 10.  Most discussions of instrument 
reliability are concerned with the relative agreement between two equal-status 
operationalizations of a particular construct, but some are devoted exclusively to 
absolute agreement.  Likert-type scales and other instruments that do not have 
equal units require special considerations.  (Some of this material was originally 
included in various other chapters in previous editions of this book.) 
 
Chapter 11 is concerned mostly with statistical inferences from samples of 
"measurees" to populations of "measurees", but some attention is also given to 
statistical inferences from samples of “measurers” to populations of “measurers”.   
 
In Chapter 12 I try to bring everything together by applying classical reliability 
theory to a set of data that were generated in a study of alternative ways of 
measuring height.  (The data, which have been graciously provided to me by Dr. 
Jean K. Brown, Dean, School of Nursing, University at Buffalo, State University 
of New York, are in Appendix A.)   
 
The following chapter (Chapter 13) deals with a variety of special topics 
regarding instrument reliability.  And a final chapter (Chapter 14) attempts to 
extend the concept of reliability of measuring instruments to the reliability of 
claims. 
 
There is an appendix (Appendix B) on the validity of measuring instruments in 
general, an appendix (Appendix C) on the reliability and validity of birth 
certificates and death certificates, an appendix (Appendix D) on the reliability and 
validity of height and weight measurements, an appendix (Appendix E) on the 
reliability and validity of the four gospels, and an appendix (Appendix F) on the 
reliability and validity of claims regarding the effects of secondhand smoke.  A list 
of references completes the work. 
 
The book is replete with examples of various measurement situations (real and 
hypothetical), drawn from both the physical sciences and the social sciences.  
Measurement is at the heart of all sciences.  Without reliable (and valid) 
instruments science would be impossible. 
 
You may find my writing style to be a bit breezy.  I can't help that; I write just like I 
talk (and nobody talks like some academics write!).  I hope that my informal style 
has not led me to be any less rigorous in my arguments regarding the reliability 
of measuring measurements.  If it has, I apologize to you and ask you to read no 
further if or when that happens.  You may also feel that many of the references 
are old.  Since I am a proponent of the "classical" approach to reliability, their 
inclusion is intentional. 
 
I would like to thank Dr. Brown and Dr. Shlomo S. Sawilowsky (Wayne State 
University) for their very helpful comments regarding earlier manuscript versions 
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of the various chapters in this book.  But don't hold them accountable for any 
mistakes that might remain.  They're all mine. 
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CHAPTER 1:  What do we mean by the reliability of a measuring instrument? 
 
 
Contrary to its usual meaning in common parlance, in scientific measurement if 
something is reliable it is not necessarily good.   (A security guard who falls 
asleep in the middle of his watch at exactly the same time every night would be a 
reliable sleeper, but he would undoubtedly be fired for his lack of alertness.)  A 
reliable instrument is one that produces consistent measurements, which may or 
may not be worth anything.  For example, a thermometer that reads 105 degrees 
Fahrenheit every time it is inserted in the mouth of a child who has no fever is 
reliable; it is consistent from one insertion to the next, but it is not a very good 
thermometer because it implies that the child has a high fever when (s)he 
actually does not.  (It would be just as bad if it consistently yielded 98.6 for a 
febrile patient.) 
 
Terminology 
 
The matter of consistency of measurement is not referred to as “reliability” in all 
scientific disciplines.  Some people prefer “accuracy”, “precision”, “agreement”, 
“dependability”, “reproducibility”, “repeatability”, or the term “consistency” itself.  
(See Goodenough, 1936, 1949; Stallings & Gillmore, 1971; Feinstein, 1985, 
1987; Ennis, 1999; Norris, 1999; Last, 2001; and Dunn, 2004 regarding 
arguments for and against the use of some of those terms.  Also see Gift & 
Soeken, 1988 and Lynn, 1989 for diametrically opposite notions of "accuracy", 
which is admittedly one of the most ambiguous terms.)  The situation was so 
chaotic in the early part of the 20th century that Goodenough (1936) suggested 
doing away with the term “reliability” altogether and expressing any evidence 
regarding consistency of measurement strictly in terms of the procedures that 
were actually used to gather the evidence.  There is a fairly recent article (Marks, 
Habicht, & Mueller, 1989) that even tried to distinguish among reliability, 
dependability, and precision, and the situation remains chaotic.  I understand all 
of the arguments, but I still like "reliability".   
 
There are also special “sub-kinds” of reliability, e.g., “test-retest” reliability,  
“parallel forms” reliability, “inter-rater” reliability, and many more.  But all have in 
common some feature of consistency of measurement (from time to time, from 
item to item, from measurer to measurer, etc.) 
 
To make things even more confusing, the term “reliability” is often used in the 
research literature in non-measurement contexts.  In engineering and related 
disciplines, for example, equipment is said to be reliable if it doesn't break down, 
or if it is very unlikely to break down.   (The engineering definition of reliability, as 
given by Blanchard, 1981, is: "The probability that a system or product will 
perform in a satisfactory manner for a given period of time when used under 
specified operating conditions.")   And statisticians often use the term to refer to 
the sampling stability of a particular statistic such as a mean, a variance, or a 
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correlation coefficient.  A value of a statistic, e.g., the proportion of Undecideds in 
a sample of 1000 likely voters prior to a presidential election, is said to be 
“reliable” if it is unlikely to fluctuate very much from one sample to another 
sample of the same size, i.e., its “margin of error” is small.  I shall say nothing 
further in this book about reliability in the engineering sense.  The sampling 
stability of various indicators of reliability will be considered in Chapter 11, but I 
(unlike Lincoln, 1932; 1933) will avoid using expressions such as "the unreliability 
of reliability coefficients"! 

 
There are also many indicators of the degree of consistency, since no measuring 
instrument is perfectly reliable.  Most of such indicators are correlation 
coefficients of some sort; others are variances or standard deviations; still others 
are statistics such as percentages or various functions of percentages. 
 
Illustrative examples 
 
A couple of examples would seem to be in order here.  Consider first the 
thermometer referred to above.  How might you determine to what extent it is a 
reliable measuring instrument?  One way would be to insert it in the mouth of a 
particular individual several times (perhaps sterilizing it prior to each insertion), 
make a frequency distribution of the resulting measurements, and calculate the 
standard deviation of those measurements.  The smaller the standard deviation, 
the more reliable the instrument (for that person on that occasion).  Alternatively, 
you might measure each of several persons twice and calculate the correlation 
(the Pearson product-moment correlation coefficient, say) between the first and 
second readings and/or some other indicator of the association between 
corresponding (same person) first and second measurements. 
 
Another example is the written essay examination.  Is an essay question such as 
“What did you do on your summer vacation?” (a favorite of elementary school 
teachers)  reliable?  It may or may not be.  In any event, one needs to clarify 
what kind of reliability is of concern.  Test-retest?  That is, would children asked 
to write an essay on that topic write essentially the same things in essentially the 
same ways if tested twice within, say, a 24-hour period?  (The amount of time 
between test and retest is controversial--see, for example, my discussion of that 
matter in Knapp, 1985 and the further discussion in Knapp & Brown, 1995.)  Or is 
it the reliability of the grading of a set of essays (written on that topic on a single 
occasion) by equally competent teachers that is important?  If so, then some sort 
of inter-rater reliability evidence is essential.  Or perhaps all that matters is 
whether a teacher who grades the essays agrees with (her)himself.  In that case 
intra-rater reliability is of primary concern; that teacher must grade the essays 
twice, being “blinded” the second time to the names and the handwriting of the 
children, and with a sufficient amount of time passing between the two occasions 
so that (s)he doesn’t recall what grade (s)he assigned the first time when doing 
the grading the second time.  Gets complicated, doesn't it?  (For more on the 
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matter of the reliability of the grading of essay examinations, see Gulliksen, 1936, 
1950; Stanley, 1962; Coffman, 1972; and Braun, 1988). 
 
Continuing with another educational testing example, how can you find out 
whether or not, or to what extent, a test of single-digit addition is reliable?  Here 
the choices are even more numerous than for the essay-grading example.  
Suppose the test is to have 10 questions (items).  Which of the following might 
you do? 
 
a. Construct two “parallel” forms of the test by randomly sampling (without 

replacement) items of the type a+b=? from all of the possible permutations of 
such items (0+0=?; 0+1=?; …;9+9=?) to constitute the two forms, administer 
both forms to the same children, and compare the scores (total numbers of 
items answered correctly) on the two forms.  This would give you some 
indication of how consistent the scores are from one version to another. 

b. Construct just one form in that same manner, administer it twice to the same 
children, with a day or two in between testings, and compare the scores 
obtained on the two occasions.  This is the “test-retest” approach and would 
tell you something about how stable the scores for that instrument are from 
one time to another.   

c. Administer that one form once, and determine how consistent the children’s 
performance is from one item to another, using one or more of the formulas 
for assessing the “internal consistency” of the instrument (see Chapter 8). 

d. If scoring of the test is subject to individual judgment (for example, is that a 4 
or a 9 that the child wrote?), get some evidence regarding either or both of 
inter-rater and intra-rater reliability.   

 
[Note:  One thing you might think of doing would be to administer one form of the 
single-digit addition test along with a test of general mathematical ability, and 
compare the scores on those two instruments.  Unfortunately, that would tell you 
little or nothing about the reliability of the single-digit addition test.  It might tell 
you something about its validity--see Appendix B.] 
 
Necessity vs. sufficiency 
 
These and similar matters are the “bread-and-butter” of what follows in the rest of 
this book.  The mathematics is a bit heavy at times, but please do not lose the 
forest because of the trees that get in the way.  Reliability is all about 
consistency, and nothing else.  But consistency is a crucial property of a 
measuring instrument.  To shift examples for illustrative purposes, a yardstick 
that consistently produces measurements of a person's height within an eighth of 
an inch of one another might not "really" measure height, but a yardstick that 
yields a different measurement every time it is used to measure a person's height 
is certainly undependable.  In the language of mathematics, reliability is a 
necessary but not a sufficient condition for good measurement. 
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Additional reading 
 
It is somewhat controversial whether you should refer to the reliability of a 
measuring instrument or the reliability of the measurements produced by the 
instrument.  If it is clear that the determination of reliability is for this object (or 
these objects) on this occasion (or these occasions), no harm is done by 
referring to the result as an indicator of the reliability of the instrument itself, and 
that is my personal preference (thus the title of this book).  But some people 
(e.g., Thompson, 1999, 2002, and elsewhere) get very bothered about so doing.  
For interesting exchanges on that topic, see Vache-Haase (1998), Sawilowsky 
(2000a; 2000b), Thompson and Vache-Haase (2000), a critique of Thompson 
(1999) by Sawilowsky and myself (Knapp & Sawilowsky, 2001a), his response 
(Thompson, 2001), and our rejoinder (Knapp & Sawilowsky, 2001b). 
 
If you would like to read more about reliability in general, especially from a 
historical perspective, I recommend the articles by Kelley (1921, 1942), Cureton 
(1931, 1958), Cronbach (1947),  Engstrom (1988), and Marradi (1990); Chapter 
XI on reliability in the book by McCall (1923); the section on reliability in my 
nursing research textbook (Knapp, 1998); the section on reliability and errors of 
measurement in the most recent "Standards" for educational and psychological 
tests (AERA, APA, & NCME, 1999); the chapters on reliability in the Educational 
Measurement compendia (Thorndike, 1951; Stanley, 1971, Feldt & Brennan, 
1989;  Haertel, 2006); and the digest by Rudner and Schafer (2001). 
 
For a nice example of parallel-forms reliability, see the article by Beyer, Turner, 
et al. (2005) regarding the "Oucher" instrument for measuring children's self-
reported pain.  For some particularly good examples of the test-retest approach 
to reliability, see Grant, Hartford, et al. (1995), Grant, Dawson, et al. ( 2003), and 
Hasin, Carpenter, et al. (1997).  For a very creative approach to inter-rater 
reliability for performance tasks where first ratings are given to the entire group of 
persons but second ratings are given to a randomly-chosen subgroup, see 
Livingston (2004).  For further information regarding both the reliability and the 
validity of performance ratings, see Borman, Buck, et al. (2001). 
 
Postscript:  The title of this chapter is "What do we mean by the reliability of a 
measuring instrument?"  Upon further reflection there is a prior question: "What 
do we mean by a measuring instrument?"  In Chapter 14 and a couple of the 
later appendixes (Appendix E and Appendix F) I consider the reliability of claims.  
In that context the person making a claim is "the measuring instrument".  Does 
that make sense.  After you read Chapter 14 and those two appendixes, please 
e-mail me at tknapp5@juno.com and let me know what you think.  Thanks. 
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CHAPTER 2:  Measurement error 
 
 
Before discussing the matter of measurement error, I would like to clarify the 
difference between reliability and validity. 
 
Attribute vs. variable 
 
It is essential to make the crucial distinction between the attribute we are trying to 
measure (e.g., intelligence) and the variable that we are directly concerned with 
(e.g., score on the Wechsler Adult Intelligence Scale).  The former is an abstract 
entity (psychologists call such things "constructs"), while the latter is an attempt 
to "concretize" (or "operationalize") the abstraction.  God only knows what Mary 
Smith's intelligence is.  We mere mortals must settle for trying to get a good fix 
on the measurement for Mary on some instrument such as the Wechsler Adult 
Intelligence Scale.  The "fit" between the attribute and the variable is a matter of 
measurement validity, which as I pointed out in the Preface ultimately comes 
down to a matter of expert judgment.  The "fit" between the measurement 
actually obtained on a variable and the measurement that in some sense should 
have been obtained on that variable (the so-called "true score”, which God alone 
also knows--see below) is a matter of measurement reliability (Knapp, 1985).  
The latter is the focus of this book.   (See Symonds, 1928; Adams, 1936; 
Cureton, 1950, 1965; Cattell, 1964; Heise & Bohrnstedt, 1970; Kaiser & Carter, 
1971; Terwilliger & Lele, 1979; and Suen, 1987 for interesting distinctions and 
connections among reliability, validity, and other measurement terms such as 
“homogeneity”, “objectivity” and "relevance".)  
 
At the end of the previous chapter I said that reliability is a necessary but not 
sufficient condition for good measurement.  "Good measurement" encompasses  
a lot of things: reliability, validity, objectivity, usability, etc.  The fascinating 
question is whether reliability is a necessary condition for validity or if an 
instrument can be valid yet not reliable.  That matter has been extrensively 
debated for many years, with the most recent debate taking place in the pages of 
the  Educational Researcher and the Journal of Educational and Behavioral 
Statistics.  Moss (1994) claimed that you can have validity without reliability.  Li 
(2003) and Mislevy (2004) disagreed; they provided both theoretical and practical 
reasons, while also appealing to the arguments given by Linn (1994) in his 
discussion of recent educational assessment instruments.   In her rejoinder to 
Mislevy, Moss (2004) remained firm in her claim.   It is a very complicated 
problem, with the controversy spilling over into considerations regarding 
"randomness" (see following section), theory vs. practice, and the distinctions 
between "qualitative" and "quantitative" research.  I urge all of you who are 
interested in educational research to read  those articles and draw your own 
conclusions. 
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When is something random? 
 
A discussion of randomness is now in order.  In many measurement textbooks 
the distinction is drawn between “constant” errors of measurement (e.g., being 
always or almost always off on the high side by a couple of inches when 
measuring height) and what some people call “random” errors of measurement 
(e.g., being sometimes off by varying amounts on the high side and being 
sometimes off by varying amounts on the low side).  The former kinds of errors 
are usually ascribed to invalidity and the latter kinds to unreliability.  But how can 
one determine whether or not an error of measurement is random?  Aye, there's 
the rub.  Volumes have been written on the concept of randomness (random 
sampling, random assignment, random ordering, etc.), but there appears to be 
no consensus regarding whether randomness pertains to the process or to the 
product of some endeavor.  Many people (Wallis & Roberts, 1962 being among 
them) would argue, for example, that if a deck of cards is properly shuffled, 13 
cards are drawn, and they're all spades, that sample is a random (though unlikely 
and surprising) sample.   Other people (e.g., Siegel & Castellan, 1988) would 
argue that some sort of "test of randomness" should be made, and "passed", 
before a sample is declared to be a random sample. 
 
What is the relevance of this for measurement reliability?  The principal (and 
happiest) consequence is that all of the theorems, formulas, etc. of "classical" 
reliability theory can be derived with and without the assumption of randomness 
(process or product), and this will be shown in the following chapter.  The 
arguments all revolve around the concepts of true score and error score, to which 
I shall now turn. 
 
Obtained score, true score, and error score 
 
Consider a spelling test that consists of 50 words randomly drawn (the process 
being random) from an unabridged dictionary, dictated to a group of examinees, 
with each examinee asked to write down the spelling of each word (as it is called 
out by an examiner) on a sheet of paper containing the numbers from 1 to 50.  
The score on the test is the number of words spelled correctly.  For each of the 
examinees we can envision three scores: (1) the number of words (s)he spells 
correctly; (2) the number of words (s)he should have been able to spell correctly; 
and (3) some function of the discrepancy between those two numbers.  In the 
classical measurement theory developed by psychologists and educators (see, 
for example, Gulliksen, 1950; Lord & Novick, 1968), the first of these is called the 
individual's "obtained score" or "observed score"; the second is called (her)his 
"true score" (Cronbach, 1970 and elsewhere--and a few others prefer the term 
"universe score"); and the simple difference (obtained minus true) is called an 
"error score".  (The number of words spelled incorrectly is also an obtained 
score, even though it is a count of the number of spelling errors.  Do you follow 
those two different meanings of “error”?)   
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The obtained score might be higher than the corresponding true score (if, for 
example, the person "got lucky" in the sense that the specific 50 words on the 
test were among those that (s)he knew best how to spell).  Or the obtained score 
might be lower than the true score (if, for example, probability dealt the person an 
unlucky blow and those 50 words were among (her)his "sticklers").  Or, but most 
unlikely, the obtained score might be identical to the true score, and there would 
be no error.  The problem, of course, is that all we can know are the obtained 
scores, and we can only speculate about the corresponding true and error 
scores.  Such speculation usually involves assumptions concerning true scores 
and error scores, a matter to be considered in great length in the following 
chapter. 
 
Dunn’s example 
 
Dunn (2004) starts out his book on measurement error with a very interesting 
example of two attempts--with and without "zeroing" between measurements--to 
determine the reliability of a kitchen scale based upon repeated measurements 
of a packet of dried fruit alleged to weigh 500 grams (it says so on the package).  
The word “alleged” is important.  Some people argue that the true weight of an 
object, e.g., a one-pound ball at the National Institute of Standards and 
Technology (NIST), is often known.  Not so.  Every measuring instrument, 
including the instrument that designated the “one-pound” ball for the NIST in the 
first place, no matter how “accurate” it is said to be, is imperfect and is subject to 
measurement error, no matter how small.  Again, God only knows the true weight 
of that one-pound ball.   
 
[Exercise for the reader: Read the article by Greenland, Bowley, et al. (1990) 
very carefully and see if you agree with their arguments regarding “true” 
cholesterol values.]     
 
Continuous vs. discrete variables 
 
The previous definitions assume that the measurements (e.g., number of words 
spelled correctly) are continuous or "continuous enough" so that the matters of 
addition and subtraction are defensible.  For other kinds of measurements, 
particularly dichotomous variables that can take on just two discrete values, a 
and b, and may even be categorical (e.g., a = “yes" and b = "no"), obtained 
score, true score, and error score must be formulated differently (see Chapter 7).  
Things can get even more complicated for variables that are ordinal scales (see 
Chapter 10). 
 
The controversial true score 
 
Do these concepts (obtained score, true score, error score) make sense to you?  
They do to most measurement theorists (especially Lord, 1959c), but some, e.g., 
Loevinger (1957),  Ross and Lumsden (1968)--see also Lumsden’s (1976) 
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review of test theory--and Cliff (1979) think that we should do away with the 
concept of true score (and with most if not all of reliability theory), concentrating 
entirely on the validity of measuring instruments and their associated obtained 
scores only.  I happen to disagree with them (if I agreed with them I wouldn't 
have attempted to write a whole book on reliability!), but I urge those of you who 
might be interested to read their articles very carefully--after you've finished 
reading this book--and decide for yourselves whether or not the concept of true 
score should be abandoned. 
 
Is true score a latent variable?  There has been a great deal written about that in 
the measurement literature.  Schmidt and Hunter (1999) claimed that you should 
consider a true score as both unknown and latent (underlying an obtained score).   
In their commentary regarding Schmidt and Hunter's claim, Borsboom and 
Mellenbergh (2002) claimed that true score, though unknown, is not latent.  They 
argued that any considerations concerning latency were matters of validity, not 
reliability.  Other authors took less extreme positions with respect to the question.  
My colleague, Hak P. Tam, and I have attempted to summarize the various 
arguments (Knapp & Tam, 2007).  It appears to depend upon how you define the 
term "latent variable", as Bollen (2002) had so carefully pointed out. 
   
Some more thoughts about randomness 
 
Returning to the matter of measurement errors, when are they "random"?  For 
the spelling test example they do indeed appear to be random, because chance 
and chance alone determined which words would be on the test, and any 
discrepancy between a person's obtained score and (her)his true score is an 
error that occurs by chance.  But for other equally important measurement 
situations, e.g., measuring a person's height, I would be hard-pressed to call the 
difference between a person's obtained height and (her)his true height a 
"random" error.  It would seem likely that something other than chance produced 
an obtained height of 60 inches, say, if the person's true height were 64 inches 
(an error of four inches).  What might have happened?  If a stadiometer (that part 
of the scale in doctors' offices that measures height) was used, the person may 
not have been standing up straight; or the healthcare provider may have read off 
the height incorrectly; or whatever.  But those eventualities aren't random, are 
they?  Or are they?  Some, I dare say most, measurement experts (see, for 
example, McCall, 1923; Suen, 1990) are willing to call such errors random; I am 
not (I favor the argument that randomness is relevant to a process and not a 
product).  Fortunately, it doesn't matter which "philosophical" stance you take on 
this matter.  Obtained scores, true scores, and error scores can be formulated 
with or without the assumption of random errors of measurement, which 
Gulliksen (1950) so clearly demonstrated in the second and third chapters of his 
text and which I will try to summarize in the chapter that follows. 
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Accuracy, bias, scale differential, and precision 
 
As I indicated in the previous chapter, the term “accuracy” means different things 
to different people.  The most common use has to do with validity; an instrument 
is called  “accurate” if it measures correctly what you want it to measure.  Some 
authors (e.g., van Belle, 2002) equate accuracy with lack of “bias” (where “bias” 
is defined as the difference between the location of obtained measurements for 
the instrument in question and the location of “gold standard” measurements).  
Some of those same authors (see, for example, Lin, 1989 and Liao, 2003) have 
suggested various indexes (called concordance correlation coefficients) that 
summarize for a given instrument its bias, “scale differential” (the discrepancy 
between the instrument’s and the gold standard’s variances), and “precision” 
(which they take to be synonymous with reliability).  I personally shy away from 
all of those terms, and I agree with Feinstein (1985) regarding his arguments 
against their use when referring to the consistency of a measuring instrument. 
 
Additional reading 
 
For more on measurement error, I recommend Cureton (1931), Grubbs (1948; 
1973), Cochran (1968), Hanamura (1975), Topping (1975), Cameron (1982), 
Jaech (1985), Becker (2000), and Schmidt, Le, and Ilies (2003).  [Becker’s article 
and Schmidt, et al.’s article are devoted to the determination of the effect of 
“transient error” on reliability, i.e., measurement error attributable to momentary, 
unrepeatable contexts.]  For interesting discussions of measurement error 
associated with using a surrogate measuring instrument rather than a  
theoretically more appropriate but unavailable instrument, including how to adjust 
for surrogacy, see Gustafson (2004) and some of the references cited in his 
book, especially Bashir and Duffy (1997); Bashir, Duffy, and Qizilbach (1997); 
Brown, Krieger, et al. (2001); Rosner and Gore (2001); and Zidek, Wong, et al. 
(1996).  
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CHAPTER 3: Reliability theory (abridged, with examples) 
 
 
The "classical" theory of reliability proceeds as follows.  
 
The basic concepts 
 
Let X = an obtained measurement; let T = the associated true measurement;  
and let E = the associated measurement error.   In the educational and 
psychological literature, where most of reliability theory has been derived, the 
terms "obtained score", "true score", and "error score" are used.  (See previous 
chapter.)  In other scientific literature the concept of a "score" is often not 
relevant, but I will continue to use the score terminology to apply to any 
measurement context where X is what we know, and T and E are what we 
wished we knew.   
 
The first few axioms, definitions, and theorems 
 
Axiom #1 (unprovable but reasonable assumption):  X = T + E. 
 
This axiom proposes that any obtained score is the simple sum of the associated 
true and error scores.  Therefore we also have T = X - E and E = X - T.  Let us 
first define error score, and true score will fall out as the difference between X 
and E.  Later on in the chapter we will take the opposite approach by first 
defining true score and letting error score fall out as the difference between X 
and T. 
 
Definition #1:  An error score, E, is a number in the same metric as X (both are in 
inches, for example), with the properties (a) it has a mean of 0 when several 
objects are measured with the instrument; and (b) it is uncorrelated with 
everything that is unknown--true score for that same instrument, error score for 
any other instrument, etc.   
 
Those two properties are what are alleged to make an error "random" (in the 
product sense).  Having a mean of 0 implies that there is no systematic bias; for 
some objects you're off on the high side and for others you're off on the low side.  
Being uncorrelated with true score and other error scores implies that it "plays no 
favorites"; a positive error is just as likely to be associated with a low true score 
as a high true score, for example. 
 
Theorem #1:  The mean of X is equal to the mean of T, i.e., MX  = MT .   
 
Proof:  Since X = T+E, MX = MT+E.  But MT+E = MT + ME  (from basic statistics) 
and ME = 0 (from the preceding definition of error score). Therefore MX = MT . 
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This theorem (if satisfied) indicates that no matter how reliable or unreliable an 
instrument may be, when you measure several objects with it, the mean of the 
obtained scores that you do get is equal to the mean of the true scores that you 
would have gotten (if they were known).  That's not saying much, but it's a start. 
 
Theorem #2:  The variance of the obtained scores, X, is equal to the variance of 
the true scores,T, plus the variance of the error scores, E, i.e., SX

2  =  ST
2  + SE

2 . 
 
Proof:   It can be shown in mathematical statistics that the variance of any sum is 
equal to the sum of the corresponding variances plus twice the sum of the 
pairwise covariances.  Since X = T + E, the variance of X is equal to the variance 
of T plus the variance of E plus twice the covariance of T and E.  It can further be 
shown that the covariance of T and E is the correlation (Pearson product-
moment) between T and E multiplied by the product of the standard deviation of 
T and the standard deviation of E.  But the correlation between T and E is equal 
to zero by the above definition of an error score.  Therefore, the variance of X 
reduces to the sum of the variance of T and the variance of E. 
 
Note that the standard deviation of X is NOT equal to the standard deviation of T 
plus the standard deviation of E.  Theorem #2 is just like the Pythagorean 
theorem; c2 = a2 + b2, but c ≠ a + b.  The standard deviation of E, i.e., the 
standard deviation of the errors of measurement (the square root of the variance 
of E), is given a special name, the standard error of measurement, and it will be 
afforded considerable attention later in this chapter and in Chapter 5.   
 
This second theorem indicates that the dispersion (spread) of obtained scores is 
attributed to the dispersion of the true scores and the extent to which the 
dispersion of those true scores has been "inflated" by measurement error.  If all 
of the obtained variance is true variance (unlikely), then there is no error 
variance.  On the other hand, if all of the obtained variance is error variance (also 
unlikely), then there is no true variance (all of the objects being measured have 
the same true score but get different obtained scores solely because of 
measurement error).  One would expect that for most measurement situations 
the true variance would represent most, but not all, of the total obtained variance. 
 
Definition #2: The proportion of obtained variance that is true variance, i.e., 
ST

2/SX
2, is a quantity (although unknown, since ST

2 is unknown) we shall refer to 
as the reliability coefficient, rXX.   
 
The reliability coefficient is not a coefficient in the strict mathematical sense of 
that word (it doesn’t necessarily multiply anything) and it is given the symbol rXX 
because it is sort of a "self-correlation" of X with X--see Cronbach (1947) and 
Horst (1954).  It can take on any value between 0 and 1, and there is a vast 
literature on various ways to estimate it.  I shall discuss much of that literature 
throughout the rest of this book. 
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A hypothetical example 
 
Suppose that you measure basketball player Mary Smith's height once with a 
particular yardstick manufactured by the John Jones Company.  (Have her stand 
against a wall with her head in the so-called "Frankfort plane", then ask her to 
step away and permit you to measure from the floor to the spot on the wall 
corresponding to the top of her head.  If she is more than three feet tall you'll 
have to slide the yardstick along once or twice.)  You determine that her obtained 
score, X, is 60 inches, i.e., 5 feet, no inches.  Her unknown true score, T, is in the 
same metric as X; so is her unknown error score, E.  Any combination of T and E 
could have produced X (59 + 1, 62 - 2, 60 + 0, etc.).  Moreover, that particular 
yardstick could be a poor way to measure height (but that's validity, not reliability; 
please don't ever forget that).  Assume that Mary’s error score is -4 inches (God 
tells you that), so that her true score is 64 inches (by solving for T in the equation 
T = X - E). 
 
Now measure the heights of six other basketball players with that same 
yardstick.  (Six more players won't give us “several” people, but it will suffice for 
our present purposes.)  Suppose that you obtain the following heights X, God 
provides the errors E, and you calculate the true scores T.  These data are purely 
hypothetical, but they satisfy all of the previous definitions, axioms, and theorems 
(check that for yourself or see below). 
 
Person       X          T      E  
 
1  (Mary)      60        64      -4  
2  (Carol)      64        66      -2  
3   (Alice)      74        68     +6  
4   (Bob)      72        70     +2  
5   (Ted)      72        72       0  
6   (Joe)      78        74     +4  
7   (Jim)      70        76      -6  
 
A different approach 
 
And now, the promised alternative approach to X, T, and E. 
 
Definition #3:  An object's true score, T, is the average of the object's obtained 
parallel measurements, X, for a very large number of such measurements. 
 
Talk about a theoretical notion!  What do we mean by "parallel" measurements?  
How large is very large?  It's tough enough to measure an object once; how can 
we measure an object more than once without affecting its true score? 
 
Those are all very good questions.  Let's take them one at a time: 
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Definition #4:  Two or more forms of a measuring instrument are called parallel 
(equivalent, alternative, exchangeable, comparable) if an object's true score is 
the same for all forms (a judgment call) and if all forms produce equal means, 
equal variances, and equal inter-correlations when applied to a very large 
number of objects at the same point in time. 
 
That helps.  You would be hard-pressed, for example, to consider two  
thermometers to be parallel if there were systematic differences between the 
temperature readings produced when they were used to measure the same 
persons at approximately the same time.  And you would also not be willing to 
regard two history tests to be parallel if one of them were much more difficult 
than the other for all examinees.  But this leaves the matter of "very large" still 
unresolved.  Mathematicians like to talk about "approaching infinity", but that's 
not very comforting; let's leave it at "very large", at least for the time being.   
 
Measuring each object more than once remains a practical problem in some 
situations (e.g., many temperature measurements taken on many persons), but 
not others (e.g., many spelling items administered to many persons).  In any 
event, we shall take the perhaps-debatable position that an object's true score 
remains constant, and is unaffected by the measurement process itself, at least 
during the particular time period in which the instrument is to be used.  (See 
Hoffman, 1963 regarding some alterations to reliability theory when true scores 
might change due to practice effects.) 
 
The easy part now is that if we still assume that X = T+E, E falls out by simple 
subtraction of T from X, i.e., E = X -T.  Unfortunately, however, the two theorems 
stated above (MX = MT + ME  and SX

2 = ST
2 + SE

2) cannot be proven in the same 
way, because those proofs depended upon the concept of random error and its 
associated properties.  But the reliability coefficient will continue to be defined as 
ST

2/ SX
2. 

 
Alternative proof of Theorem #1:  MX = MT 
 
By the new definition of true score, T for any object is the average across parallel 
forms of the corresponding X's for that same object.  Therefore, the average T 
across objects is the same as the average across objects of the average X for 
each object.  But that is the same as the average X; hence MT = MX , or, 
equivalently, MX = MT.  
 
Proof that ME = 0: 
 
ME = MX-T (since E=X -T).  MX-T = MX - MT (from basic statistics).  But MX = MT.  
Therefore, ME= 0. 
[This was part of the definition of error score earlier on, but it needed to be 
proven here.] 
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Proof that rTE = 0: 
 
The correlation (Pearson product-moment) between any two variables U and V 
can be written as rUV = (∑UV - NMUMV) / NSUSV , where N is the number of 
objects for which you have data, the M's are the means, and the S's are the 
standard deviations (trust me). 
 
Letting U = T and V = E, we have 
 
rTE =  (∑TE - NMTME)/ NSTSE  = {∑T(X -T) - NMTMX-T)} / NSTSX-T  
 
Expanding, simplifying, and appealing to Theorem #1, we have  
 
rTE =  {∑TX - ∑T2 - NMT(MT - MT)} / NSTSX-T 
 
But ∑TX is actually a double summation across objects and parallel forms of X 
and is equal to ∑T2 .  Therefore the numerator of the expression for rTE  is equal 
to 0 and rTE  itself is equal to 0. 
 
[This was also part of the definition of error score if errors are assumed to be 
random, but it also needed to be proven here.]  
 
Alternative proof of Theorem #2:  SX

2 = ST
2 + SE

2. 
 
The variance of the error scores, SE

2, is equal to SX-T
2 (since E=X -T), which from 

mathematical statistics is equal to the sum of the variance of X and the variance 
of T minus twice the covariance of X and T, that covariance being equal to the 
product of the correlation between X and T, the standard deviation of X, and the 
standard deviation of T; i.e., 
 
SE

2 = SX
2 + ST

2 - 2rXT SXST. 
 
If  rXT SX  can be shown to be equal to ST  the theorem will be proven, since the 
right-hand side of the equation would reduce to SX

2 - ST
2 and SE

2  =  SX
2 - ST

2  is 
the same as SX

2  = ST
2 + SE

2.  That's a bit tricky, but here goes. 
 
rXT = (∑XT - NMT

2) /NSXST from the general formula for a Pearson r.  But ∑XT = 
∑TX  is a double summation across objects and forms (see above) and ∑TX = 
∑T2.  Substituting ∑T2 for ∑XT in the formula for rXT and re-arranging slightly, we 
have that rXT = {(∑T2 - NMT

2)/N} /SX ST.  But the term inside the braces is equal to 
ST

2, because the variance of any variable U can be written in the form  
(∑U2 - NMU

2)/N  (trust me regarding that also), giving rXT = ST/SX or rXT SX = ST, 
as advertised.   
 
Since true scores are assumed to be constant across parallel forms for which 
obtained variances are defined to be equal, the variance of the true scores is 
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also constant, and a consequence of this theorem is that the error variances of 
the forms are also equal, differing from the obtained variance by that constant. 
 
[I hate to have to say it, but some people (e.g., Votaw, 1948) include in the 
definition of parallel forms the requirement that the forms also have to have equal 
validity for predicting some external criterion--see the discussion of criterion-
related validity in Appendix B--but other people (like me) do not, because they 
feel that validity is a separate matter.] 
 
Some other concepts and terminology 
 
The expression for the correlation between obtained scores and true scores (rXT  

= ST/SX) is the ratio of the standard deviation of the true scores to the standard 
deviation of the obtained scores, which is in turn equal to the square root of the 
reliability coefficient, i.e., rXT = √ rXX , and it is often referred to as the "index of 
reliability".  Some authors of measurement textbooks prefer to emphasize its 
square, rXT

2 , which is equal to ST
2 / SX

2 = rXX , so that it can be interpreted just 
like any other squared correlation as the proportion of the variance of X that is 
“accounted for” by the variance of T.  [Some even square the rXX ; that’s just plain 
wrong.] 
 
An interesting variation of the reliability coeficient is the signal-to-noise ratio, 
which is equal to rXX / (1 - rXX ), for rXX ≠ 1 .  See Cronbach and Gleser (1964) 
regarding some advantages and some disadvantages of that ratio. 
 
In the educational and psychological measurement literature two forms of a 
measuring instrument are called "tau-equivalent" if each object's true score is the 
same for both forms but the error variances are not equal.  They're called 
"essentially tau equivalent" if the true scores differ only by an additive constant 
and the error variances are unequal.  And they're called "congeneric" if the true 
score on any one form is a linear transformation of the true score on any other 
form, again for unequal error variances.  See Traub (1994), Dunn (2004), or 
Graham (2006) for a discussion of those variations on parallelism.  They will not 
be treated any further in this book. 
 
Topping (1975) allows for systematic bias by defining “accuracy” in terms of the 
difference between T and the average X for a given object, and by defining 
“precision” in terms of the variance of the X’s from one another regardless of the 
corresponding T for that object.  Chalk up another instance of terminological 
confusion? 
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The key theorem 
 
Although we seem to be making some progress in being able to prove a couple 
of theorems, we still have too many unknowns.  How can we convert at least 
some of those unknowns into knowns?  One very promising way is to see if we 
can prove the following theorem. 
 
Theorem #3:  The reliability coefficient, rXX, for a particular instrument, is equal to 
the correlation between parallel forms, A and B, of that instrument; i.e., rXX = rAB. 
 
Proof:  The correlation between A and B can be written as (∑AB - 
NMAMB)/NSASB   --see above.  But MA  = MB = MT, by the definition of parallel 
forms and by Theorem #1.  Therefore, this expression can be written as (∑AB - 
NMT

2) /NSASB.  Furthermore, ∑AB = ∑(T+EA)(T+EB) = ∑ (T2 + TEA  + TEB + 
EAEB).  Summing those individual terms we have ∑T2 + ∑TEA  + ∑TEB + ∑EAEB.  
The two middle terms are equal to zero.  (That is because true and error scores 
were defined to be uncorrelated according to the concept of random error, and 
then proven to be uncorrelated without appealing to that concept.  Since those 
correlations are equal to zero so are the sums of the corresponding cross-
products, whenever ME also is equal to zero.).  That leaves ∑T2 and ∑EAEB.  The 
latter term is equal to zero if we assume the E's are random.  But if we don't, we 
have to prove that it is equal to zero.  Here goes. 
 
∑EAEB = ∑(XA - T)(XB - T) = ∑XAXB  - ∑XAT - ∑XBT + ∑T2   [expanding and 
summing] 
 
But by the above argument concerning double summation, all four of those 
summations can be written as ∑T2.  Since two of them are positive and two of 
them are negative, ∑EAEB = 0. 
 
Returning to the expression for the correlation between two parallel forms, it can 
now be written as ∑(T2 - NMT

2) /NSX
2, because SA = SB = SX   (A and B being 

parallel forms of X).  That expression in turn is the product of ST
2 (see above) 

and 1/SX
2.  Therefore the correlation between two parallel forms is equal to 

ST
2/SX

2, or rXX, the reliability coefficient. 
 
Whew!  But all of that algebra was worth it, because we now have a way of 
calculating (or at least estimating) a reliability coefficient: Construct, or try to 
construct, two parallel forms of an instrument, get obtained scores on both forms 
for a very large number of objects, and correlate the two.  And you don't have to 
worry about whether or not the measurement errors are random if you are willing 
to accept the definition of a true score as the (unknown) average of parallel 
measurements.  An additional benefit is that we can also calculate (estimate) the 
standard error of measurement.  Since SX

2  = ST
2  + SE

2  by Theorem #2, and  rAB 
= rXX = ST

2/SX
2 by Theorem #3, re-solving the first expression for SE

2, we have 
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SE
2 = SX

2 - ST
2 = SX

2 - rAB SX
2 = SX

2 (1 - rAB ), so that SE = SX √ (1 - rAB ). 
 
A caution concerning parallelism and reliability 
 
It should go without saying, but I'll say it anyhow, that parallelism does not 
guarantee reliability.  You could have two perfectly parallel forms whose 
measurements correlate zero with one another, and the forms would therefore be 
perfectly unreliable.  This is the same situation that could prevail if the means 
and variances for two identically-scaled instruments, e.g., a math test and an 
English test, were equal, but there was a zero correlation between them.  Equal 
means and equal variances tell you nothing about how related two variables are. 
 
Truman Kelley on parallelism and reliability 
 
Truman L. Kelley (1921, 1923, 1925, 1927, 1942, 1947, and many other sources) 
was one of the pioneers in educational measurement and statistics.  He took an 
interesting and controversial stance on parallelism and reliability.  First of all, he 
insisted that the parallel forms approach (full forms or half forms--see Chapter 8) 
was the only defensible approach to reliability.  (Louis Guttman, 1945 and 
elsewhere, another authority on measurement and statistics, claimed that test-
retest was the proper approach; but see Hoffman, 1963 for the problem of 
practice effects.)  Secondly, he (Kelley) argued that the determination of 
parallelism was primarily an act of judgment and (unlike what I have postulated in 
this chapter--see above definition of parallelism) not a mathematical matter.  
Finally, he defined the reliability coefficient as the correlation between all possible 
inter-individual differences on one form of an instrument and all possible inter-
individual differences on a parallel form, which he showed (Kelley, 1942) to be 
equal to the correlation between the obtained scores on the two forms and, by 
transitivity, to be also equal to the ratio of true variance to obtained variance.  He 
rejected the test-retest approach because he claimed that the mental processes 
at Time 2 are different from those at Time 1.  And he referred to all of the internal 
consistency measures (see Chapter 8) as "cohesion" or "coherence" coefficients, 
not reliability coefficients.  His arguments are very persuasive, but unfortunately 
(for Kelley) he lost the fight.  (See the discussion by Traub, 1997, of that 
fascinating controversy.)  
  
A much-later reflection of Kelley’s approach was the postulation by Savedra, et 
al. (1989) of the parallelism of two forms for pain identification by children: (1) 
marking on body outlines; and (2) and pointing to locations on their own bodies. 
  
A couple of examples (one hypothetical, one real) 
 
The first example is an extension of the example of the heights of seven 
basketball players treated earlier in this chapter.  Suppose that you measure 
those same people a second time with another yardstick manufactured by the 
John Jones Company, and God provides you with the corresponding set of error 
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scores (the true scores are assumed to remain the same).  Here are the data; the 
first, third, and fourth columns of data are the same as the three previous 
columns of data.  The measurements are all in inches. 
 
    Hypothetical data 
 
Person First X  Second X True T  First E  Second E 
 
1 (Mary)     60        64     64     -4         0 
2 (Carol)     64        64     66     -2        -2 
3 (Alice)     74        74     68    +6       +6 
4 (Bob)     72        64     70    +2        -6 
5 (Ted)     72        76     72      0       +4 
6 (Joe)     78        70     74    +4        -4  
7 (Jim)     70        78     76     -6       +2 
 
By merely "eyeballing" these data it would appear that the yardsticks are 
unreliable, since those true heights in general aren't very close to the 
corresponding obtained heights, and the errors are all over the place.  But just 
how unreliable are they (for these seven people on these two occasions)? 
 
First, some basic statistics: 
 
N   =   7 
 
MX1 = 70  (the mean of the first set of obtained heights) 
 
MX2 = 70  (the mean of the second set of obtained heights) 
 
SX1

2  = 32  (the variance of the first set of obtained heights) 
 
SX2

2  = 32  (the variance of the second set of obtained heights) 
  
[Note that both of these variances were calculated by dividing the sum of the 
squared deviations by N.  You only use N-1 when you have a random sample 
and you want to get an unbiased estimate of a population variance--see Knapp, 
1970.  I am treating these seven people as a population.] 
  
That's comforting; the two yardsticks appear to be "parallel".  Let's call both of 
those means MX and both of those variances SX

2, and calculate some more 
reliability-relevant statistics. 
 
MT  = 70 
 
Theorem #1 is satisfied. 
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ME1 = ME2 =  0 = ME 
rTE1 =  rTE2 =  rE1E2 = 0 
 
That's very nice.  The errors appear to be "random". 
 
ST

2  = 16 
 
SE1

2 = SE2
2 = 16 = SE

2       ( SE = √16 = 4) 
 
SX

2 = 32 = ST
2  +  SE

2 = 16 + 16  
 
Theorem #2 is satisfied. 
 
rX1X2 =  rAB = .50 = ST

2/SX
2  =  rXX (the reliability coefficient).  Also rX1T = rX2T = rXT 

= √ rXX = .71 
 
Theorem #3 is satisfied. 
 
SE can also be determined by calculating SX √ (1 - rXX)  =  SX √ (1 - rAB) =  √32 
times √ (1 - .50) = 4 (see above).  And there is even a third formula for SE , which 
is particularly useful for estimating the standard error of measurement for real 
data (where all of the assumptions underlying classical reliability theory may not 
be perfectly satisfied), and it is √ (∑ di

2 / 2N), where di is the difference between 
paired simultaneously-obtained measurements for object i and N is the total 
number of objects being measured (i = 1,2,...,N).   In some of the measurement 
literature the quantity yielded by this formula is called the "technical error of 
measurement" (TEM), rather than the standard error of measurement.  For our 
hypothetical example, the di  (= First X - Second X) are  -4, 0, 0, 8, -4, 8, and -8, 
respectively; their squares are 16, 0, 0, 64, 16, 64, and 64, again respectively; 
the sum of those squares is 224; and 2N is 14.  Substituting the last two numbers 
in the formula for TEM, we have √ (224/14) = √16 = 4.  For more on the technical 
error of measurement, see the articles by Engstrom (1988) and by DeKeyser and 
Pugh (1990); and my article on TEM in the American Journal of Physical 
Anthropology--Knapp, 1992 (along with the references cited therein).    
 
[Exercise for the reader:  I have not given you the correlations between the X's 
and the E's.  If you have easy access to a statistical computer package such as 
MINITAB or SPSS or SAS, enter the above data into your computer and ask your 
package to calculate all ten of the pairwise correlations for the five columns of 
numbers and see what you get.  You may be in for a surprise.  It turns out that 
the correlation between X (either X) and E (either E) is equal to √ (1 - rXX), which 
is equal to zero only if rXX =1 (for these data it just happens that rXE  is the same 
as rXT, i.e., .71), whereas the correlation between T and E (either E) is always 
equal to zero in classical reliability theory.] 
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Regarding the question posed above (how unreliable are the Jones yardsticks?), 
based upon these data (which are admittedly meager, but that's all we have!), the 
answer is "very", since only 50% of the variation in the obtained measurements is 
"accounted for" by the variation in the true measurements.  The other half of the 
variation can be attributed to measurement error.  Would you like to use either of 
those yardsticks to measure people's heights?  I wouldn't.   
 
    Real data 
 
In real life we will not have perfectly parallel forms of our measuring instruments, 
and we'll never know the true scores and the error scores, so we'll have to make 
some additional assumptions and be willing to settle for all sorts of 
approximations to the "real" reliabilities of those instruments.  Consider, for 
example, the data obtained by Bland and Altman (1986) in their investigation of 
the measure-remeasure reliabilities of two instruments for measuring the peak 
expiratory flow rate (PEFR) of 17 subjects.  (See also Altman & Bland, 1983; 
Bland & Altman, 1999.  They and a few other authors, e.g., Haber & Barnhart, 
2008, and  Yi, Wang, & He, 2008, are interested in "method comparison".   It is a 
term that is not usually concerned specifically with reliability or validity, but  refers 
to an investigation of both within-instrument and between-instrument agreement, 
with neither taken as a gold standard for the other.)  The instruments were a 
Wright Peak Flow Meter and a "Mini" Wright Peak Flow Meter, and the obtained 
data (expressed in liters per minute) were as follows, using X for Wright and Y for 
Mini Wright: 
 
         Wright        Mini Wright 
Subject First X    Second X  First Y     Second Y 
     1    494        490    512         525 
     2    395        397    430         415 
     3    516        512    520         508 
     4    434        401    428         444 
     5    476        500    500         500 
     6    557        611    600         625 
     7    413        415    364         460 
     8    442        432    380         390 
     9    650        638    658         642 
    10    433        429    445         432 
    11    417        420    432         420 
    12    656        633    626         605 
    13    267        275    260         227 
    14    478        492    477         467 
    15    178        165    259         268 
    16    423        372    350         370 
    17    427        421    451         443 
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[Note that I use "object" and "subject" interchangeably if the objects are people, 
contrary to the use of those two terms in English grammar, where "object" and 
"subject" are definitely not interchangeable!] 
 
These data show that the two measurement occasions weren't exactly parallel for 
either instrument.  The mean First X for the Wright data is 450.4, whereas the 
mean Second X for the Wright data is 445.4 (the variances are 12730.06 and 
13462.74, respectively).  The mean First Y for the Mini Wright data is 452.5, 
whereas the mean Second Y for the Mini Wright data is 455.4 (the variances are 
12039.16 and 11659.00, respectively).  But both instruments appear to be very 
reliable, with the correlation between First X and Second X for Wright = .983 and 
with the correlation between First Y and Second Y for Mini Wright = .967.  The 
other correlations are .943 between First X and First Y, .936 between First X and 
Second Y, .957 between Second X and First Y, and .952 between Second X and 
Second Y.  Those are surprisingly high, aren't they, especially the correlation 
between First X and Second X and between First Y and Second Y, given, for 
example, the discrepancies between the First X and the Second X for Subject 6 
and for Subject 16 on the Wright, and the discrepancy between the First Y and 
the Second Y for Subject 7 on the Mini Wright?  But keep in mind that correlation 
coefficients are indicative of relative, not absolute, agreement--Bland and Altman 
(1986) argue that point very well--and those correlations are only equal to the 
reliability coefficients when all of the tenets of classical reliability theory are 
satisfied. 
 
The standard error of measurement for both instruments is approximately 15 to 
20 liters per minute.  This is a bit difficult to estimate, since it is theoretically equal 
to SX √ (1 - rXX ), and  the standard deviations for the obtained measurements on 
the two occasions are not the same for either instrument, but if we average the 
two variances for the Wright data, take the square root of that average variance, 
and use that for SX in the formula for the standard error of measurement, we get 
14.9.  (In a similar manner we get 19.9 for the Mini Wright data).  I will explain 
how a standard error of measurement should be used when I discuss the 
interpretation of individual measurements in Chapter 5.       
  
[Another exercise for the reader who has easy access to a computer and a 
statistical package:  Enter the Bland & Altman data, ask your software to 
calculate all of the means, variances, and correlations, and see if you get the 
same answers that I did, at least to the same number of decimal places.  (I have 
argued elsewhere--Knapp, 2001--that you need not report reliability evidence to 
all of those decimal places that are provided by most modern statistical 
packages.) You might also want to make a couple of scatterplots, e.g., Second X 
against First X for the Wright meter, to see if the relationship between the two 
variables looks linear.] 
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Additional reading 
 
As indicated by the title of this chapter, the foregoing has been an abridged (and 
simplified) account of the basic concepts in classical reliability theory.  If you 
would like to read a similar abridged account, see Chapter 5 of Furr and 
Bacharach (2008) and/or Chapter 5 of my little paperback book on statistics for 
educational measurement (Knapp, 1971)--with all its warts (lots of typos, so be 
careful).  If you would like to pursue such theory in greater depth, I strongly 
recommend that you read Gulliksen's (1950) "old" but excellent text, especially 
the first three chapters.  You might also want to look up the chapters by 
Thorndike (1951), Stanley (1971), Feldt and Brennan (1989), and Haertel (2006) 
in the Educational Measurement compendia; the chapter by Bohrnstedt (1983) in 
the Handbook of survey research; the chapter on reliability and validity in 
Rosenthal and Rosnow (1991); Chapter 16 in Agresti and Finlay (1997); the 
monograph by Thurstone (1932); the previously-cited text by Traub (1994); the 
articles by Jackson (1939), Guttman (1953b), Cureton (1958), Lord (1959c), 
Novick (1966), Maxwell (1968), Traub (1997), van Belle and Arnold (2000); the 
clever "shoe size" note by Rogosa (2002); and the comparison of various 
reliability coefficients by Charter (2003). 
 
A recent paper by Hershberger, Fisher, et al. (2005) addresses the problem of 
what happens to test-retest reliability if the error scores are correlated.  They use 
as an example self-reported age of first drug use. 
 
I am very comfortable with classical reliability theory, and so are many others, but 
there are a number of very vocal critics who are not.  I already mentioned 
Loevinger (1957), Ross and Lumsden (1968),  Lumsden (1976), and Cliff (1979); 
but there is also Guttman’s (1953a) review of Gulliksen's book [with Gulliksen’s 
(1953) rejoinder] and the article by Bock and Wood (1971), which is another 
critical review of classical reliability theory.  Then there are those who propose 
generalizability theory (e.g., Cronbach, Gleser, et al., 1972;  Shavelson & Webb, 
1991; Brennan, 2001), item response theory (e.g., Hambleton, Swaminathan, & 
Rogers, 1991; van der Linden & Hambleton, 1997), or structural equation 
modeling (e.g., Bollen, 1989; Mueller, 1996)  as alternative approaches to the 
theory of reliability for educational and psychological measurement.  McDonald’s 
(1999) textbook on test theory is a good source for comparisons of all of those 
approaches.  Some of the principal differences between the concepts of classical 
reliability theory and those of generalizability theory, item response theory, and 
structural equation modeling will be explained briefly in Chapter 13 of this book. 
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CHAPTER 4:  Attenuation 
 
 
"Attenuation" is a fancy term for the reduction of the magnitude of a result due to 
the unreliability of measuring instruments.  In this chapter I would like to talk 
about the effect of attenuation on various statistics (especially the correlation 
between two variables) and how one might correct for it. 
 
What happens, and why 
 
The effect is easy to state.  If the axioms and theorems of classical reliability 
theory are satisfied, attenuation attributable to any amount of unreliability 
associated with measuring instruments lowers the correlation between any two 
variables such as height and weight, age and pulse rate, intelligence and 
achievement, or whatever.  This can be shown by comparing the correlation 
between Obtained X and Obtained Y with the correlation between their true 
counterparts, i.e., rXY vs. rTxTy, as follows: 
 
rXY  =(∑XY - NMXMY) /NSXSY   [my favorite formulation for the Pearson 
correlation] 
 

={∑(Tx + Ex)(Ty + Ey) - NMTxMTy}/N {(STx/√rXX)(STy/√rYY)} [using Axiom #1 
regarding the connection between obtained scores, true scores, and error 
scores; appealing to Theorem #1 regarding  the equality of the mean obtained 
score and the mean true score, and solving for SX and SY in the definitional 
formulas for the reliability coefficient for each of X and Y] 
 
= (√rXX) (√rYY) {(∑TxTy - NMTxMTy)} /NSTxSTy  [re-arranging, and because 
when distributing the summation across the four terms in the product of Tx + 
Ex and Ty + Ey all of the terms drop out (are equal to 0) except for ∑TxTy] 
= (√rXX)(√rYY) rTx,Ty  [using once again the now-familiar--I hope--formulation for 
the correlation between two variables, this time Tx and Ty] 
 

But rXX and rYY are both between 0 and 1, and so are their square roots.  
Therefore, rXY is always less than or equal to rTxTy, i.e., the correlation that you 
actually get between two variables is a lower bound for the true correlation that 
you would have gotten if you had the true scores rather than the obtained scores.  
The effect is conservative.  If there is any unreliability associated with either 
instrument, the user of the instruments must make weaker claims about the 
relationship between measurements obtained with those instruments.  That is as 
it should be.  It would be scientifically anomalous if you were able to find stronger 
relationships with unreliable instruments than with reliable ones.  [Carroll (1997) 
does provide a non-intuitive example of a situation of “reverse-attenuation” for 
which the correlation between obtained scores is actually greater than the 
correlation between the corresponding true scores.] 
 



2009Knapp-Reliability.doc  Page 32 

The "correction" 
 
The above derivation also leads to a "correction for attenuation".  By solving for 
rTxTy in the last step of the derivation we find that 
 
 rTxTy = rXY/(√rXX)(√rYY)   [if neither rXX nor rYY is equal to zero]..    
 
So if you would like to estimate what the correlation might have been between 
True X and True Y, you would estimate the reliability coefficients of X and of Y 
(by knowing the correlation between the measurements on parallel forms of 
each), and divide the obtained correlation rXY  by the product of the square roots 
of the reliability coefficients. 
 
Let's take an example (a hypothetical example with numbers that come out 
nicely).  Suppose that for a group of 100 people you have obtained a correlation 
of .54 between their heights, X, and their weights,Y,  when using a particular 
healthcare facility’s scale, call it "Form A".  Suppose further that you have also 
measured their heights and their weights using a second, "parallel", scale, call it 
"Form B", and the correlation between the Form A and Form B heights is .81 and 
the correlation between the Form A and Form B weights is .64.  Then the 
"corrected for attenuation" estimate of the correlation between true height and 
true weight for those 100 people measured with those scales is equal to  
.54/ (√.81) (√.64) = .54/ (.90) (.80) = .54/.72 = .75.  The obtained correlation that 
you did get (.54) is considerably less than the correlation that you should have 
gotten (.75) if you had the true heights and the true weights, because the latter 
has been "attenuated" by the less-than-perfect reliabilities of the measuring 
instruments.  (There are actually four correlations between the heights and the 
weights involved here, viz., the correlation between the Form A heights and the 
Form A weights, the correlation between the Form A heights and the Form B 
weights, the correlation between the Form A weights and the Form B heights, 
and the correlation between the Form B heights and the Form B weights, but to 
strain this hypothetical example beyond credulity, let us assume that all of them 
are equal to .54.) 
 
What can go wrong? 
 
This is fine in theory, but in the real world the situation can get complicated and 
strange things can happen.  First of all, we may only have one height&weight 
scale, not two.  No problem, you say?  Just measure everybody's height and 
weight twice with that same scale (the so-called test-retest or measure-
remeasure approach), because the numbers won't know whether the "Form B" 
heights and weights were obtained with one scale or with interchangeable 
scales?  Well, maybe, but remember what we need to say about errors of 
measurement.  No matter how big or small they are, the errors associated with 
the second measurements are either assumed to be or can be shown to be 
uncorrelated with the errors associated with the first measurements, and the true 
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score is assumed to be the same for both forms.  Both are less likely to be the 
case if only one "form" of an instrument is used (see, for example, Kelley, 1923; 
1942).   
 
There's more.  For practical reasons you may be only able to measure the 
people's heights and weights once and must rely on other studies carried out on 
other people for estimates of the reliability coefficients for the heights and for the 
weights yielded by healthcare scales in general.  (Worse yet, you may have to 
rely on evidence for the reliability of height and weight measurements using other 
devices such as yardsticks and inexpensive bathroom scales!)  Suppose that to 
be the case here, and you find that Miller (I just made that up) reported estimated 
reliabilities of .49 and .36 for her healthcare scale heights and weights, 
respectively.  (I assure you that they're not nearly that bad, but I'm trying to make 
a point.)  Substituting those values for rXX and rYY in the correction-for-attenuation 
formula you get .54 / (√.49) (√.36), which is equal to 1.28, i.e., a reliability greater 
than 1.  (See Tam & Knapp, 1997 for a similar example.)  That wouldn't make 
sense, because a correlation coefficient cannot be greater than 1.  (I hesitate to 
add that it is possible, although extremely unlikely, to get a NEGATIVE 
correlation between, say, the Form A weights and the Form B weights--if the 
axioms of reliability theory are not satisfied--rendering the situation equally 
anomalous, because one cannot find the square root of a negative value without 
getting involved with complex, i.e. imaginary, numbers.)  
 
There's even more yet.  If you have a matrix of estimated correlations between 
true scores for pairs of variables, and you try to use those correlations rather 
than the obtained correlations in a subsequent statistical analysis (a multiple 
regression analysis or a factor analysis, for example), it can happen that those 
correlations are not compatible with one another (the mathematical statisticians 
call such a matrix "non-Gramian").  That is, there may not exist any set of real 
numbers for which those correlations would be possible, in which case the 
desired analysis could "blow up" and not be capable of being carried out.  (Those 
of you who are familiar with the "pairwise deletion" approach to missing-data 
problems should be aware that the same thing can happen there.) 
 
How many ways are there to get a particular correlation between two variables? 
 
Going back to the equation rXY = (√rXX ) (√rYY ) rTxTy  ,  if the obtained correlation 
between two variables is equal to zero (unlikely, but possible), the usual 
conclusion is that there is no (linear) relationship between those variables.  That 
may be, i.e., the correlation between true scores for the variables could be equal 
to zero, but it could also be the case that the true correlation is non-zero and 
either or both of the reliability coefficients for X and for Y are equal to zero, 
rendering that "triple product" equal to zero.  At the opposite extreme, if the 
obtained correlation is equal to one (also unlikely, but also possible) all three of 
rXX, rYY, and rTxTy must be equal to one, i.e, perfect reliability for both X and Y and 
a perfect linear relationship between their true scores.  For any obtained 
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correlation between 0 and 1 there is an infinite number of combinations of rXX, 
rYY, and rTxTy  that could have produced that correlation.  For example, if the 
obtained correlation is .25, it could be that the reliability coefficients for X and Y 
are both 1 and the true correlation is .25; the reliability coefficients are both .25 
and the true correlation is 1; the reliability coefficient for X is .25, the reliability 
coefficient for Y is 1, and the true correlation is .5; or whatever.  Do you see why 
a knowledge of the reliability of measuring instruments is very important?  
(Fleiss, 1986 felt it was so important that he devoted the very first chapter of his 
book, The design of clinical experiments, to “Reliability of measurement”.) 
 
The effect of attenuation on other statistics 
 
Pearson correlations aren't the only statistics that can be attenuated by 
unreliability.  Those who are familiar with the so-called "general linear model" 
know that there is a connection between correlations and differences between 
means.  More specifically, if there is a big correlation between two variables X 
and Y then the difference between the mean Y for one level of X and the mean Y 
for another level of X is also big.  So if we are interested in, say, the relationship 
between sex and height, we are more likely to concentrate on the degree of 
overlap between the frequency distribution of height for males and the frequency 
distribution of height for females than on the correlation between sex and height.  
It should come as no surprise to you, therefore, that any unreliability associated 
with the measurement of height will increase the degree of overlap between the 
two sexes (decrease the discriminability).  That is, the amount of overlap that we 
actually get is greater than the true overlap. 
 
Interestingly, although the Pearson product-moment correlation coefficient 
between an independent variable X and a dependent variable Y is attenuated by 
measurement error, the covariance between X and Y is not, and the regression 
coefficient (slope) in the regression of Y on X is attenuated by errors in X but not 
in Y.  (See Bohrnstedt, 1983 for proofs of those assertions.) 
 
Additional reading 
  
The matter of attenuation was first brought to the attention of measurement 
specialists by Spearman  (1904, 1907, 1910) and by Brown (1910, 1913).  And 
there are a number of interesting discussions of attenuation in various research 
contexts (e.g., Thouless, 1939; Johnson, 1944, 1950; Murdaugh, 1981; Lee, 
Miller, & Graham, 1982; Bobko, 1983; Oumlil & Balloun, 1986; Mendoza & 
Mumford, 1987;  Muchinsky, 1996; Schmidt & Hunter, 1996; Schmitt, 1996;  
Rogers, Schmitt, & Mullins, 2002) and its effects on specific statistics (e.g., 
Cochran, 1968; Fleiss & Shrout, 1977; Fuller & Hidiroglou, 1978; Winne & Belfry, 
1982; Bohrnstedt, 1983--see above; Charles, 2005; Ree & Carretta, 2006; and 
Raju, Lezotte, & Fearing, 2006).  Some educational and/or psychological 
measurement texts also have chapters or sections within chapters on 
attenuation. 
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CHAPTER 5:  The interpretation of individual measurements 
 
 
Although we started out by concentrating on the reliability of measurements 
taken on a single object (recall the situation regarding the measurement of a 
child's temperature using a less-than-perfect thermometer), the primary 
emphasis has been on the reliability of a measuring instrument for a GROUP of 
objects.  Theorems #1, 2, and 3 were concerned with the mean obtained score 
vs. the mean true score ACROSS objects, the connection between obtained 
variance, true variance, and error variance ACROSS objects, and the estimation 
of the reliability coefficient ACROSS objects.  In this chapter I would like to go 
back to the problem of determining the reliability of an individual obtained score 
and how one should interpret an obtained score that is "contaminated" by 
measurement error. 
 
Back to our hypothetical example, and a little more theory 
 
Consider the set of hypothetical obtained heights, true heights, and errors in 
Chapter 3, especially the first obtained measurement for Mary Smith:  X = 60 
inches.  For those data we (with God’s help) found that her true height for both of 
those interchangeable yardsticks was 64 inches.  On that first measurement 
occasion we made an error of -4 inches.  Will we always be off by four inches on 
the low side when using those yardsticks?  Of course not.  The measurement of 
Mary's height with the other yardstick produced an obtained score which just 
happened to be 64 inches, an error of 0 inches (we were lucky that time!).  
Additional obtained measurements would probably be numbers such as 66, 63, 
68, etc., i.e., we would expect to get a distribution of obtained heights around 
Mary's true height of 64 inches.  But what kind of distribution would that be, and 
how much would those obtained heights vary from one another?  That requires 
another assumption. 
 
Axiom #2 (a reasonable, albeit controversial, assumption):  The obtained scores 
on parallel forms of an instrument for an individual object are normally distributed 
with the mean of those obtained scores equal to the individual object's true score 
and with the standard deviation of those obtained scores equal to the standard 
error of measurement for a group of objects, which is assumed to be the same 
regardless of the object's true score.  (This also says that the corresponding error 
scores for an individual object are normally distributed around zero, since E = X - 
T, and T is a constant for that object.)  
 
It is the first and the last parts of Axiom #2 that are controversial (the middle part 
is merely a re-statement of the definition of a true score).  Why normally 
distributed?  Why not, reply the measurement theorists.  Shouldn't smaller errors 
be more frequent than larger errors, and large errors very unlikely?  That's what 
happens in a normal distribution.  But it is the assumption of the constancy of the 
standard error of measurement that most people find troubling.  Surely, they say, 
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the standard error of measurement should be smaller for people who have very 
high true scores or very low true scores on an achievement test, for example, 
since there is a "ceiling effect" or a "floor effect", respectively, for their obtained 
scores; whereas the standard error of measurement should be larger for those 
people in the middle of the true score range (i.e., it should be “conditional” on 
true score).  The resolution of that controversy ultimately comes down to various 
mathematical and empirical arguments regarding what happens in various 
portions of the obtained score range and estimating the standard error of 
measurement for each of those portions.  Mollenkopf (1949--proof summarized 
on pp. 115-124 in Gulliksen, 1950) showed that the standard error of 
measurement is constant throughout the test score range if and only if the 
distribution of obtained test scores is symmetric and mesokurtic.  (See also Lord, 
1984; Woodruff, 1990; and Raju, Price, & Oshima, 2005.  In their paper, Raju, 
Price, and Oshima extend the concept of conditional standard error of 
measurement to conditional reliability.)    
 
For the time being we will adhere to all of the provisions of Axiom #2 and see 
what the implications are for interpreting individual obtained scores.  In the 
measurement literature there are three approaches to the problem, all of which 
have counterparts in the basic concepts of inferential statistics.   
 
How to interpret an individual measurement 
 
    Point estimation 
 
The first approach is the point estimation of a true score.  If we had to give one 
number that is in some sense our "best" estimate of an object's true 
measurement on a particular instrument, what would we say?  (Her)his obtained 
score, X?  No, that would be too liberal, because it would imply that we had a 
perfectly reliable measuring instrument.  How about the mean obtained score (for 
a group of objects), MX?  No, that would be too conservative, because the mean 
obtained score is equal to the mean true score and would imply that our 
instrument were perfectly unreliable, i.e., it could not differentiate one true score 
for another.  What is usually suggested is to report a "regressed score"  
(regressed toward the mean) determined as follows: 

Estimated true score =  MX + rXX (X - MX) , where the reliability coefficient rXX  is 
estimated by rAB, the correlation between parallel forms of the instrument (Kelley, 
1927).  [Wainer (2000) referred to something he called “Kelley’s Paradox” 
regarding what to use for MX, i.e., “whose mean?”.  Suen (1990) discussed the 
standard score version of this formula, and Payne (1989) provided an application 
of that formula to clinical psychology.] 
 
For the hypothetical height data in Chapter 3, Mary Smith's true height would be 
estimated from her First X to be 70 + .50 (60 - 70) = 70 + .50 (-10) = 70 - 5 = 65.   
Using this formula, all "measurees" whose obtained scores are above the mean 
get estimated true scores that are less than their obtained scores and all 
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"measurees" whose obtained scores are below the mean (e.g., Mary) get 
estimated true scores that are greater than their obtained scores.  (If the 
instrument were perfectly reliable, i.e., rXX = 1, the estimated T for each person 
would be (her)his X; and if the instrument were perfectly unreliable, i.e., rXX = 0, 
the estimated T for each person would be MX, but that's not going to happen with 
real data.)   The variance of those estimated true scores will therefore be less 
than the variance of the obtained scores, which is as it should be since the 
variance of the obtained scores is inflated by measurement error.  That is not to 
say that the estimated true score for each measuree is "correct" or even in the 
appropriate relative position in the distribution of estimated true scores.  All this 
does is provide us with best estimates of true scores "on the average".  (Harris, 
1973 provided a brief discussion of error defined as the discrepancy between 
estimated true score and "actual" true score, and contrasted that with both the 
traditional error of measurement, X - T, and with the error associated with the 
prediction of an obtained score on one form of an instrument from an obtained 
score on a parallel form.)   
 
For the real data in Chapter 3 obtained with the Wright Peak Flow Meter, Subject 
1's true volume would be estimated from (her)his First X to be 447.9  +  .983 (494 
- 447.9) = about 493 liters/minute.  (The 447.9 "splits the difference" between the 
First X mean and the Second X mean for the entire group of 17 people.) 
 
    Interval estimation 
  
The second approach should be familiar to the reader who has studied 
confidence interval estimation in basic statistics.  Recall that a particular statistic, 
call it A, such as a mean, a standard deviation, or a Pearson r, is often 
interpreted as A plus or minus some "margin of error".  For individual 
measurements we can do the same thing.  Here we take an object's obtained 
score as the statistic and some multiple of the standard error of measurement as 
the margin of error.  Going back to the hypothetical data for the heights of those 
seven people, we see that Mary Smith's first obtained height is 60 inches and the 
standard error of measurement, SE , is 4 inches.  (Note that the standard error of 
measurement is "scale-bound" in the units of measurement for the variable in 
which we are interested, unlike the reliability coefficient, which is "scale-free".)  
We therefore report that Mary is 60 ± 4 inches tall or, if we want to be more 
conservative, that she is 60 ± 2(4) = 60 ± 8 inches tall, giving ourselves an even 
greater margin of error; or whatever. 
 
The ± 4 and the ± 2(4) come from the normal distribution (the 2 is actually 1.96), 
corresponding to 68% confidence and 95% confidence, respectively.  But 
extreme caution must be observed here (unless you’re a Bayesian).  Axiom #2 
claims that an individual's obtained scores are normally distributed around 
her(his) true score.  When we report a confidence interval for Mary Smith's true 
height as 60 ± 8 = 52 to 68 we must be very careful to say something like "52 
inches and 68 inches are reasonable limits for Mary's true height" and NOT "the 
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probability is .95 that Mary's true height is between 52 inches and 68 inches".  
True scores, though unknown (in the real world, that is), are fixed and are not 
distributed around obtained scores; it is the obtained scores that are distributed 
around the true scores. 
 
Subject 1 in the Wright Peak Flow Meter data would have a 95% confidence 
interval for (her)his true score of 464 to 524 with respect to (her)his obtained 
score of 494. 
 
    Hypothesis testing 
 
The third approach should be the most familiar of all.  Instead of giving one 
number that is the best estimate of a true score, or two numbers that are 
reasonable limits for a true score, you test a hypothesis about the true score, and 
on the basis of the test you either reject or do not reject that hypothesized value.  
Here's how it goes for true scores (again using our example of Mary Smith's first 
obtained height): 
 
Null hypothesis:  T = 66 (say)   [T is the unknown parameter] 
Alternative hypothesis:  T ≠  66   [a non-directional, "two-sided", alternative] 
 
X = 60   [X is the obtained statistic.] 
 
SE = 4  [obtained from SE  = SX √ (1 - rAB ) ] 
 
Test statistic =  (X - T) / SE = (60 - 66) / 4 = (-6) / 4 = -1.50 
 
If that test statistic is assumed to be normally distributed (in accordance with 
Axiom #2), we cannot reject the hypothesis that T = 66, because a ratio of -1.50 
is within "the acceptance region" for the standardized normal sampling 
distribution.  In other words, the obtained score of 60 is "close enough" to a true 
score of 66 for this unreliable yardstick so that 66 is not "rejectable".  This is NOT 
the same as claiming that T is equal to 66.  We still don't know what it is (which is 
of course the frustrating aspect of inferential statistics in general). 
 
For the peak flow data, if 400 were hypothesized to be Subject 1's true score, 
that hypothesis would be soundly rejected, because (494 - 400)/ 14.9 = 6.31 is 
well beyond the "critical ratio" of 1.96 for the .05 significance level. 
 
Note that the interval estimation approach actually subsumes the hypothesis 
testing approach (as is most often, but not always, the case).  A true score of 66 
is within the 95% confidence interval of 52 to 68, and it is therefore not rejectable 
as a candidate for Mary's true height if you adopt .05 as the level of significance.  
Had it been outside the limits of that interval, the null hypothesis of T = 66 would 
have been rejected in favor of the alternative hypothesis that T ≠  66. 
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Compounded measurement error 
 
In the physical sciences it is often the case that two or more less-than-perfectly-
reliable measurements are made on the same object and then those 
measurements are combined mathematically to produce a third measurement, 
which is necessarily also less than perfectly reliable.  Formulas have been 
developed by researchers affiliated with the National Institute of Standards and 
Technology (see, for example, Taylor & Kuyatt, 1993) for determining interval 
estimates of the true scores for such measurements as functions of the standard 
errors of measurement for the individual components.  Topping (1975) has 
provided similar formulas and my friend John Pezzullo has an interactive 
webpage (on Propagation and Compounding of Errors) where you can input the 
obtained score and standard error of measurement for each of two 
measurements and receive as output the resulting expression and its standard 
error. 
 
As illustrations of how this works, consider body surface area (BSA) and body 
mass index (BMI).  One fomula for body surface area (DuBois & DuBois, 1916) is 
the constant .20247 times height (in meters) raised to the .725 power times 
weight (in kilograms) raised to the .425 power.  Body mass index (the Quetelet 
index) is equal to weight (in kilograms) divided by the square of height (in 
meters).  Suppose you would like to get 95% confidence intervals for true body 
surface area and true body mass index for our hypothetical friend, Mary Smith.  
You measure her height and get 60 inches; you measure her weight and get 120 
pounds.  Her obtained body surface area is 1.50 square meters and her obtained 
body mass index is 23.4 kilograms per square meter.  Your height measuring 
instrument is said to have a standard error of measurement of 4 inches (that's  
awful--see Chapter 3) and your weight measuring instrument is said to have a 
standard error of measurement of 5 pounds (that's also awful); so the 95% 
confidence interval for Mary's true  height is 60 ± 2(4) or from 52 inches to 68 
inches, and the 95% confidence interval for Mary's true weight is 120 ± 2(5) or 
from 110 pounds to 130 pounds. 
 
According to Taylor and Kuyatt, if Y (the quantity you're interested in) is equal to 
any constant A times the product of X1 raised to the power a and X2 raised to the 
power b, then you can determine the "uncertainty" (using their term for standard 
error of measurement) associated with Y by the following formula: 
 
Uncertainty of Y =  [a2(SEX1 / IX1I )

2 + b2(SEX2 / IX2I )
2 ] .5 

 
where IYI is the absolute value of Y, SEX1 is the standard error of measurement 
for X1 , IX1I is the absolute value of X1 , SEX2 is the standard error of 
measurement for X2 , and IX2I is the absolute value of X2 , if both X1 and X2 are 
not equal to zero. 
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For body surface area, if height = X1 and weight = X2 , then A  = .20247, a  = 
.725, and b  = .425.  For body mass index, if again height = X1 and weight = X2 , 
then A  = 1, a  = 1, and b  =  -2.  Substituting in the standard error (uncertainty) 
formula for Y and laying off two standard errors around the obtained BSA and the 
obtained BMI, we have 
 
Body surface area:   1.50 ± 2 (.05) = 1.40 to 1.60 
 
Body mass index:   23.5 ± 2 (3.3)  =  16.9 to 30.1 
 
Body surface area is often used as the basis for determining the appropriate 
dose of medication to be prescribed (BSA is multiplied by dose per square meter 
to get the desired dose), so you can see from this admittedly extreme example 
that reasonable limits for "the true required dose" can vary dramatically, with 
possible serious medical complications for a dose that may be either too large or 
too small. 
 
Body mass index is often used for various recommended weight therapies, and 
since the lower limit of the 95% confidence interval for Mary's true BMI is in the 
"underweight" range and the upper limit is in the "obese" range, the extremely 
high standard errors of measurement for both height and weight had a very 
serious effect on BMI.  (Thank goodness these are hypothetical data for very 
poor measuring instruments.) 
 
Isn't reliability fascinating? 
   
Additional reading 
 
For more on the interpretation of individual obtained measurements and 
inferences regarding their true counterparts, see Gulliksen (1950), Lord (1959b, 
1959d), Zimmerman and Williams (1966), Cronbach (1970), Knapp (1971), 
Dudek (1979), Jarjoura (1985), and Huynh (1986a).  The article by Dudek is 
especially relevant.  He argues that there are three different standards errors of 
measurement and that it is essential to use the right one at the right time. 
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CHAPTER 6:  The reliability of difference scores 
 
 
The determination of the reliability of an obtained score is a difficult task, as we 
have seen.  But how about the determination of the reliability of the difference 
between two obtained scores?  Scientists have always been interested in 
differences.  I've already mentioned (in Chapter 4) the difference between the 
mean height of males and the mean height of females.  Another example that 
immediately comes to mind is the difference between the percentage of subjects 
in an experimental (treatment) group who experience pain relief and the 
percentage of subjects in a control (placebo) group who experience pain relief in 
a randomized clinical trial for a new drug.  And there are lots of others. 
 
Types of difference scores 
 
As far as scientific measurement is concerned, there are five types of difference 
scores whose reliability seems to be of greatest interest.  They are: 
 
(1) the difference between an obtained score for an object on a particular 
instrument at one point in time and another obtained score for that same object 
on that same instrument at approximately the same point in time; 
 
(2) the difference between an object's obtained score on a particular instrument 
and another object's obtained score on that same instrument at approximately 
the same point in time; 
 
(3) the difference between an object's obtained score on a particular instrument 
at one point in time and the object's obtained score on that same instrument at a 
subsequent point in time; 
 
(4) the difference between an object's obtained score on a particular instrument 
and the object's obtained score on another instrument at approximately the same 
point in time;  
 
(5) the difference between an object's obtained score assigned by one rater 
using a particular instrument and the object's obtained score assigned by another 
rater using that same instrument at approximately the same point in time; or the 
difference between an object's obtained score assigned by one rater using a 
particular instrument at one point in time and that same rater using that same 
instrument at a subsequent point in time. 
 
The first of these is relevant to what we have called test-retest or measure-
remeasure reliability, and it is concerned with questions such as "Is the difference 
between Mary's spelling test score and immediate retest score within acceptable 
bounds of measurement error?" and "Is the difference between Mary’s two 
simultaneously obtained weights indicative of a problem with the scale?"  
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The second type of difference score could be called "an inter-object 
discriminability score" (I just made up that term), and it is concerned with 
questions such as "How much better did Mary perform on a spelling test than 
John did?" and "How much more does John weigh than Mary does?" 
 
The third type is often called a "simple change score" or "simple gain score" 
(where a negative gain is a loss) and it is concerned with questions such as "How 
much did Mary gain in reading achievement from the beginning of the school 
year to the end of the school year?" and "How much weight did John lose from 
the beginning of the dieting experiment to the end of the experiment?"  There are 
several varieties of change scores--see below.  
 
The fourth focuses on the discrepancy between the measurements produced 
with two instruments that are alleged to measure the same thing or with two 
instruments that are alleged to measure different things, and it is concerned with 
questions such as "How much higher is Mary's temperature taken with an 
electronic thermometer than with a traditional mercury-in-glass thermometer?" 
and "How much better did John perform on a spelling test than he did on a 
vocabulary test?" 
 
The fifth type of difference score is the inter-rater type of score (inter-judge and 
inter-observer are common synonyms), or intra-rater (intra-judge, intra-observer) 
type of score, and it is concerned with questions such as "When Mrs. Jones and 
Mr. Brown both graded Mary's essay examination, how much did those grades 
differ?" and "When Mrs. Jones and Mr. Brown both measured John's weight, how 
much did those weights differ?"; or with questions such as "When Mrs. Jones 
graded Mary's essay twice, how much did those grades differ?" and "When Mr. 
Brown measured John's weight twice, how much did those weights differ?" 
 
As I mentioned above, there are several kinds of change scores that have been 
reported in the literature, e.g., modified gain scores ("How much actual gain was 
there out of how much possible gain?"), percent change scores ("How much 
change was there relative to the initial measurement?"), optimally-weighted 
change scores ("What is our best estimate of true change?"), and residual 
change scores ("How much change was there over and above what was 
predictable?").  As you will see, it is the simple change score and the residual 
change score that have been the subjects of the most controversy. 
 
The general case 
 
The reliability of any difference score, Y - X, can be determined, or at least 
estimated, by using the following formula (see Stanley, 1967 for its derivation, but 
in different notation):  
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rY-X, Y-X  =   rAB SASB + rCDSCSD - rADSASD - rBCSBSC 
        ----------------------------------------------------------- 
       √(SA

2 + SC
2 - 2rACSASC) √(SB

2 + SD
2 - 2rBDSBSD) 

 
where  rAB and rCD are the Pearson correlations between obtained scores on 
Forms A and B of X, and between obtained scores on Forms C and D of Y, 
respectively (and therefore estimates of the reliability coefficients for X and for Y); 
the other r's are the Pearson correlations between the obtained scores for the 
forms indicated by their subscripts; and the S's are the standard deviations of the 
obtained scores for the forms also indicated by their subscripts. 
 
This "monster" formula (as Stanley, 1967 calls it--since it has six correlations and 
four standard deviations to contend with!) can be simplified by making certain 
assumptions or having certain evidence regarding its various components, 
depending upon what type of difference is of interest.  Let us consider the five 
basic types of difference scores in order, concentrating on how that formula 
might be simplified, and what some of the implications are for interpreting a 
particular difference score. 
 
Measure-remeasure differences 
 
The first of the above types is of primary interest in the physical sciences.  If 
boxes of various sizes are "double-measured" for length, width, and depth, for 
example, and there are serious within-dimension within-box discrepancies in 
those measurements, there is a problem with the measuring instrument.  It is not 
of primary interest in the social sciences, however, because immediate retesting 
might seem rather silly.  Referring again to the spelling test illustration, it would 
be at least unusual to give Mary a spelling test, pick up her paper, and then give 
her the same test again!  In any event, we need not have any special formula for 
the reliability of such difference scores, since their reliability is rXX itself, which 
can be estimated by rAB where A is the first obtained score and B is the 
essentially simultaneous second obtained score, and their parallelism is 
accordingly assumed.  (There might be a problem of correlated errors, however; 
see Chapter 3.)  But the standard error of the difference is greater than the 
standard error of measurement by a factor of √2.   
 
As an illustration of this type of difference score, consider our hypothetical height 
data (see Chapter 3 and Chapter 5) and Mary's obtained heights of 60 inches 
and 64 inches.  For this instrument with a reliability coefficient of .50, the 
standard error of measurement (for a single obtained score) was found to be 4 
inches.  Therefore the standard error of the difference between two obtained 
scores for the same object is √2 (4) = 1.414(4) = 5.656.  The discrepancy of 4 
inches between her two obtained height measurements is well within the "margin 
of error" for that instrument. 
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Between-object differences 
 
The second type of difference score is of general concern in all sciences.  The 
emphasis there is on deciding such things as whether Mary's obtained score on a 
spelling test is enough higher than John's obtained score on the same test for us 
to conclude that there is a difference between their corresponding true scores on 
that test.  In those situations the general formula for the reliability of a difference 
score also reduces to rXX  (i.e., rAB).  This is not intuitively obvious, so it must be 
proven, but rather than trying to wrestle with various assumptions about the six 
correlations and the four standard deviations in the general formula, it can be 
demonstrated in the following way: 
 
The variance of the difference between the true score for object i and the true 
score for object j on the same instrument, i.e., the variance of Ti - Tj for all i and j 
(i,j =1,2,…,N) is (1/N) { ∑[(Ti - Tj) - MTi - Tj]

2}, from the definition of a variance.  
Expanding, distributing the summation sign, and multiplying each term by 1/N, 
we get (1/N) ∑(Ti - Tj)

2 - (2/N) MTi - Tj ∑(Ti - Tj) + (N/N) MTi - Tj
2.  But the last two 

expressions are both equal to 0, since MTi - Tj = 0. (All objects are listed N times 
for i and N times for j, and the mean of all of those differences is equal to the 
difference between the mean for i and the mean for j, and that difference must be 
0.)  It can also be shown that the variance of ANY variable A can be calculated 
using the formula (1/2N2) ∑ (Ai - Aj)

2, for all i and j.  (Another formula for a 
variance?  Yes; trust me.)  Letting T = A and simplifying, we have that the 
variance of Ti - Tj  is equal to 2NST

2.  It can be similarly shown that the variance 
of Xi - Xj is equal to 2NSX

2.  Therefore the reliability of this particular type of 
difference score is 2NST

2/2NSX
2, and the 2N in the numerator and the 2N in the 

denominator "kill each other", leaving ST
2/SX

2 or rXX, i.e., rAB.   
 
This means that the "over-all" reliability of the difference between two obtained 
scores for a particular instrument is the same as the "over-all" reliability of an 
individual obtained score, but the standard error of that difference is also larger 
than the standard error of measurement by a factor of √2.  (The error variance 
doubles and so does the obtained variance, so the reliability coefficient remains 
the same.)  To illustrate this, consider again our hypothetical height data.  If our 
primary interest were in estimating Mary's true height from her first obtained 
height, the 95% confidence interval would be 60 ± 2(4), i.e., from 52 to 68.  But if 
our primary interest were in estimating the difference between Mary's true height 
and Carol's true height, the 95% confidence interval would be (60 -64) ± 2(√2)(4) 
or -4 ± 11.312, i.e., from -15.312 to 7.312, a much larger "margin of error".  
Although there is an obtained difference in their heights of 4 inches (with Mary 
shorter than Carol), the true difference in their heights could reasonably range 
from Mary being 15.312 inches shorter than Carol to Mary being 7.312 inches 
taller than Carol.  Pretty lousy measuring instrument, isn't it?  (But we already 
established that.) 
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Change scores 
 
    Simple change 
 
For the reliability of a difference score that is a simple change score, you might 
be relatively safe in assuming that the two within-X variances are equal to one 
another (since the A and B forms are parallel), the two within-Y variances are 
equal to one another (since the C and D forms are also parallel), and the four 
"cross-correlations" between X and Y(rAC, rAD, r BC , and rBD) are all equal.  You 
wouldn't be nearly as safe in assuming that the reliability coefficient for X and the 
reliability coefficient for Y are equal--there might be better or worse consistency 
at Time 2 than there is at Time 1; or that the X-variances and the Y-variances are 
equal to one another--the change in level (e.g., with most subjects getting higher 
scores) might also be accompanied by a change in dispersion (e.g., with some 
subjects making small gains and other subjects making large gains).  If you do 
make those assumptions, the formula reduces to 
 
rY-X, Y-X   =   r - rXY 
        -------- 
        1 - rXY    
 
where r is the reliability coefficient for X and for Y, and rXY is the correlation 
between obtained scores for X and obtained scores for Y.  Investigations of that 
formula and its possible implications have produced one of the most heated 
controversies in scientific measurement.   
 
  Controversy regarding the measurement of simple change 
 
The most common conclusion drawn from an investigation of that formula is that 
the reliability of a simple change score is disappointingly low, for desirable and 
hopefully-typical values of r and rXY.  If, for example, r is .80 and rXY is .50, then 
the reliability of Y - X is (.80-.50)/ (1-.50) = .60; i.e., the reliability of the difference 
is less than the reliability of either X or Y taken separately.  But is an r of .80 
desirable and typical?  Yes, we want the reliability of X and the reliability of Y to 
both be high, and many instruments in common use have reliabilities of .80 or 
higher.  How about an rXY of .50?  Yes, if X and Y are not reasonably highly 
correlated (and values in the general magnitude of .50 are commonly found for 
Time 1 and Time 2 measurements taken on the same objects) we should not be 
subtracting X from Y;  it would be tantamount to subtracting apples from oranges.  
(But see Bereiter, 1963 and Willett, 1988-1989 for the opposing viewpoint 
regarding the necessity for rXY to be large.  Bereiter also provided a formula for 
estimating the reliability of total-score change as a function of the differences 
between obtained scores for corresponding items on X and Y--he called them 
"change items”.)   
 



2009Knapp-Reliability.doc  Page 46 

The foregoing argument concerning the unreliability of change scores has been 
so impressive to some people that it has played a major role in their advocacy of 
not only doing away with the simple change score itself but with the entire 
concept of change (see, for example, Cronbach & Furby, 1970; O'Connor, 1972; 
Linn & Slinde, 1977; and my articles--Knapp, 1980, 1984a).  Cronbach and Furby 
were also influenced by the argument that X and Y might measure different 
psychological processes at the two different time points (e.g., aptitude at Time 1 
and achievement at Time 2) and by the argument that we often don't need to talk 
about change, even in a controlled experiment employing a pretest and a 
posttest, given what we know about the analysis of covariance and its 
applications to "over-and-above the effect of the pretest" situations.  (See Maris, 
1998 for a recent discussion of the use of simple change scores vs. the analysis 
of covariance.) 
 
Critics of the argument that simple change scores are necessarily unreliable 
(e.g., Maxwell & Howard, 1981; Zimmerman & Williams, 1982; Rogosa, Brandt, & 
Zimowski, 1982; Rogosa & Willett, 1983; Williams & Zimmerman, 1984; Rogosa, 
1988; Willett, 1988-1989; Zimmerman, 1994; Rogosa, 1995; Zumbo, 1999) have 
presented counter-arguments that have taken a variety of forms.  In their critique 
of my 1980 article, Williams and Zimmerman (1984) disagreed with some of the 
claims that I made and took exception to my hypothetical numerical example 
(essentially the same example I used in Chapter 3 of this book, but with linearly-
transformed numbers and a different substantive context).  They provided a 
different hypothetical numerical example that they regarded as superior, but in 
my response (Knapp, 1984a) I begged to differ.  They also argued elsewhere 
(e.g., Williams & Zimmerman, 1977) that the assumptions underlying classical 
reliability theory are not reasonable for the measurement of simple change, since 
the error scores at Time 1 are likely to be correlated with the error scores at Time 
2 when you're measuring change from Time 1 to Time 2. 
 
Rogosa et al. (1982), Rogosa and Willett (1983), Rogosa (1988), Willett (1988-
1989), and Rogosa (1995) urged the adoption of a multi-wave, longitudinal 
"growth curve" approach to the measurement of change, rather than a simple 
two-wave (Time 2 minus Time 1) approach.   Willett's article, which is an 
excellent summary of the measurement of change in general, contains an 
informative artificial example of data collected on the same subjects at four 
timepoints.  It has been shown, by Heise (1969) and by Wiley and Wiley (1970, 
1974), that if you have test-retest data for four points in time there is a method for 
distinguishing between the stability of the instrument (reliability) and the stability 
of the unknown true scores (true growth), and for testing the assumptions all in 
one full swoop.  (With data for only two points in time, instrument stability and 
true score stability are confounded with one another.) Two co-authors and I 
described that method in an article in Nursing Research (Knapp, Kimble, & 
Dunbar, 1998) and included the following real-data example for four repeated 
administrations of the monopolar version of the Profile of Mood States to 46 
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cardiac dysrhythmia patients (at entry to the study, one month later, three months 
later, and six months later)--the subscripts refer to the time points: 
 
r12  = .686,  r13 = .602,  r14 = .542,  r23 = .829,  r24 = .770, and r34 = .893 
  
Applying Heise's method to these correlations, we found that our "best" estimate 
of the reliability of the instrument is .945 and our "best" estimates of the stabilities 
of the underlying true scores for the first three time points are s12 = .726, s13 = 
.637, and s23 = .878; i.e., good reliability in general and greatest stability between 
times 2 and 3. 
 
Zumbo (1999) joined Williams and Zimmerman's defense of simple change 
scores, essentially agreed with Rogosa, Willett, and others about the superiority 
of the multi-wave approach (and advocated the incorporation of structural 
equation modeling into the analysis), but also provided handy guidelines for 
researchers who for practical reasons are restricted to just two waves.         
 
    Modified change 
 
Other people have suggested alterations to the simple change score that may 
make better sense and/or may have better reliabilities.  The easiest (to think 
about, anyhow) of these is the so-called "modified gain score"  (Y - X)/ (K - X), 
where K is the maximum possible obtained score for a given instrument.  
Advocates of the modified gain score are concerned not so much about the 
unreliability of simple change scores as about the "ceiling effect" for many 
educational and psychological tests.  A two-point gain from 50 to 52 on a 100-
item test, for example, should not be treated the same as a two-point gain from 
96 to 98 on that same test, in their opinion.  (The modified gain scores would be 
2/50 = .04 and 2/4 = .50, respectively.)  Unfortunately, a formal statistical 
comparison of the relative reliabilities of simple change scores and modified 
change scores has never been carried out, as far as I can determine, but I think it 
would be a mess, for two reasons:  (1) derivations for statistics that are products 
or quotients of variables (the latter being the case here) have always been more 
difficult than similar derivations for sums or differences; and  (2) the K - X in the 
denominator causes serious problems whenever K = X (i.e., when the obtained 
score for an object at Time 1 is equal to the maximum possible score), since for 
that object the modified gain score would be undefined (you can't divide by 0).  In 
any event, I can't give you any simplified formula for the reliability of a modified 
gain score. 
 
    Percent change 
 
Another variation is percent change (see VanMeter, 1974), 100 (Y - X)/X.  
VanMeter gives the example of change in compensation for state legislators over 
a five-year period in the 1960s, where the raw gain ($7200) for legislators in 
Missouri (from $11550 to $18750) was slightly larger than the raw gain ($6975) 
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for legislators in Tennessee (from $1225 to $8000) but the percent gain for the 
former was 62.3% compared to 620% for the latter.  But like the modified gain 
score, a formal statistical comparison has not been made between the reliability 
of a simple change score and the reliability of a percent change score.  I'm afraid 
it would also be a mess, however, for essentially the same reasons I just gave for 
modified gain scores: (1) the measure is a quotient of two variables; and (2) you 
still have the problem of division by 0, if the initial measurement is 0. 
 
    Weighted change 
 
A much more complicated alteration is the "optimally-weighted change score".  
Optimally-weighted scores have a long history, originating (I think) with the work 
of Mosier (1943) and carried through by Gulliksen (1950), Lord (1956;1958), 
McNemar (1958), Stanley (1971), and many others.  The problem is one of 
determining how to weight obtained Y and how to weight obtained X in a linear 
composite of the two in an expression of the form aX + bY + c that provides "the 
best" estimate of the difference between true Y and true X, i.e., true change.  The 
optimal weights and constant term turn out to be 
 
a = {1/(1 - rXY

2)} {(SY/SX) rXY (1 - rYY) - rXX + rXY
2} 

 
b = {1/(1 - rXY

2)} {(SX/SY) rXY (rXX - 1) + rYY - rXY
2} 

 
c =  MY - MX - aMX - bMY 
 
[I told you it was complicated!] 
 
and the reliability of the difference is  
 
rY-X,Y-X   =  rXX SX

2 + rYY SY
2 -2rXY SXSY 

       ----------------------------------- 
       SX

2 + SY
2 - 2rXY SXSY 

 
where  rXX  and  rYY  are the reliabilities of X and Y, respectively (and are to be 
estimated by rAB and rCD , again respectively); rXY is the correlation between X 
and Y (to be estimated by rAC and/or rBD ); SX  is the standard deviation of X (to 
be estimated by SA and/or SB) and SY is the standard deviation of Y (to be 
estimated by SC and/or SD); and MX and MY are the corresponding means (to be 
estimated by MA and/or MB and MC and/or MD, respectively). 
 
    Residual change 
     
Another complicated alteration to the simple change score is the "residual 
change score".  Here the problem is the determination of an estimate of true 
change that is over and above what one could obtain by regressing obtained Y 
on obtained X ("predicting" obtained Y from obtained X).  And you can get 
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different answers for the reliability of a residual change score depending upon 
whether you want residual change to be uncorrelated with initial X or with initial 
T.  That matter has produced another controversy (see, for example, DuBois, 
1957; Manning & DuBois, 1962; Bechtoldt, 1963; Tucker, Damarin, & Messick, 
1966; Traub, 1967, 1968; Glass, 1968; Bond, 1979).  There are accordingly two 
expressions for the reliability of a residual change score.  The first (favored by 
Manning and DuBois), is 
 
rY-(a+bX),Y-(a+bX)  =  rYY - rXY

2 (2 - rXX) 
                  --------------------- 
                       1 - rXY

2 
 
where Y-(a+bX) is the notation for a residual change score (a is the Y intercept 
and b is the regression coefficient for predicting Y from X), rYY is the reliability of 
the obtained scores at Time 2, rXX is the reliability of the obtained scores at Time 
1, and rXY is the correlation between obtained scores at Time 1 and obtained 
scores at Time 2.  The assumption here is that residual change is uncorrelated 
with initial X. 
 
The second formulation (favored by Tucker, Damarin, and Messick), is 
 
rY-(a+bX),Y-(a+bX)   =  rXX (rXX rYY - rXY

2) 
                  --------------------------- 
                  rXX

2  - 2rXY
2 rXX + rXY

2  
 
The quantities in this expression are the same as those in the previous 
expression, but it is assumed that residual change is uncorrelated with initial T, 
not with initial X. 
 
Other difference scores that are not change scores 
 
But enough (for now) about change scores of various kinds.  Let us move on to 
discuss the other popular types of difference scores. 
  
    Inter-instrument differences 
 
When Y - X is the difference between an object's obtained scores for two 
instruments that are alleged to measure the same thing, by transforming all of the 
"raw" obtained scores into standard scores (a perfectably acceptable thing to do, 
since Y and X may not have the same metric) and asssuming that rBD = rAC and 
rBC = rAD, we have 
 
rY-X,Y-X  =  1/2 (rAB + rCD) - rAD 

      ------------------------- 
               1 - rAC 
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The situation is essentially the same statistically (but not substantively) when  
Y - X is the difference between an object's obtained scores for two instruments 
that are alleged to measure different things.  The assumptions just made are 
likely to be equally justified, and the simplified formula for estimating the reliability 
of that type of score is the same. 
 
    Inter- and intra-rater differences 
 
If all measuring instruments were perfectly "objective", requiring no human 
intervention whatsoever, science (and life) would be much simpler.  But there are 
many situations, especially in educational and psychological measurement, 
where personal judgments must be made in the process of obtaining the 
measurements.  The most common of such situations are those in which human 
beings evaluate other human beings.  In Chapter 1 I referred to the example of  
teachers who grade essays that have been written by their pupils.  The teachers 
themselves are the "instruments"; their pupils are the "objects".  The obtained 
scores are those produced by the "raters" (teachers), and those obtained scores 
may or may not be good approximations to the true scores that the "ratees" 
deserve to get.  And as indicated in that chapter and in the list of types of 
difference scores above, the second rating might be provided by a different 
teacher at approximately the same time or by the same teacher at a subsequent 
time.  For the inter-rater case, any assumptions about the equality of various 
correlations and/or variances other than the within-rater standard deviations are 
hazardous, so the formula for the reliability of inter-rater differences remains a 
"monster".   
 
Things are a bit nicer for the intra-rater case.  Additional assumptions such as rAC 
= rBD would appear to be warranted but the assumption that rAB = rCD  probably 
would not, since there could be "slippage" in reliability at Time 2 (due to fatigue, 
for example), even though the rater is the same. 
 
Our flow meter example (revisited) 
 
In order to further illustrate the estimation of the reliability of some of the above 
types of difference scores I'd like to close this chapter by returning to our real-
world example concerning the measurement of expiratory flow rate (Bland & 
Altman, 1986) that was discussed in Chapter 3 and Chapter 5.  Recall that we 
had four columns of data: (1) measurements taken on 17 people with the 
standard Wright peak flow meter;  (2) repeated measurements taken on those  
people at approximately the same time with the same meter; (3) measurements 
taken on the same people with a "mini" version of that meter; and (4) repeated 
measurements taken on the same people with the "mini" meter.  Those data lend 
themselves to the study of three of the types of difference scores (#1, #2, and #4 
in my list of the five types of greatest interest), with the four columns of data 
corresponding to the variables A, B, C, and D of Stanley's (1967) formula. 
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Consider first the matter of the reliability of the difference between the double 
measurements taken on the same person with the standard meter, e.g., the 494 
and the 490 for Subject 1.  According to the argument given above, the "over-all" 
reliability is the same as the reliability of a single obtained measurement, i.e., 
.983 (see Chapter 3 for the summary statistics for those data), but the standard 
error of the difference is �2 times larger than the standard error of measurement, 
i.e., 1.414 (14.9) = 21.1.  The difference of 4 liters/minute between Subject 1's  
obtained measurements is well within that "margin of error". 
 
Next, consider the difference between the first measurements taken on different 
people with the standard meter, e.g., the 494 and the 395 for Subject 1 and 
Subject 2, respectively.  Is that difference of 99 liters/minute big enough for us to 
claim that those two people have different true scores?  According to the same 
argument just used, the "over-all" reliability of such differences is the same as the 
reliability of a single obtained measurement taken with that meter, i.e., .983, but 
the standard error of the difference is again 2 times larger than the standard 
error of measurement for a single obtained score, i.e., 21.1.  "Laying off" twice 
that amount (for 95% confidence) around the obtained difference of 99, we get 
99 ± 42.2 or 56.8 and 141.2 as "reasonable limits" for the difference between the 
true scores for Subject 1 and Subject 2.  Since that interval does not include 0, 
we can rest comfortably assured that those two subjects do not have equal true 
scores.  [Exercise for the reader: How about the difference between Subject 1 
and Subject 3 at Time 1 for that meter?] 
                   
Now consider the difference between measurements taken on the same person 
with two different instruments, e.g., the 494 for Subject 1 for the standard meter 
and the 512 for Subject 1 for the mini meter.  Is that difference of 18 liters/minute 
big enough for us to claim that Subject 1 has different true scores for those two 
instruments (which are actually alleged to measure the same thing)?  Referring 
back to the appropriate formula for the reliability of a difference score such as 
this, and substituting the corresponding values for the flow meter data, we have 
 
rY-X,Y-X  =  1/2 (.983 + .967) - 1/2 (.936 + .957)    
       ----------------------------------------------------     

                 1 - 1/2 (.943 + .952) 
 
 =   .547, which is somewhat discouraging (but those ARE different 
instruments), and the corresponding standard error of the difference is  
SY-X √ (1- rY-X,Y-X), which turns out to be (trust me) 36.4 (.673) = 24.5.  The 
obtained difference of 18 is within that "margin of error", so we cannot conclude 
that Subject 1's true scores for the two instruments are different.  In other words, 
both meters appear to be getting at the same thing, at least as far as Subject 1 is 
concerned. 
 
[The simplified formula for the reliability of that type of difference score had only 
rAD as the last term in the numerator and only rAC as the last term in the 
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denominator, but for the flow meter data rBC was not the same as rAD, and rBD 
was not the same as rAC , so they had to be averaged.  Likewise for the 
variances in the estimation of SY-X,Y-X .  Do you follow all of that?] 
 
Additional reading 
 
There is a vast literature on the reliability of difference scores of various types.  
Among the sources that have not been cited previously in this chapter, I 
recommend two chapters in the book edited by Harris (1963) in addition to the 
already-cited chapter by Bereiter (one by Lord, and one by Webster & Bereiter);  
the articles by Bohrnstedt (1969), Zimmerman, Brotohusodo, and Williams 
(1981), Cattell (1982), Gardner and Neufeld (1987), Guyatt, Walter, and Norman 
(1987), Malgady and Colon-Malgady (1991), and Guyatt, Kirshner, and Jaeschke 
(1992); the articles by Coleman and by Siegel and Hodge in the book edited by 
Blalock and Blalock (1968); the articles by Cardinet and by Embretson in the 
book edited by Laveault, et al. (1994); the article by Edwards (2001); the article 
by Hertzog and Nesselroade (2003), and the guidelines by Hummel-Rossi and 
Weinberg (1975).  Edwards discusses what he calls "myths" concerning 
difference scores.  I leave it to you to decide whether they are or are not.  
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CHAPTER 7:  The reliability of a single item 
 
 
One thing that differentiates physical science instruments from social science 
instruments is that the former usually do not have "items".   When you measure 
something like the width of a box, you don't have a bunch of items that, taken 
together, produce a width measurement.   When you measure something like 
mathematical ability, however, you invariably have one or more test items that 
constitute an instrument for measuring such an ability. 
 
This chapter and the following chapter will be of little or no interest to you if you 
are concerned primarily with physical measurement.  But if you are concerned 
primarily with social measurement, they should be of considerable interest.  In 
this chapter I want to discuss the case of a single-item instrument.  In Chapter 8 I 
will turn to the case of multi-item instruments, i.e., instruments consisting of two 
or more items. 
 
Single-item examples 
 
What do I mean by a single item?  The simplest example is "Who is the president 
of the United States?"  Another example is "Do you agree with the 1973 
Supreme Court decision concerning abortion?  (a) Yes; (b) Undecided; (c) No".  
Items such as these are often "stand-alone" instruments, and we need to be able 
to estimate their reliability every bit as much as we need to estimate the reliability 
of thermometers and yardsticks.  But the theoretical underpinnings for obtained 
scores, true scores, and error scores will be a bit different, as we shall see, 
principally because for single items we usually do not have the luxury of 
continuous or "continuous-enough" metrics that permit the usual operations of 
addition and subtraction that permeate classical reliability theory. 
 
X, T, and E for single dichotomous items 
 
Consider the "Who is the president of the United States?" item, with dichotomous 
scoring (right answer = 1; wrong answer = 0).  The concept of obtained score, X,  
presents no problem.  There are two possible obtained scores: 1 (if you get it 
right); and 0 (if you get it wrong).  The concept of true score, T, is almost as 
straightforward.  There are two possible true scores: 1 (if you "deserved" to get it 
right); and 0 (if you "deserved" to get it wrong).  The concept of error score, E, 
gets a little tricky, however.  If we assume that X = T + E as we did for continuous 
variables, then whenever X = T (when they're both equal to 1 or both equal to 0), 
E is equal to 0;  whenever X  T (when X = 1 and T = 0, or when X = 0 and T = 
1), E is either 1 or -1.  Therefore the only combinations of values for X, T, and E 
are the following: 
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 X  T  E 
 
  1  1  0 
  0  0  0 
  1  0  1 
  0  1           -1 
 
That in itself is not necessarily too hard to handle, but when it comes to the 
definition of E as "random", the definition of T as the average of parallel X's, and 
some of the assumptions of classical reliability theory such as X being normally 
distributed around T with constant standard error of measurement, things start to 
break down.  Why?  Think about it:  
 
a. In order for E to be random (our first approach), the mean E must be equal to 
zero.  Referring to the four possible combinations above, that is not a problem if 
all four combinations are equally represented in the data or if only the first two 
combinations are equally represented in the data and there are no 1,0,1 or 0,1,-1 
combinations in the data at all (perfect reliability?), or if only the last two 
combinations are equally represented in the data and there are no 1,1,0 or 0,0,0 
combinations in the data at all (perfect unreliability?).  But many distributions of 
those combinations will yield a mean E other than zero. 
 
b.  In order for E to be random, the correlation between T and E must also be 
equal to zero.  Again referring to the four combinations, if they are equally 
represented in the data the correlation between T and E must be negative, 
because there is no positive sum of cross-products of T and E to "balance out" 
the negative sum of cross-products produced by the fourth combination.  (Do you 
follow that?) 
 
c.  What is a "parallel" item to "Who is the president of the United States?" or to 
the attitude-toward-abortion item? 
  
d.  Our Axiom #2 of classical reliability theory includes the assumption that for 
each person (I'll drop the "object" terminology since we're considering social 
measurement only) (her)his error scores are normally distributed around (her)his 
true score.  You can't get a normal distribution of errors if they're all 1, 0, or -1. 
 
Some approaches to the estimation of the reliability of single items 
 
There are other problems also, but those are sufficient to suggest that we need a 
different kind of reliability theory to cope with single dichotomous items.  One that 
has been invoked is the so-called "Platonic" theory where error scores are 
random and true scores are "deserved scores" but not "universe scores"--they 
are not averages across parallel forms.  (For more on Platonic scores see 
Sutcliffe, 1965; Klein & Cleary, 1967, 1969; Bohrnstedt, 1983; and the summary 
by Traub, 1994 of the "sex of the chicken" example in Lord & Novick , 1968.)   
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  The Knapp method (and comparison to the phi coefficient) 
 
I adopted some of the principles of Platonic theory in an article I wrote several 
years ago about the reliability of a dichotomously-scored cognitive test item 
(Knapp, 1977b--an article in which the editors insisted that I use the non-sexist 
neologism "hir" instead of "her", "his", or "him"!).  The principal findings of that 
article were as follows: 
 
1.  The "reliability for rights" is equal to (1-d)2 , where d is the proportion of 
"knowers" (people whose true score is equal to 1) who get distracted for 
whatever reason and give the wrong answer (and get an obtained score of 0).  If 
none of them get distracted (unlikely, but not completely out of the ordinary), d =0 
and the "reliability for rights" is equal to 1.  If all of them get distracted (much 
more unlikely), the "reliability for rights" is equal to 0. 
 
2.  The "reliability for wrongs" is equal to (1 - g/c)2 , where g is the proportion of 
"non-knowers" (people whose true score is equal to 0) who guess randomly at 
the answer to the item and c is the number of choices provided in the item (c = 2 
for a true/false item, for example), so that g/c of them give the right answer (and 
get an obtained score of 1).  For an "open-ended" item (no choices provided) or 
for a multiple-choice item for which there is no guessing on the part of the "non-
knowers", g/c = 0 and the "reliability for wrongs" is equal to 1. The "reliability for 
wrongs" can never be equal to 0. 
 
The problem becomes one of determining the unknowns d and g (c will always 
be known).  In my article I show how to estimate both d and g, using a test-retest 
approach (the only feasible empirical option), and consequently the "reliability for 
rights" and the "reliability for wrongs".  (But if you think that the mathematics in 
this book is already too heavy for you, you may not want to try to follow the 
derivations!)  I also go on to talk about weighting the "reliability for rights" and the 
"reliability for wrongs" to get an estimate of "over-all reliability" and to compare 
that value with the test-retest reliability calculated by applying the formula for the 
phi coefficient (the Pearson r for two dichotomies) to the following table of 
frequencies: 
 
   Retest 
 

     1    0       Ф  =          (AD - BC)  
                   --------------------------------- 

1      A       B      √(A+B)(C+D)(A+C)(B+D) 
Test         

0      C    D       where A+B+C+D = 1 
  
Unfortunately, the phi coefficient only provides an indication of the relative 
relationship between the test and the retest obtained scores, and if any of the 
sums in the denominator of the formula for Ф are equal to zero, Ф does not exist.  
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For the Knapp method, B and C should be approximately equal (if the test-retest 
occasions are “parallel” that should not be a problem) and A+D should be greater 
than B+C (if it’s not, you have a very unreliable item!) 
 
It's time for an example.  Consider one of the examples (a hypothetical four-
choice multiple-choice item) I used in that 1977 article (I also included several 
real-data examples): 
 
   Retest 
 
      1     0 
  

1  .40  .10 
Test 
 0  .20  .30 
 
 
 
For those data, ONE solution for d and g is d = .248 and g = .273.  (Alas, that 
solution is not unique, but reasonable.)  This suggests that about 25% of the 
"knowers" were distracted and gave the wrong answer and about 27% of the 
"non-knowers" guessed, with about one-fourth of the 27.3%, i.e., 6.8%, guessing 
correctly (since c = 4).  Plugging the values for d, g, and c into the formulas for 
the "reliability for rights and the "reliability for wrongs" we get: 
 
Rights:  .566  (too many "knowers" were distracted) 
Wrongs: .868 (better; there were not too many "lucky guessers") 
 
There were estimated to be about 70% "knowers" (70.4% to one decimal place) 
and about 30% "non-knowers" (29.6% to one decimal place).  If the "reliability for 
rights" is weighted by .704 and the "reliability for wrongs" is weighted by .296, 
one estimate for the "over-all reliability" of that item is .655. 
 
The phi coefficient for the same table is .408, which suggests poorer reliability.  
But the .655 and the .408 are not directly comparable, since the Knapp reliability 
coefficient can only take on values between 0 and 1, whereas Ф can range 
between -1 and 1. 
 
    The Guttman method 
 
My approach to the reliability of a single-item instrument and the phi-coefficient 
approach aren't the only possibilities.  Several years earlier, Guttman (1946) 
provided a strategy for estimating lower bounds and upper bounds for the 
reliability of a single item that "works" for dichotomous cognitive items such as 
"Who is the president of the United States?" but is particularly appropriate for 
multi-categoried affective "Likert-type" items such as the attitude-toward-abortion 
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item.  He showed (again I'll spare you the mathematical details) that if you only 
have empirical data for one administration of an item, the lower bound for the 
reliability of the item is given by (in notation different from his): 
 
(k/k-1)(fmax - 1/k) , where k is the number of response categories and fmax is the 
largest relative frequency for any of the categories. 
 
He gave as an example a three-categoried item (not unlike the abortion item) for 
which the relative frequencies are:  
 
Yes:  .60 
Undecided: .15 
No:  .25 
 
For those data, k = 3 and fmax = .60, so the lower bound is (3/2)(.60 - 1/3) or .40, 
which means that the reliability of the item is at least .40 (and, of course, at most 
1).  He went on to point out that had all of the relative frequencies been 1/3 each, 
the lower-bound would have been 0, which is also the case by the definition of a 
reliability coefficient, so a rectangular distribution of obtained scores for a single 
item is absolutely no help at all in estimating reliability by Guttman's method, if 
you have data for just one administration of the item. 
 
Things are much better, as you might imagine, if you have test-retest data for two 
administrations of the item.  He showed that the lower-bound and the upper-
bound are functions of the largest relative "sub-frequency" for each row of the 
k-by-k contingency table ("cross-tab") for the two testing occasions, if the 
contingency table is approximately symmetric and the sum of the entries in the 
principal diagonal is greater than the sum of the off-diagonal entries (the same as  
the Knapp method assumptions) .  The notation gets a bit cumbersome, so I'll 
use Guttman's test-retest example to explain the procedure.  Here are the data: 
 

   Retest 
 

  Yes Undecided No 
 
 Yes  .10      .15  .05 
 
 
Test Undecided .15      .25  .05 
   
 
 No  .05      .05            .15 
 
 
For those data, the largest relative frequencies in the rows are the .15 in the first 
row, the .25 in the second row, and the .15 in the third row.  Calculate the sum of 
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those frequencies, .55 in this example, and call it ∑f.  Then the lower-bound for 
the reliability of the item is (k/k-1)(∑f - 1/k), where k is the number of response 
categories, as before.  (Note the similarity to the formula for the lower bound for 
one administration of the item.)  For A = .55, this works out to be (3/2)(.55 - 1/3) 
or .33.  Guttman (1946) gives two formulas for the upper-bound.  The more 
precise formula is {k/(k-1)}{h - 1/k}, where h is equal to (1/k){1 + v[(k-1)(k∑q -1)]} 
and ∑q is the sum of the relative frequencies in the principal diagonal (upper left 
to lower right) of the contingency table.  For the example, ∑q = .10 + .25 + .15 = 
.50, h = (1/3){1 +v[2((3)(.50) - 1)]} =  2/3, and the upper bound is therefore 
(3/2)(2/3 - 1/3) = 1/2 or .50.  Since those lower and upper bounds are fairly "tight" 
(.33 and .50), we have a good fix on the reliability of the item even though we 
don't have a unique solution. 
 
   Percent agreement and Cohen's kappa 
 
Another strategy that has been around for many years is the simple "proportion 
agreement" or "percentage agreement" method, which for the arithmetic item is 
.40 + .30 = .70, or 70%; and for the abortion item is .10 + .25 + .15 = .50, or 50%.  
(Those are the relative frequencies in the principal diagonal of the respective 
contingency tables.)  See Wakefield (1980) for a comparison between 
percentage agreement and the phi coefficient. 
 
And there is of course the popular variation on proportion agreement, Cohen's 
kappa (Cohen, 1960), which corrects the proportion agreement for any 
agreement that might be attributable to "chance".  The formula for Cohen's kappa 
is: 
 
κ   =   p - pc 
          ------- 
          1 - pc 
 
where  p is the actual proportion of agreement and pc is the proportion of 
"chance" agreement.  This statistic has been the subject of a huge and often 
controversial literature, and has been extended to more than two testings 
(usually ratings) and to polytomous scoring.  (See, for example, Cohen, 1968; 
Fleiss, 1965, 1971, 1975, 1981; Brennan & Light, 1974; Hubert, 1977; Landis & 
Koch, 1977; Brennan & Prediger, 1981; Davies & Fleiss, 1982; Brook & Stirling, 
1984; Lee & Suen, 1984; Darroch & McCloud, 1986; Topf, 1986; Maclure & 
Willett, 1987; Dunn, 1989; Stine, 1989; Feinstein & Cicchetti, 1990; Cicchetti & 
Feinstein, 1990; Brennan & Hays, 1992; Hutchinson, 1993; Byrt, Bishop, & 
Carlin, 1993; Knapp & Brown, 1995; Dunn, 2004).  Some of the controversy 
revolves around the determination of pc.  For our hypothetical arithmetic item, p is 
.40 + .30 = .70, but what do we use for pc ?  The probability of chance success is 
1/4 or .25 for either testing (random guessing without even reading the item), so 
the probability of chance success for both testings is (1/4)(1/4) = 1/16 or .0625 
(assuming independence for the two eventualities).  Substituting that for pc we 
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would get  = (.70 - .0625)/(1 - .0625) =  .680.  But that assumes that both 
"knowers" and "non-knowers" are equally prone to random guessing.  I don't 
believe that; do you? 
The situation is even worse for the abortion item.  It's one thing to assume that 
there might be some random guessing for a cognitive item (by "knowers", "non-
knowers", or both), and to want to correct for that.  It's quite another thing to 
assume that when people are asked for their attitude about something they might 
guess at the various response options.  And Cohen's kappa is actually more 
often applied to the estimation of inter-rater reliability where both raters use the 
same k-point scale, and p is again corrected for chance agreement.  Chance 
agreement?  Do competent raters ever rate randomly?  If you think that they do, 
you can always demand the resolution of a higher value for p.  
 
Spearman-Brown in reverse 
 
Perhaps the most common, but the most dangerous (in my opinion) approach to 
the estimation of the reliability of a single item is to use the generalized 
Spearman-Brown formula (see following chapter) "in reverse".  That formula was 
developed to provide a way of estimating what the reliability of a test k times as 
long as the one in hand would be, if similar items were added to the existing 
instrument.  The same formula can be used to estimate the reliability of a test  
"1/k th" as long as the one in hand, so if the existing test has k items the formula 
would produce an estimate of the reliability of one (any one) of its items.  
Although there's nothing wrong with that mathematically, there are at least two 
problems substantively: (1) you already have the k-item test, so why do you even 
care about a test that is 1/k th as long?; and (2) the estimates that are yielded are 
often discouragingly small and (again in my opinion) are serious under-estimates 
of single-item reliability. 
 
Visual analog(ue) scales 
 
One of the most common single-item (but not dichotomous) measuring 
instruments is the visual analogue scale (VAS); the -ue ending on analogue is 
sometimes dropped.  It is used primarily in self-reports of various perceptions 
such as pain, anxiety, and the like.  The measuree is asked to indicate on a scale 
that is typically 10 centimeters in length the level of pain, anxiety, or whatever 
(s)he is experiencing at the present time.  The scales have verbal descriptors at 
their opposite poles (e.g., “no pain” and “excruciating pain”); some also have 
additional descriptors throughout the scale (e.g., “minor annoyance”) and some 
have numbers associated with the descriptors.  It can be presented either 
horizontally or vertically, and the measuree can use a pen or pencil to indicate 
(her) his perception or can call out the level to the measurer.  The person’s score 
is the distance from the bottom of the scale to the indicated point (and is thus an 
attempt to “continuize”  the typical Likert-type scale so that traditional descriptive 
and inferential statistics are more defensible). 
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An interesting recent example of a VAS is the Distress Thermometer 
(unfortunately abbreviated to DT) that is used to measure the level of distress 
that cancer patients are experiencing.  (See Roth, Kornblith, et al.,1998; 
Jacobsen, Donovan, et al., 2005.)   From the name of the instrument you can tell 
that it is presented vertically, with “no distress” (0) at the bottom of the scale, 
“extreme distress” (10) at the top of the scale, and with the intermediate numbers 
1,2,3,4,5,6,7,8,9 spaced evenly along the left-hand side of the scale.  The only 
scores that are reported are those integers from 0 to 10  (i.e., the scale is no 
further “continuized”). 
 
As far as the reliability of visual analogue scales is concerned, the choice of 
approach is usually limited to test-retest (measure-remeasure), but the time 
interval between test and retest is crucial, since the true perception can change 
dramatically over very short periods of time.  Inter-rater and intra-rater 
approaches may be used if someone other than the person experiencing the 
pain, anxiety, etc. is indicating the level.  In the first of two short pieces on the 
VAS that are available on the internet, Johnson (2005) even suggested the 
creation of two parallel forms by using polar descriptors such as “no pain” and 
“intense pain” for one form; and using “no pain at all” and “worst possible pain” 
for the other form.  Whether those forms are truly parallel, and whether they 
would “work”, remain to be seen. 
 
For more on visual analogue scales, see Wewers and Lowe (1990) and Cline, 
Herman, et al. (1992).  
 
Additional reading 
 
Use of the generalized Spearman-Brown formula in reverse dates back at least 
as long ago as Holzinger's article (Holzinger, 1932) and is one of the reasons 
why single items have a bad reputation, in spite of the empirically-demonstrated 
high reliability (and validity!) for many of such items.  For more on the reliability of 
single items, see Sprott and Vogel-Sprott (1987); Cunny and Perri, 1991; 
Youngblut and Casper (1993); and Renzo (2002, 2003).  For a particularly 
thorough discussion of the reliability (AND validity) of methods for resolving 
discrepancies between raters for single-item instruments, see Johnson, et al. 
(2003). 
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CHAPTER 8:  The internal consistency of multi-item tests 
 
 
For many researchers in the social sciences, "internal consistency reliability" is 
the only kind there is.  Cronbach's coefficient alpha, in particular--see below--is 
used to estimate the reliability of social science instruments more often than all of 
the other methods taken together.  I would like to begin this chapter by exploring 
some of the historical and practical reasons why this is so. 
 
A little history 
 
Most of reliability theory started with Spearman (1904), who was concerned with 
the precision, accuracy, dependability (call it what you will) of psychological tests 
of various sorts.  He was familiar with the notion of measuring and re-measuring 
with the same form or with comparable forms of an instrument, but he was also 
aware of some of the problems entailed with the taking of more than one 
measurement on the same persons, not the least of which is the usual 
assumption that the true score (he didn't use that exact term) must remain 
constant between the first and the second testings.  He (Spearman, 1910), and 
at about the same time, Brown (1910), came up with the idea of administering 
one form of the test once, dividing the test in half (creating two pseudo-parallel 
half-forms a and b), scoring both halves, finding the correlation between the 
obtained scores on the two halves, and then "stepping up" that correlation in 
order to estimate what the correlation might have been between two parallel full-
forms A and B.  That estimate was 
 
rAB  =      2rab 
 --------- 
  1 + rab 
 
For example, if the correlation between two half-forms of a test were .60, the 
estimated correlation between two full-forms would be 2(.60)/(1 + .60) = .75.  
That value of rAB , .75, would then be taken to be an estimate of the reliability 
coefficient, rXX , for the test. 
 
The difference between rab and rAB is sometimes surprisingly large and 
sometimes surprisingly small.  Recently, Wainer and Thissen (1996), in their 
discussion of the reliability of "testlets" (sets of items all based upon a single 
stimulus), gave an example of the doubling of a test that increased its reliability 
from .85 to .92.  Having to develop twice as many test items would appear to be 
a rather expensive price to pay for an increase in reliability of .07, unless the 
higher reliability was thought to be absolutely essential. 
 
The Spearman-Brown formula has been generalized as follows: 
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rkk  =         krXX 
--------------- 

 1 + (k-1)rXX 
 
where rXX is the reliability of the test that is actually in hand and rkk is an estimate 
of the reliability of the test if it were to be made k times as long (by adding similar 
items).  Pursuing that same example, if a reliability coefficient of .75 were not 
acceptable you might consider making the test three times its new length, which 
would result in an estimated reliability of 3(.75)/ [(1 + 2(.75)] =  2.25/ 2.50 = .90. 
 
In the previous chapter I bemoaned the fact that some people estimate the 
reliability of a single item by using the generalized Spearman-Brown formula "in 
reverse".  That is, they know the reliability for their test of k items, and they'd like 
to know how reliable a test 1/kth as long would be (1/k times k is 1).  Continuing 
with the present example, if the test with reliability of .75 had 20 items (10 odd-
numbered and 10 even-numbered), substituting 1/k = 1/20 for k = 20, and .75 for 
rXX , the single-item reliability is estimated to be 
 (1/20)(.75)/[1 + (-19/20)(.75)] or approximately .13.  That is of course a terribly 
low reliability--much too low to be believed, in my opinion.  (For more on this, see 
Knapp & Brown, 1995.) 
  
On the one hand, the "split-halves" idea was ingenious (saves a heck of a lot of 
work, for one thing!), but on the other hand it was also a bit weird (chopping in 
half and then re-creating the whole?).  In any event, it was the method of choice 
for many years.  Some people worried about how the test should be divided in 
half, but allocating the odd-numbered test items to one half-form and the even-
numbered items to the other half-form soon became the universally accepted 
way to do so.  (Tests with an odd number of items presented a minor problem, 
since the odd-numbered “half” would have one more item than the even-
numbered “half”.) 
 
Kuder and Richardson 
 
Concern about the various ways of dividing a test in half (and the possibility of 
getting a different reliability estimate for each division) grew over the years.  In 
1937, Kuder and Richardson wrote a long article in which they derived several 
formulas for estimating the reliability of an instrument consisting of k 
dichotomously-scored items that could only be administered once.  Starting with 
the notion of the correlation between a form that actually exists and a 
hypothetical parallel form that does not exist, and making successively more 
restrictive assumptions, they arrived at two formulas that became the most 
popular for estimating the reliability of a multi-item instrument.   One of these, 
their Formula #20, which still goes by that name, is 
 
rXX  =    [k/(k-1)] [1 -  ∑( pi qi ) / SX

2 ] 
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where pi is the proportion of "measurees" who answer item i correctly (i = 1, 2, ..., 
k), qi  = 1 - pi  is the proportion of "measurees" who answer the item incorrectly--
so pi qi is the obtained variance of item i, and SX

2 is the obtained variance of the 
total-test scores. 

 
The other formula, which came next in their derivations, Formula #21, which is 
also still called that, is 
 
rXX   =    [k/(k-1)] [1 -  MX (k - MX)/ SX

2 ] 
 
where  MX is the mean of the obtained total-test scores (and is equal to �pi ). 
 
The same Kuder-Richardson Formula #20 was later derived by Hoyt (1941), by 
Burt (1955), by Lord (1955), and by others, under slightly different sets of 
assumptions, using an analysis-of-variance approach.  (Shoemaker, 1969 later   
showed that items answered correctly by all examinees or by no examinees can 
dramatically lower the value produced by Formula #20.)  Formula #20 and 
Formula #21 both represented considerable improvements over Spearman and 
Brown's split-half technique, the former because it yielded a single estimate 
(although it involves more work) and the latter because it was so simple to use--
all you need are the number of items, the total-test mean, and the total-test 
variance. 
 
Cronbach 
 
Two problems remained, however.  The first was all of the assumptions that 
needed to be made, especially for Formula #21--that all of the test items are of 
approximately equal difficulty. This is almost never the case, and you can get 
very strange results if there is a considerable range in difficulty. In an appendix to 
my article on coefficient alpha (Knapp, 1991) I gave a hypothetical example of a 
set of four test items that constitutes a perfect Guttman scale when administered 
to a set of 16 people, and for which Kuder-Richardson Formula #21 is exactly 
equal to 0 (Kuder-Richardson Formula #20 equals .604), yet it is hard to imagine 
anything that is more reliable than a perfect Guttman scale.  (For such scales if 
you know a person's total score you also know exactly which items (s)he 
answered correctly.)  Therefore, WARNING:  Don't use Formula #21 unless the 
items are very close in difficulty (for the example in Knapp, 1991 the item means 
ranged from .0625 to .9375). 
 
The second problem was that the formulas only "worked" for dichotomously-
scored items.  In his now-classic (and actually very readable) article, Cronbach 
(1951) addressed both of those problems (and then some) and derived the 
following formula: 
 
rXX  =   [ k/(k-1)] [1 -  ∑(Si

2 )/ SX
2 ] 
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where Si
2 is the obtained variance for item i, whether it is dichotomously-scored 

or not.  This is the generalization of Formula  #20, and Cronbach gave it the 
symbol � (the Greek alpha), so it is commonly referred to as "Cronbach's alpha" 
or "Coefficient alpha", or--by McDonald (1999)--“Guttman-Cronbach alpha” 
(because Guttman had previously derived it in his 1945 article as one of several  
lower bounds  to an instrument’s reliability--see Callender & Osburn, 1979 for a 
comparison of those lower bounds).  The name alpha and the symbol � are 
actually very unfortunate choices, because the same name and symbol are used 
for two other quantities in statistics: (1) the probability of making a Type I error 
(the "level of significance"); and (2) the Y-intercept for a population regression 
line, plane, or hyperplane.)  There is also a "Formula #21 version" of Cronbach's 
alpha (but see Kuder, 1991, regarding what formulas should be given what 
names). 
 
Various approximations to Cronbach's alpha have been derived.  For example, if 
all of the item variances can be assumed to be approximately equal, the formula 
can be written as 
 
rXX   =        k ravg 
 ---------------- 
 1 + (k-1) ravg 
 
 where  ravg is the average (mean) of the correlations between score on item i and 
score on item j (I,,j = 1, 2, ...,k; i<j), i.e., the entries in the upper (or lower) triangle 
of the k-by-k matrix of inter-item correlations.  (Edgerton & Toops, 1928, 
developed a handy method for calculating ravg without actually calculating any of 
the rij .)  That is the formula for what is called "standardized alpha" in the 
measurement literature and in computer packages such as SPSS and SAS.  
 
Consider the following set of hypothetical data for a four-item test administered to 
five subjects.  The data were originally provided by Kerlinger (1976) and were 
repeated by me (Knapp, 1991). 
 
  Item 1  Item 2  Item 3  Item 4 
 
Subject 1     6       4        5        1 
 
Subject 2     4       1        5        4 
 
Subject 3     4       6        4        2 
 
Subject 4     3       6        4        3 
 
Subject 5     1       2        1        2 
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For those data, alpha is .449 (try it) and "standardized alpha" is .404. 
 
Cronbach proved that his alpha is approximately equal to the average of the 
"stepped-up" Spearman-Brown reliabilities for all possible ways of dividing a k-
item test into two equal halves.  (There are k! / 2[(k/2)!]2 such ways, if k is even.)  
If you don't believe Cronbach's claim, try it out on the above data.  Put items 1&2 
in one half and items 3&4 in the other half, find the correlation rab between those 
two half-tests, "step it up" by calculating rAB  = 2rab /(1 + rab ), record that value of 
rAB ; then repeat the process two more times (1&3 vs. 2&4; 1&4 vs. 2&3) and find 
the average of those three values of rAB .  (The number of possible ways for 
dividing a four-item test into two equal halves is three.)  Alpha will be exactly 
equal to the average of all the split-half reliabilities whenever all of the half-tests 
have the same variances.  That is very important.  As Novick and Lewis (1967) 
pointed out, Cronbach's alpha is identical to the average of the split-half 
reliabilities determined by using Rulon's (1939) formula, not by using the 
traditional formula 2rab/(1+rab). 
    
Although Cronbach's coefficient alpha enjoys great popularity and its literature is 
vast, it has some drawbacks.  For one thing, as I and others have shown (see, 
for example, Knapp, 1991; Krus & Helmstadter, 1993), it can actually take on any 
value between "minus infinity" and +1 (watch what happens if you switch the data 
for Item 3 from 5, 5, 4, 4, and 1 to 1, 4, 4, 5, and 5), even though a reliability 
coefficient is defined in such a way as to restrict its theoretical range from 0 to 1.  
For another thing, you can get unusually high alphas by having lots of items that 
correlate only slightly with one another.  If, for example, ravg is equal to .10 in the 
formula for standardized alpha, and if there are 100 items on the test, i.e., k = 
100, alpha turns out to be a surprisingly large .92  (a large k has "swamped" the 
small ravg ).  Those 100 items aren't really very internally consistent with one 
another, are they?  (You can also get a .92 for 10 items that have an average 
inter-item correlation of .53.  That sounds like the better instrument, all other 
things being equal, despite the considerably smaller number of items.)  
 
How many items? 
 
This leads nicely into a discussion of test length.  How many items should a test 
have?   If you want to have a high Cronbach's alpha, the answer is "lots" (but see 
above).  Several authors have also studied the relationship between the number 
of items on a test and the standard error of measurement for the total score on 
the test.  The general consensus (see Lord, 1957a, 1959a; Swineford, 1959; 
Gardner, 1970) is that tests of the same length have nearly identical standard 
errors of measurement.  If the items are dichotomously scored, those scores are 
added together to get a total-test score, and the Kuder-Richardson Formula #20 
is used to estimate the test's reliability, the standard error of measurement for the 
total-test scores can be closely approximated by .43√k , where k is the number of 
items on the test.  (For the example just cited, with k = 100, the standard error of 
measurement would be estimated to be 4.3.) 
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Factor analysis and internal consistency reliability 
 
This in turn leads nicely into a discussion of the connection between the reliability 
of a multi-item test and the (exploratory) factor analysis of the data obtained by 
administering such a test to a large group of subjects.  (See Nunnally & 
Bernstein, 1994, or any other measurement theory textbook, for a discussion of 
the basic principles of factor analysis.)   Since we have been talking all along in 
this chapter about the internal consistency of a set of test items, it would seem 
that if Cronbach's alpha is high (say .90 or above) a factor analysis should yield 
one big factor, suggesting that the items all "hang together" to measure "the 
same thing" (whatever the "thing" is--that's a validity problem).  Well, yes and no.  
If all of the items inter-correlate highly with one another, say .7 and above, that 
will indeed be the case; i.e., you'll get one big factor and a bunch of little ones.  
As we have just seen, however, if the correlations between pairs of items are 
rather small, but there are lots of them, that will not be the case.  The situation is 
actually very complicated.  For the big k, small ravg case just cited, if all of the 
inter-item correlations are approximately equal to one another, we'll get just one 
"eigenvalue" that is greater than one, but we'll also get 99 eigenvalues that are 
just a little bit less than one.  (Eigenvalues are very important in factor analysis, 
especially those that are greater than one.  See the article by Joe & Mendoza, 
1989 on “The internal correlation”--and the comments regarding that article in the 
same issue--for further discussion of the connections between the eigenvalues of 
a correlation matrix and internal consistency reliability.)  If the inter-item r's are 
not all equal but "average out" to .10 (with some medium-size correlations of, 
say, .50 and some very small and/or negative correlations to "balance" them), 
and with k still large, we'll get a multi-factor solution.  (See the Appendix to 
Carmines & Zeller's 1979 monograph on reliability and validity for a good 
summary of the "tie-in" between factor analysis and internal consistency 
reliability.) 
 
Kaiser (1960) claimed that any factor for which the associated eigenvalue is less 
than one would have negative reliability (there we are with negative reliability 
again!) and would therefore be essentially useless as a subscale variable.  (See 
also LaForge, 1965).  Cliff (1988) disputed Kaiser's claim, arguing that factors 
with eigenvalues less than one could have positive reliability.  Kaiser (1991) later 
justified his original claim, and Cliff and Caruso (1998) reiterated Cliff's 
contention.  That little-known controversy has yet to be completely resolved (Li & 
Wainer, 1997 support Kaiser) and it would appear to be very difficult to do so, 
because it involves a number of assumptions regarding how the reliabilities are 
to be estimated, what method of factor analysis is employed, etc.  In case you 
didn't already know, factor analysis is a very tricky business!  
 
For more on the relationship between factor analysis and the internal consistency 
reliability of a measuring instrument, see Wherry and Gaylord (1943), McDonald 
(1999), and the discussion of that relationship on the statsdirect.com website. 
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Inter-item correlations and Item-to-total correlations 
 
Standardized alpha provides a direct indication of the extent to which the items 
inter-correlate with one another.  A similar indicator is provided by the 
correlations between  each of the test items and the total-test score (the higher 
such correlations are, the greater the internal consistency).  The formula for 
Cronbach's alpha can be written in a way that involves both (see Gulliksen, 1945 
and Ebel, 1967 for other formulas): 
 
rXX  =  [ k/(k-1)] [ 1 - ∑ rXi SX SI -  ∑rij SI Sj ) / ( ∑ rXi SX SI ) ] , 
 
where rXi  is the correlation between obtained total-test score and score on item i 
( i = 1, 2, …, k),  rij   is the correlation between score on item i and score on item j 
(i, j = 1, 2, …, k), and the other symbols are as previously defined.  There is a 
problem regarding whether to include or to exclude the score for the item itself as 
part of the total-test score when calculating the correlation between item and total 
(it is included in the given formula), but that is a relatively minor consideration 
when there is a large number of items. 
  
Other approaches to internal consistency reliability 
 
There are other measures of the internal consistency of multi-item tests, and 
Scott (1960) summarized several of them in his article entitled "Measures of test 
homogeneity".   ("Homogeneity" is sometimes used as a synonym for "internal 
consistency", as far as reliability is concerned.)  In addition to those that Scott 
discusses, there is Webster's (1960) generalization of Kuder-Richardson Formula 
#21; Heise and Bohrnstedt's (1970) omega (McDonald, 1999 has a different 
omega); Armor's (1974) theta; Raju's (1977) beta; and many more--see Greene 
and Carmines (1980) for a comparison of some of them, and see Osburn (2000) 
for several others.  As you can see, measurement experts like to use Greek 
letters to designate their reliability coefficients.  I guess it's all Greek to them!  
 
Inter-rater and intra-rater reliability 
 
In my opinion, all of the preceding “internal consistency” approaches to 
assessing the reliability of the total score on a test can be applied to assessing 
inter-rater and intra-rater reliability.  Just make the examinees “ratees” and the 
items “raters” and you can determine the reliability of the sum (or average, i.e., 
arithmetic mean) of the ratings given to the people being rated, and it won’t 
matter whether the raters are different judges  rating each person once or it’s the 
same judge giving multiple ratings to each person.  Substantively it’s a different 
problem but methodologically it’s the same thing.  
 
Or is it?  There was  an interesting controversy aired in the pages of Personnel 
Psychology a few years ago, between Frank Schmidt and his colleagues on one 
side and Kevin Murphy and his co-author on the other side.  Murphy and DeShon 
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(2000) took strong exception to the claim made by Schmidt and Hunter (1996), 
and by Viswesvaran, Ones, and Schmidt (2000), that ratings and items are 
methodologically interchangeable, arguing that correlations between ratings did 
not provide appropriate evidence for either inter-rater reliability or intra-rater 
reliability.  In their counter-argument, Schmidt, Viswesvaran, and Ones (2000) 
reiterated their position even more strongly.  The controversy actually spilled over 
into matters involving the correction for attenuation (see Chapter 4, above) and 
generalizability theory (see Chapter 12, below)!  [Did you think that research 
methodologists all agreed with one another regarding data analysis?  If so, think 
again.  Frank Schmidt, for example,  seemed to make a habit of getting himself 
involved in such controversies, the most well-known being his views regarding 
the usefulness (or, in his opinion, the non-usefulness) of significance testing in 
psychological research.  See Schmidt (1996).] 
 
Additional reading 
 
There have been a number of other contributions, theoretical and empirical, to 
the literature on internal consistency reliability.  To name most of them, there are 
the articles by Brownell (1933), Read (1939), Himes (1989), Charter (2001), and 
Feldt and Charter (2003) regarding split-halves; Dressel's (1940), Tucker’s 
(1949), Zimmerman’s (1972), Cudeck’s (1980), and Cliff’s (1984) work on Kuder-
Richardson Formula #20; Saupe's (1966) suggestions for selecting items that will 
increase the reliability of simple change scores; Maberly's (1967) investigation of 
internal consistency within particular ranges of obtained scores; Krus and 
Helmstadter’s (1987) reformulation of the generalized Spearman-Brown formula; 
Cronbach, Schonemann, and McKie’s  (1965) article on coefficient alpha for 
stratified parallel tests; Cronbach's (1988) general discussion of the internal 
consistency of tests and his  (and Shavelson’s, 2004) later reflections on alpha 
(published after Cronbach’s death); Green, Lissitz, and Mulaik (1977), Cortina 
(1993), Schmitt (1996), Rogers, Schmitt, and Mullins (2002), and Green (2004) 
on alpha; Ferketich's (1990) comparison of alpha, omega, and Armor's theta, 
using a real-data example from nursing research;  Berk’s (2000) humorous article 
concerning questions and answers about K-R 20;  Feldt & Charter's (2006) article 
on averaging internal consistency reliability coefficients; and Rae's (2006) article 
on correcting alpha when measurement errors are correlated. 
 
For everything you want to know about inter-rater reliability, see LeBreton, et al. 
(2003).  Also see Stemler (2004) for an interesting discussion of three kinds of 
inter-rater reliability. 
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CHAPTER 9:  Intraclass correlations 
 
 
When anyone mentions a correlation coefficient, what immediately comes to 
mind is a Pearson product-moment correlation coefficient, the traditional indicator 
of the direction and the magnitude of the linear relationship between two 
variables.  In this book I have had a great deal to say about Pearson r's as 
estimators of reliability coefficients, as affected by attenuation, etc.  It might 
surprise you to know that the product-moment correlation coefficient has a 
relatively brief history (about a hundred years), having been developed by Karl 
Pearson at the beginning of the 20th century (Pearson, 1904) at the urging of his 
friend and colleague Francis Galton (yes, that Galton), who was Charles Darwin's 
cousin (yes, that Darwin!).   And there is another correlation coefficient, the 
intraclass correlation coefficient  (ICC) that has a similar history.  It was also 
developed by Pearson (some people claim it was Harris, 1913 and not Pearson) 
and refined by his nemesis, R.A. Fisher (yes, that Fisher!!), who called Pearson's 
"other" correlation (the now- traditional one) the interclass correlation coefficient . 
 
There are a number of technical similarities and differences between the two, but 
for our purposes here the principal ones are: (1) most applications of intraclass 
correlations are to within-variable problems and most applications of interclass 
correlations are to between-variable problems; and (2) mathematically (but not 
necessarily substantively) the two are identical if the variances of the 
measurements being correlated are identical.  (See Robinson, 1957 for more on 
this.) 
 
There is good news and bad news regarding intraclass correlations.  The bad 
news is that there are ten different kinds (see McGraw & Wong, 1996).  The good 
news is that we’ll only consider two of them in this chapter. 
 
The most useful one 
 
Let’s start with an example.  Suppose you were interested in the test-retest 
reliability of a measuring instrument and you have measured n people k times 
each, but you have no interest in, and no way to sort out, which measurement 
was the first one, which measurement was the second one, etc.  You display the 
data in a table where the rows of the table are the individual people and the 
columns are the measurement occasions, but it doesn’t matter for a given 
individual which measurement goes in which column (the columns are not 
distinguishable).  All that matters is the variability within person and the variability 
between persons. The formula is (see David Howell’s discussion of intraclass 
correlation for unordered pairs at the following website: 
uvm.edu/~dhowell/StatPages/More_Stuff/icc/icc.html) 
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ICC  =   (MSbr – MSwr ) 
   -------------------------- 
    MSbr  +  (k-1)MSwr   
        
where MSbr and  MSwr  are the mean square between rows and the mean square 
within rows, respectively; and k is the number of columns (here k = 2).  
The mean squares are calculated as follows: 
 
MSbr  =   {k[  (M i  -  M g ) 

2 )]} / (n-1), where M i  is the mean for row i  
(i = 1,2,…, n) and M g  is the grand mean 

 
MSwr  =   { (X ij – M j ) 

2 } / n(k-1), where X ij  is the observation in row i 
 and column j (i = 1,2,…, n; j = 1,2,…, k) 

 
n-1 and n(k-1) are the numbers of degrees of freedom for between rows and 
within rows, respectively. 
 
If you're comfortable with the analysis of variance, consider our hypothetical 
example in Chapter 3, keeping the row designations as individual persons and 
the “First X” and “Second X” columns as the two height measurements.  
Calculate the ICC for the data as given.  You should get .556.  Then shuffle two 
or three of the within-row heights from one column to the other and calculate the 
ICC for that layout.  You should get .556 again.  And no matter how many within-
row interchanges you make you’ll always get .556.  (The Pearson interclass 
correlation will keep changing.)    
 
In their article on intraclass correlations where the rows are “ratees” and the 
columns are “raters”, Shrout and Fleiss (1979) call this particular intraclass 
correlation ICC (1,1).  It is the coefficient of choice for the situation in which the 
objects (usually people) being measured have been randomly drawn from a 
population (or can be “regarded” as such) and the k measurements taken on 
each of the objects do not have a distinguishable order, so that they also can be 
“regarded” as random. 
 
The one that’s equal to Cronbach’s alpha 
 
But what if the measurements are distinguishable and “fixed” (rather than 
random), and you are interested not in the reliability of an individual observation 
but in the reliability of the sum of the k observations for an individual (such as the 
total score on a test of k items).  In that case there is a different intraclass 
correlation that is appropriate, which Shrout and Fleiss called ICC (3,k).  Its 
formula is different from the formula for ICC (1,1), and so is its interpretation.  
Here’s the formula: 
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ICC (3,k)  = MSbr – MSe ) 
  ------------------- 
        MSbr   
 
where  MSbr  is as before and MSe is the “error” or “residual” mean square. 
 
The latter mean square is calculated as follows: 
 
MSe   =     ( X ij  - M i  - M j  + M g )

2 

 
where M i  is the mean of column i (i = 1,2,…k) and the other symbols are as 
before. 
 
Consider the data that were used to illustrate Cronbach’s alpha in the previous 
chapter.  For that layout, n = 5, k = 4, and ICC (3,k) = .447.  We got  .449 for 
Cronbach’s alpha for those data, using a different formula (and rounding).  
Coincidence?  No; it can be shown (I won’t do it, but Bravo & Potvin, 1991 did) 
that ICC (3,k) and alpha always produce identical results.  As a matter of fact, 
Hoyt (1941) used the formula for ICC (3,k) [it wasn’t called that at the time] when 
he re-derived the Kuder-Richardson Formula #20.   
 
ICC (3,k) is therefore the intraclass correlation of choice whenever the columns 
are fixed, the rows are random, and the focus is on the reliability of a sum. 
That particular intraclass correlation is quite commonly employed in inter-rater 
reliability investigations (see Laschinger,1992 for an interesting example in 
nursing research) where the rows are "ratees" and the columns are "raters".  But  
for such investigations the researcher is often interested in both the reliability of a 
"typical" rater and one for the reliability of the rater consensus (summed or 
averaged across raters).  The former is called ICC (3,1) [see McGraw & Wong, 
1996 for its formula--it’s one of their ten and one of Shrout  & Fleiss’s six]; the 
latter is the ICC (3,k) with which we have just been concerned. 
 
 If the ratings are 1-to-n rankings of n objects by k raters, Spearman's rank 
correlation coefficient or Kendall's tau are to be preferred to intraclass 
correlations for two raters, with Kendall's coefficient of concordance being 
appropriate for more than two raters. 
 
Intraclass correlations also play a dominant role in the determination of the 
generalizability coefficient analogues of classical reliability coefficients and in the 
resolution of various unit-of-analysis problems (see Chapter 12). 
 
If you’d like to have an intraclass correlation calculated, there is a marvelous 
website, sip.medizin.uni-ulm.de/informatik/projekte/Odds/icc.html, that will 
calculate it (actually six of them) for you.  All you need to do is enter the raw data 
by rows (or import them from a data file) and click the “calculate” button.  Richard 
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Lowry’s website, faculty.vassar.edu/~lowry/VassarStats.html, also will calculate 
ICC (1,1) for you and includes an excellent discussion of that concept. 
   
Additional reading 
 
For more on intraclass correlations and reliability I recommend Chapter 7 in 
Fisher (1925--it’s a classic and is also very readable); three articles by Bartko 
and his colleagues (Bartko, 1966; Bartko, 1976; Bartko & Carpenter, 1976); the 
articles by Fleiss and Shrout (1978), by Armstrong (1981), by Johnson and Mott 
(2001), by Yen and Lo (2002); and the discussion in Dunn (2004).   
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CHAPTER 10:  Two vexing problems 
 
John reads four essays written by students A, B, C, and D, and assigns ratings of  
1, 2, 4, and 5, respectively, to those essays.  Mary reads those same essays and 
assigns ratings of 1, 3, 7, and 9, again respectively, to those essays.  Is that 
evidence reflective of good or bad reliability?  In what follows, that question will 
be answered by considering two different aspects of scientific measurement: (1) 
the matter of relative vs. absolute agreement; and (2) the matter of ordinal vs. 
interval measurement. 
 
RReellaattiivvee  vvss..  aabbssoolluuttee  aaggrreeeemmeenntt  
  
IInn  mmoosstt  ooff  tthhee  pprreevviioouuss  cchhaapptteerrss  ((CChhaapptteerr  77  wwaass  tthhee  eexxcceeppttiioonn))  iitt  wwaass  ttaakkeenn  ffoorr  
ggrraanntteedd  tthhaatt  oobbttaaiinneedd  ssccoorreess  ((aass  wweellll  aass  tthhee  ccoorrrreessppoonnddiinngg  ttrruuee  ssccoorreess))  wweerree  
ccoonnttiinnuuoouuss  aanndd  tthhee  pprriinncciippaall  ccoonncceerrnn  wwaass  tthhee  rreellaattiioonnsshhiipp  bbeettwweeeenn  ttwwoo  
ooppeerraattiioonnaalliizzaattiioonnss  ooff  tthhee  ssaammee  ccoonnssttrruucctt  ((ppaarraalllleell  ffoorrmmss  oorr  mmeeaassuurreemmeenntt  aanndd  rree--
mmeeaassuurreemmeenntt  wwiitthh  tthhee  ssaammee  ffoorrmm))..    RReellaattiioonnsshhiippss  iinn  tthhee  ffoorrmm  ooff  ccoorrrreellaattiioonnss  
bbeettwweeeenn  ttwwoo  vvaarriiaabblleess,,  eessppeecciiaallllyy  PPeeaarrssoonn  pprroodduucctt--mmoommeenntt  ccoorrrreellaattiioonn  
ccooeeffffiicciieennttss,,  tteellll  yyoouu  ssoommeetthhiinngg  aabboouutt  rreellaattiivvee  aaggrreeeemmeenntt  bbuutt  nnootthhiinngg  aabboouutt  
aabbssoolluuttee  aaggrreeeemmeenntt..    WWhheenn  sshhoouulldd  yyoouu  ccaarree  aabboouutt  rreellaattiivvee  aaggrreeeemmeenntt  aanndd  wwhheenn  
sshhoouulldd  yyoouu  ccaarree  aabboouutt  aabbssoolluuttee  aaggrreeeemmeenntt??    CCoonnssiiddeerr  aass  aann  eexxaammppllee  tthhee  ddaattaa  
ggiivveenn  aabboovvee..    TThheerree  iiss  ppeerrffeecctt  rreellaattiivvee  aaggrreeeemmeenntt  bbeettwweeeenn  JJoohhnn  aanndd  MMaarryy..    IIff  wwee  
ccaallll  JJoohhnn’’ss  rraattiinnggss  XX  aanndd  MMaarryy’’ss  rraattiinnggss  YY,,  tthhee  eeqquuaattiioonn  YY  ==  22XX  --  11  iiss  ssaattiissffiieedd  ffoorr  
eevveerryy  ssttuuddeenntt  AA,,  BB,,  CC,,  aanndd  DD    ((ddoo  tthhee  mmaatthh))..    BBuutt  tthhee  aabbssoolluuttee  aaggrreeeemmeenntt  iiss  qquuiittee  
bbaadd..    TThhee  oonnllyy  ssttuuddeenntt  ffoorr  wwhhoomm  tthheeiirr  rraattiinnggss  aarree  tthhee  ssaammee  iiss  SSttuuddeenntt  AA;;  aanndd  
tthheeiirr  rraattiinnggss  ffoorr  SSttuuddeenntt  DD  ddiiffffeerr  bbyy  ffoouurr  ppooiinnttss..    ((MMaarryy’’ss  rraattiinnggss  aarree  hhiigghheerr  ffoorr  
eevveerryy  ssttuuddeenntt  ootthheerr  tthhaann  SSttuuddeenntt  AA..))    HHmmmmmm..        
  
The matter of absolute consistency vs. relative consistency has been a 
controversy of long standing.  It was the basis for the disagreement between 
Lincoln (1932; 1933) and his critics (Franzen & Derryberry, 1932a; Ackerson, 
1933) and “the jury is still out” regarding whether the emphasis should be placed 
on one, on the other, or on both.  Engstrom (1988) provided some particularly 
good examples of various combinations of high and low absolute and relative 
agreement. 
  
  Mean and median absolute differences 
 
Two simple indicators of the "typical" absolute measurement error are the mean 
and the median of the absolute differences between paired measurements, with 
the mean to be preferred if the magnitudes of all of the discrepancies are to be 
taken into equal account, but with the median to be preferred if you want to 
minimize the effect of any "outliers".  For our hypothetical height data the mean 
absolute difference is 4.57 and the median absolute difference is 4.  For the real 
flow data the mean absolute differences are 14.71 for the Wright meter and 
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19.35 for the Mini Wright meter, and the median absolute differences are 8 and 
13, respectively. 
 
Although there is a direct algebraic connection between the reliability coefficient 
and the standard error of measurement, namely SE = SX � (1 - rXX ), there is no 
such connection between the reliability coefficient and either the mean absolute 
difference or the median absolute difference.   
 
Ordinal vs. interval measurement 
 
There is a type of variable called an “ordinal scale”, regarding which there has 
been even more controversy than for difference scores or Cohen's kappa!  
"Liberal" researchers treat such scales as though they are just like continuous or 
near-continuous "interval scales", whereas "conservative" researchers complain 
loudly "You can't do that!"  This controversy began with the publication of S.S. 
Stevens' article that provided the nominal, ordinal, interval, and ratio taxonomy 
(Stevens, 1946) and continues to the present day.  [I made two attempts at trying 
to resolve the controversy--Knapp, 1990 and 1993--to no avail.]  If you are willing 
to treat those k-point (where k = 3 or more) "Likert-type" scales as interval scales, 
then obtained scores, true scores, and error scores can be added and subtracted 
with reckless abandon.  If you are not (and I am not) you have two choices: 
"deflate" them to nominal status and use various extensions of Cohen's kappa 
(for example), or use statistical methods that have been "tailor-made" for ordinal 
scales (see, for example, Agresti, 1984).  The latter choice is by far the more 
defensible one, but the price you must pay is learning a new set of formulas and 
procedures. 
 
In Chapter 7 I described the approach taken by Guttman (1946) to estimating the 
reliability of an ordinal-level variable.  The example chosen to illustrate that 
approach was a three-categoried variable (yes, undecided, no) with the relevant 
data arrayed in a 3x3 contingency table.  Guttman’s formulas provided only a 
lower bound and an upper bound to the reliability for ordinal scales.  There have 
been several other attempts to treat the reliability of ordinal-level variables as 
special cases of the general relationship between any two such scales.  A brief 
discussion of three of them now follows. 
 
    Kendall’s tau-b 
 
In their classic text on rank correlation methods, Kendall and Gibbons (1990) [the 
fifth edition of Maurice Kendall’s book; he died in 1983] described a procedure for 
handling the relationship between two ordinal variables that need not have the 
same number of scale points.  They suggest arraying the cross-tabulated 
frequency data in an rxc contingency table, where r is the number of scale points 
for one of the variables and c is the number of scale points for the other variable.  
Kendall’s tau-b, a function of the extent to which pairs of observations are in the 
same or different orders for the two variables, provides an indicator of the relative 
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agreement between the two variables.  As far as reliability is concerned, that 
same tau-b can be used as an indicator of the reliability coefficient for an ordinal 
variable (for a test/re-test situation, for example), where the number of rows and 
the number of columns of the associated contingency table is the same. 
 
    Goodman & Kruskal’s gamma 
 
An approach similar to that of Kendall was taken by Goodman and Kruskal 
(1984), resulting in a slightly different indicator of the relationship between two 
ordinal variables, but based upon the same concept of concordant or discordant 
pairs of observations.  (See their book or Agresti’s 1984 book for details.) 
 
    Williams’ method 
 
My favorite method for estimating the reliability of an ordinal variable is an 
application of canonical correlation analysis to a kxk contingency table of 
frequencies.  In my 1993 article “Treating ordinal scales as ordinal scales” and in 
my article on contingency tables (Knapp, 1999) I credited Williams (1952) with 
the origination of this method, but there is an alternative history involving Maxwell 
(1961) [see Chapter IV, especially pages 69-72, of that book] , Marascuilo and 
McSweeney (1977), and Marascuilo and Levin (1983).  I would now like to apply 
Williams’ method  to the data in the 3x3 table used to illustrate Guttman’s (1946) 
method. 
 
Here are the data (repeated from Chapter 7): 
 

   Retest 
 

  Yes Undecided No 
 
  Yes  .10      .15  .05 
 
 
  Test  Undecided .15      .25  .05 
 
 
  No  .05      .05            .15 
 
 
You need actual frequencies (rather than proportions of the total group size) in 
order to use Williams’ method.  Guttman didn’t provide the frequencies, so for 
convenience let’s use a total group size of 200 (the actual number won’t matter), 
so that the revised table is as follows: 
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    Retest 
 

  Yes Undecided No ∑ 
 
  Yes   20      30  10  60 
 
 
  Test  Undecided  30      50  10  90 
 
 
  No  10      10            30  50 
 
 
 ∑  60      90  50          200 
 
 
The method involves the creation of certain matrices and vectors, the calculation 
of the eigenvalues and the eigenvectors of one of those matrices (see Knapp, 
1993, Appendix B, for the details), and the derivation of “scores” for the row and 
column designations.  The indicator of reliability is the square root of the second-
largest eigenvalue, which for these data is .4736 (not great; there are lots of off-
diagonal frequencies).  That number is between the lower bound of .33 and the 
upper bound of .50 determined by Guttman’s method in Chapter 7, so all is well. 
  
Back to John and Mary 
 
If we had more essay-rating data for graders John and Mary, and if we could 
defensively treat the rating scale as an interval scale, a Pearson product-moment 
correlation coefficient for the relationship between John’s ratings (X) and Mary’s 
ratings (Y) would be perfectly fine for providing information regarding the (relative 
agreement) inter-rater reliability of that scale.  If absolute agreement were of 
concern, either the mean or the median of the absolute differences of 
corresponding X and Y values should do the trick.  
 
If, on the other hand, the rating scale is to be treated as an ordinal scale, then 
Kendall’s tau-b, Goodman & Kruskal’s gamma, or Williams’ canonical correlation 
coefficient is to be preferred.  My personal vote would go to Williams.    
 
Additional reading  
 
For more on absolute vs. relative agreement I recommend the general 
discussions by Bruton, Conway, and Holgate (2000), by Rogosa (2002), and by 
Baker and Kramer (2003); and the example given by Labouvie, Bates, and 
Pandina (1997) regarding the test/retest reliability of an instrument devised to 
measure retrospective perception of first use of alcohol and drugs.  For more on 
ordinal vs. interval measurement I recommend Cliff (1979), Marcus-Roberts and 
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Roberts (1987), Cliff and Keats (2003), and Biswas (2006). 
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CHAPTER 11:  Statistical inferences regarding reliability 
 
 
In the previous chapters we have assumed, implicitly or explicitly, that we had 
data for entire populations.  There were several references to "a very large 
number of objects", although most of the time, for illustrative purposes and to 
keep things simple, the number of objects was actually not very large.  And in 
Chapter 5 we did talk a little about inferences for individual true scores, but the 
matter of sampling and sampling error were generally ignored. 
 
In this chapter we are going to "bite the bullet" and face up to the fact that in most 
scientific research regarding reliability coefficients, standard errors of 
measurement, and the like, we have a sample of objects that are measured once 
or twice or, if we're fortunate, several times (see, for example, the matter of 
growth curves alluded to in Chapter 6), and we want to estimate, or test 
hypotheses about, the corresponding values in the larger population of objects 
from which that sample has been drawn.  (In formal parlance, we have statistics 
and we want to say something about parameters.)  How we go about doing it will 
turn out not to be very easy but nevertheless tractable. 
 
Parallel forms reliability coefficients 
 
Let's take the easiest cases first.  Suppose we have a sample reliability 
coefficient determined by correlating obtained scores on two parallel forms, e.g., 
the rAB of .50 for the hypothetical height data introduced in Chapter 3.  (In that 
chapter the seven people were treated as a population of basketball players; now 
they're assumed to be a random sample from a large population of basketball 
players.)  rAB is a special case of a Pearson product-moment correlation 
coefficient, and the sampling theory for Pearson r's is well-known (but  a bit 
tricky).  
 
Consider first the matter of point estimation, i.e., the determination of "the best" 
single estimate of the population correlation coefficient �AB .  Because Pearson 
r's are "boxed in" between -1 and +1, their sampling distribution is not symmetric 
(much less normal) unless the population correlation is equal to zero.  
Furthermore, unlike a variance but like a standard deviation, there is no simple 
"unbiased" estimate for a population correlation.  About "the best" we can do is 
use the sample correlation itself (in our example, .50) as an estimate of the 
population correlation. 
 
Interval estimation is more promising and also generally more informative (see 
Fan & Thompson, 2001), but here we must transform the sample r into 
something called "Fisher's z" (not to be confused with standardized variable z), 
construct a confidence interval around it, and then transform the endpoints of that 
interval back into r's.  For our example, the Fisher's z that corresponds to an r of 
.50 is .55 (trust me); the standard error (sampling error, not measurement error--
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that's important!) of a sample Fisher's z is approximately equal to 1/�(n -3), 
which is .50 for our example; and the 95% confidence interval for the population 
Fisher's z therefore extends from .55  - 2(.50) to .55  + 2(.50),  i.e., from -.45 to 
1.55.   Transforming back (from Fisher's z to r), the 95% confidence interval for � 
extends from -.42 to .92.  That's a very wide confidence interval and doesn't  
provide a very precise estimate of �AB, but the sample size is only 7, so you get 
what you pay for!  (If you're not familiar with Fisher's z, see any good introductory 
statistics text.) 
 
[Note in the preceding paragraph the switch in notation from N to n.  The former 
is preferred for the number of observations in a population; the latter is preferred 
for the number of observations in a sample.] 
 
When it comes to hypothesis testing there is another wrinkle.  For most 
applications of hypothesis testing we are interested in determining whether or not 
a particular sample statistic is "significantly different from zero", so we test the 
null hypothesis that the corresponding population parameter is equal to zero and 
we hope (usually) that we are able to reject that hypothesis.  Not so for reliability 
coefficients.  A sample reliability coefficient could be statistically significantly 
different from zero but the sample size could be so large that the statistic could 
reflect a very unreliable instrument.  A sample rAB of .10 based on a sample of 
size 900, for example, is statistically significant at the .01 level, but is a very weak 
reliability coefficient by anyone's standards.  Testing the null hypothesis that the 
population reliability coefficient is equal to zero is an example of what Abelson 
(1995, 1997) has variously called a “silly” or a “gratuitous” significance test.  
 
But all is not lost.  Fortunately, Fisher's z comes to the rescue again.  Instead of 
testing the null hypothesis that the population parallel-forms reliability coefficient 
is equal to zero, we can test the "null" hypothesis that the population reliability 
coefficient is some other number, perhaps a reliability of .80.  (Null hypotheses 
are testable hypotheses; they don't always have to have zero in them.)  It could 
be that an established instrument is known to have .80 reliability and you would 
like to determine if your instrument is competitive.  For our rAB of .50, if we want 
to test the hypothesis that our sample of seven people could have come from a 
population in which the reliability coefficient is .80, we proceed as follows. 
 
Null hypothesis:   ρ = .80  (a Fisher's z of .1.10) 
Alternative hypothesis:  ρ < .80   (a one-tailed test this time, since what is at 
stake is whether or not our test is up to standard) 
 
Significance level:  .025 (to be conventional for a one-tailed test that corresponds 
to a two-sided 95% confidence interval--if you follow that!) 
 
Test statistic:     .55 - 1.10  [the standard error is the same] 
      ------------- 
                               .50 
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  =   -.55/.50  =  -1.10       
 
That test statistic is distributed approximately as a standardized normal variate, 
and we accordingly cannot reject the null hypothesis (the absolute value of -1.10 
is less than the "critical value" of 1.65), i.e., our instrument could be competitive 
(and it might also not be!). 
 
 The interval estimation approach actually subsumes the hypothesis testing 
approach here (just as it did in Chapter 5).  Since .80 is within the 95% 
confidence interval, it cannot be rejected as a hypothesized value for �.  
 
Test-retest reliability coefficients 
 
Statistical inferences concerning same-form test-retest correlations proceed 
exactly in the same way as those for parallel forms, since they are also special 
cases of Pearson r's, but it is important to keep in mind what has been said 
before, by Kelley (1923) and others, that same-form reliability coefficients may 
violate one or more of the basic tenets of classical reliability theory.  (A special 
case of a correlation coefficient is one that has been corrected for attenuation--
see Chapter 4.  Jackson, 1942 and Hakstian, Schroeder, & Rogers, 1988 have 
provided procedures for making inferences regarding such correlations.) 
 
If you're interested not merely in an inference from a sample parallel-form or test-
retest correlation to a population parallel-form or test-retest correlation, but would 
like to estimate or test a hypothesis about the difference between two parallel-
form or test-retest correlations (for either independent samples or dependent 
samples), formulas derived from extensions of Fisher's z sampling theory are 
available (again see any good statistics text that discusses such matters). 
 
Intraclass correlations 
 
Now for the tough stuff.  Since all intraclass correlations are functions of mean 
squares, the analysis of variance involving those mean squares can be used to 
test the statistical significance of any particular intraclass correlation coefficient (if 
you use the right mean squares!).  But as indicated above, such a test is usually 
silly.  It is the estimation of a confidence interval for the population intraclass 
correlation that should be of principal interest.  And in this section we shall 
concentrate on interval estimation for ICC (1,1).  For a comprehensive discussion 
of the appropriate formulas for constructing confidence intervals for intraclass 
correlations of various kinds, see McGraw and Wong (1996). 
 
A confidence interval for ICC (1,1) can be determined as follows:  
 
Lower limit:  (FL – 1)/[FL + (k-1)], where FL =  (MSbr / MSwr )/ Ftabled   

  and where  Ftabled  is the value in the F table for the desired  
  degree of confidence for the appropriate  number of degrees 
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of freedom [which for ICC(1,1) are (n-1) and n(k-1)] 
 
Upper limit:  (FU – 1)/[FU + (k-1)], where FU = (MSbr /MSwr ) (Ftabled ) 
 
For the height example, n = 7, k = 2, MSbr = 56, and MSwr = 16.  For 6 degrees of 
freedom “across the top” and 7 degrees of freedom “down the side”, the Ftabled 

value for 95% confidence is 3.87.  Working out the arithmetic, the 95% 
confidence interval for the population ICC (1,1) would be from -.106 to .926.  
That’s a terribly wide confidence interval, and the lower limit is negative (that can 
happen--see Chapter 8), but that’s because the number of rows (people) is so 
small. 
 
A confidence interval for ICC (3,k) can be determined in a similar fashion.  In the 
next section we will do so, as Cronbach’s alpha.  [Recall that ICC (3,k) is 
identical to Cronbach’s alpha.] 
   
Cronbach's alpha 
 
As I pointed out in Chapter 8, most social science researchers determine the 
reliability of their instruments by using the formula for Cronbach's coefficient 
alpha (or Kuder-Richardson Formula #20, which is its special case for 
dichotomous items).  Feldt (1965, 1969, 1980) derived approximate sampling 
distributions for alpha itself, the difference between two alphas for independent 
samples, and the difference between the alpha for one instrument and the alpha 
for another instrument administered to the same subjects.  Only the first of these 
will be treated here.  (See also Payne & Anderson, 1968; Cleary & Linn, 1969a;  
Hakstian & Whalen, 1976; Kraemer, 1981; Woodruff & Feldt, 1986; Feldt , 
Woodruff, & Salih, 1987; Mendoza, Stafford, & Stauffer, 2000;  van Zyl, 
Neudecker, & Nel, 2000; Bonett and Wright, 2000;  Bonett, 2002;  Koning & 
Franses, 2003; and Duhachek & Iacobucci, 2004  for other contributions to the 
determination of inferences from sample alphas to population alphas.) 
 
Consider the hypothetical example in Chapter 8 of the alpha of .449 for the four-
item test administered to five persons, and suppose that those five persons 
constitute a random sample from some "infinitely large" population of persons.  If 
you would like to estimate the population alpha from the sample alpha "within 
bounds"--a 95% confidence interval, say--you would calculate the endpoints of 
the interval as follows (see Feldt, 1965 for the formulas, which are also provided, 
along with the data for this same example, in Knapp, 1991): 
 
Lower limit =  1 - FL  (1 - α), where FL is the 97.5th percentile of the F sampling 
distribution for n -1 and (n - 1)(k - 1) degrees of freedom (n is the sample size 
and k is the number of items), which for our example is equal to 1 - 4.12 (.551) = 
-1.270 (trust me). 
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Upper limit =  1 - FU (1 - α), where FU is the 2.5th percentile of the F sampling 
distribution (and everything else is the same as for the lower limit, which for our 
example is equal to 1 - .114 (.551) = .937 (trust me again). 
 
Therefore, given a sample alpha of .449 for a four-item test and a sample size of 
five persons,  "reasonable limits" for the population alpha are -1.270 and .937.  
You will note two things about that interval: (1) the lower limit is negative (that 
also happened in the previous section for the height example) and is even less 
than -1; and (2) the interval is awfully wide (but that's what you get when you 
have such a small sample).  As is the case for many other statistics, the 
confidence interval approach can also be used to test hypotheses concerning 
possible values of the population alpha.  For our example, almost any 
"candidate" for the population alpha would be unrejectable! 
 
Goodman & Kruskal’s gamma, Kendall’s tau-b and Williams’ correlation 
 
In the previous chapter I described three methods for determining the reliability of 
a measuring instrument that produces ordinal measurements: gamma (Goodman 
& Kruskal, 1979), tau-b (Kendall & Gibbons, 1990), and a special kind of 
canonical correlation (Williams, 1952).  If you have a sample gamma or a sample 
tau-b and you want to construct a confidence interval for the corresponding 
population parameter, Agresti (1984) explains how to do it (it’s not easy!).  If 
you’ve calculated  Williams’ canonical r for your sample, the general approach to 
constructing a confidence interval around a sample canonical correlation 
coefficient would provide the basis for the appropriate inference (also not for the 
statistically faint of heart, and works only for large sample sizes; see Glynn & 
Muirhead, 1978). 
   
Cohen's kappa 
 
As far as kappa is concerned, Cohen (1960), Fleiss, Cohen, and Everitt (1969), 
and Fleiss (1971) have provided approximate formulas for confidence intervals 
(and thus hypothesis tests).  Those formulas are a real mess (the formulas for 
"uncorrected" proportion agreement are a picnic by comparison--confidence 
intervals and significance tests for proportions have been around for a long time), 
so I won't give them to you.  (If you're interested, see any of the three sources 
just cited).  For Fleiss's (1971) interesting example of six raters providing ratings 
for six subjects each (but not the same six--there are missing data, by design) on 
five diagnostic categories, the sample kappa is equal to .430, its standard error is 
approximately .028, and the 95% confidence interval for the population kappa is 
.430 ± 2(.028), i.e., from .374 to .486. 
    
Although there are other kinds of reliability coefficients encountered in the 
literature, parallel-forms, test-retest, alpha, and kappa coefficients constitute at 
least 90% of those actually used by practicing researchers, so statistical 
inferences for those other statistics will not be pursued here.  (If you care about 
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statistical inferences for stepped-up split-half reliability coefficients, for example, 
see Kristof, 1963a,1964; and Lord, 1974.) 
 
Reliability and power 
 
In Chapter 4 on attenuation I pointed out that correlation coefficients and 
differences between means are both reduced by the unreliability of measuring 
instruments, and the emphasis was placed on the former, with an appeal to the 
correction-for-attenuation formula 
 
rTxTy  =   rXY / (√ rXX )(√rYY) 
 
Here I would like to shift the emphasis to the difference between means, not 
because correlations are any less important but because it is more conventional 
to talk about power in the context of mean differences. 
 
To refresh your memory of introductory statistics, power is the probability of 
rejecting a false null hypothesis, which is what most researchers would like to do.  
(If the null hypothesis, which is usually the "nothing is going on" hypothesis, is 
not true it should be rejected in favor of an alternative hypothesis that "something 
is going on".)  But what happens if you have a less-than-perfectly-reliable 
instrument upon which that hypothesis is based?  The short answer is that power 
is reduced and you're less likely to be able to reject a false null.  That needs to be 
shown, and I will now proceed to do so. 
 
Consider the all-pervasive "pooled" t test of the significance of the difference 
between two independent sample means (experimental and control, male and 
female, or whatever).  The formula for "t for two" is: 
 
t  =      M1  - M2                        where   M1  and M2 are the obtained means for sample 1 
 -----------------------               and sample 2, n1 and n2 are the corresponding 
 √ ( Sp

2 / n1  +  Sp
2 / n2 )          sample sizes, and Sp

2 is the pooled variance 
(n1 S1

2 + n2 S2
2 )/ (n1 + n2 - 2) for the                         

corresponding obtained variances S1
2 and S2

2 . 
 

Unreliability presents no problem for the numerator of the t ratio, since the 
obtained means are at least approximately equal to the true means by Theorem 
#1 of Chapter 3.  But those two obtained variances are sums of true variances 
and error variances, so if the instrument used to get the data is subject to any 
unreliability the obtained variances are too large (the true variances having been 
inflated by measurement error), the pooled variance is also too large, t is too 
small, and you are less likely to be able to reject the null hypothesis, no matter 
whether it is true or false, so power is lower than it would be if the instrument 
were perfectly reliable.  (Did you follow that?) 
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If you have two dependent samples, the formula for t is different, but the issue is 
the same (the obtained variance in the denominator is too large).  Likewise for 
more than two samples, independent or dependent, where the within-sample 
denominator of the F ratio used in the appropriate analysis of variance is also too 
large, F is correspondingly too small, and power is lower. 
 
Unreliability of change scores can also decrease the power of a significance test 
for experiments in which the mean change on a dependent variable for an 
experimental group is compared with the mean change for a control group where 
a pretest/posttest design has been employed.  For an interesting exchange of 
opinions concerning this problem, see Overall and Woodward (1975, 1976), 
Fleiss  (1976), and Nicewander and Price (1978). 
 
You wouldn't believe the number of people who have studied the problem of the 
effect of unreliability on power.  For particularly good explanations of the problem 
and suggestions regarding what to do about it I recommend the articles by Cleary 
and Linn (1969b), Subkoviak and Levin (1977), Sutcliffe (1980), Zimmerman and 
Williams (1986), and Bacon (2004); and Chapter 8 of Aiken and West's (1991) 
multiple regression textbook. 
 
Sample size for reliability studies 
 
Closely related to power is the matter of the appropriate sample size to use in a 
reliability study.  Let us re-consider the above example of testing the "null" 
hypothesis that the population reliability coefficient is equal to .80 against the 
alternative hypothesis that the population reliability coefficient is less than .80.  
There we were "stuck" with a sample of only seven observations and we could 
not reject the .80 even though our sample reliability coefficient was only .50.  The 
more interesting research question is: What size sample is appropriate for testing 
those two hypotheses against one another so that if the null is true we would 
have a reasonably high probability of arriving at that conclusion, and if the 
alternative is true we would also have a reasonably high probability of arriving at 
that conclusion?  In formal inferential statistical parlance, we would like the 
probability of making a Type I error and the probability of making a Type II error 
to both be small. 
 
The Type I error part is easy:  Choose a sufficiently stringent alpha level (not to 
be confused with Cronbach's alpha!) so that the probability of rejecting a true null 
is small (.05 is conventional and should be fine).  The Type II error part is hard.  
First of all, we can't even get off the ground unless we make the alternative 
hypothesis as specific as the null; that is, we need to hypothesize another value 
for the population reliability coefficient that we're willing to believe is true if the 
null-hypothesized value of .80 is not.  Let's say that the non-null hypothesized 
value is .90 (that our test is more reliable than the typical test--how optimistic can 
you get?!).  Secondly, we need to also choose a sufficiently stringent beta level 
(not to be confused with the beta weight in regression analysis!), so that the 
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probability of failing to reject a false null is small.  (Do you follow both of those 
requirements?)  Those two probabilities don't have to be equal--the 
consequences of being wrong may not be the same--so let us choose the beta 
level to be .20.  Since power is equal to 1-beta, we will have implicitly chosen that 
to be .80 (Cohen’s “default” power).  We're now all set (the nature of the two 
hypotheses necessitates a one-tailed test), because there exist formulas and 
handy tables for determining the optimal sample size for testing the .80 vs. the 
.90--optimal in the sense that if our sample size is less than that number our 
power will be less than .80 and if our sample size is greater than that number we 
will be incurring unnecessary costs.   
 
I recommend that you see Cohen (1988) for sample size determination in 
general.  And see Donner and Eliasziw (1987); Eliasziw and Donner (1987); 
Walter, Eliasziw, and Donner (1998); and Feldt and Ankenmann  (1998, 1999) for 
sample size determination for reliability studies in particular.  For example, if you 
wanted to test the “null” hypothesis that the reliability coefficient in the population 
is equal to .80 (what previous investigators have gotten, say) against the more 
promising alternative hypothesis that it is equal to .90 (your claim for your 
instrument), using the .05 significance level and with a desired power of .80, the 
required sample size is approximately 46. 
 
The effect of (un)reliability on confidence intervals in general 
 
As I have pointed out several times already, interval estimation generally 
subsumes hypothesis testing, so it should come as no surprise to you that if a 
statistic has been determined by using one or more less-than-perfectly-reliable 
measuring instruments, the confidence interval for the corresponding parameter 
will be necessarily wider than it would be for perfectly reliable instruments.  This 
is most easily seen by considering the familiar formula for the confidence interval 
for most statistics, i.e., statistic ± margin of error.  The margin of error is typically 
some multiple of a standard error of the statistic.  The standard error in turn is a 
function of an obtained standard deviation, which is the square root of an 
obtained variance, which is too large since the true variance is inflated by error 
variance (see Theorem #2 in Chapter 3) whenever the reliability coefficient is 
less than 1. 
 
The determination of sample size for confidence intervals of tolerable width is 
similarly affected.  The more unreliable the instrument(s), the larger the sample 
size necessary to provide the desired "coverage", all other things (such as the 
specified confidence coefficient) being equal. 
 
“Bootstrapping” reliability coefficients 
 
Dunn (2004) provides a particularly interesting example of the use of the non-
parametric bootstrap for sample-to-population inferences concerning reliability 
statistics, when one is unable or unwilling to make certain assumptions about the 



2009Knapp-Reliability.doc  Page 86 

underlying population distribution and/or the theoretical sampling distribution of a 
particular indicator of reliability is unknown or mathematically intractable. 
 
Our flow meter example (re-revisited) 
 
I would like to close this chapter by returning to our expiratory flow example and 
showing how a number of statistical inferences might be made for such data, if 
the data were treated as coming from a sample rather than constituting an entire 
population.  You may recall that 17 subjects were measured twice with each of 
two versions of an instrument, the standard Wright meter and the Mini Wright 
meter.  One of the interesting results was a correlation of .983 between the first 
and the second measurements obtained with the standard meter.  If those 17 
people had constituted a simple random sample from a larger population of 
interest (they were actually a handy, "convenience" sample), the 95% confidence 
interval for the population correlation (reliability coefficient) would be determined 
as follows: 
 
r = .983  (Fisher's z equivalent = 2.400)  
n = 17  
standard error of Fisher's z = 1/√ (n-3)       
          = .267 
 
The 95% confidence interval for Fisher's z in the population is 2.400 ± 2 (.267), 
i.e., 1.866 to 2.934.  The 95% confidence interval for  (the population reliability 
coefficient for the Wright meter) is from approximately .95 to .99, a surprisingly 
tight confidence interval for such a small sample size (a ceiling effect?), and 
indicative of very high within-meter reliability. 
 
Another interesting correlation is the correlation between the First Y for the Mini 
Wright meter and the Second Y for the Mini Wright meter, .967.  Estimating the 
population correlation ρ for that meter would proceed in the same fashion and 
would produce a similarly "high and tight" interval. 
 
But perhaps the most interesting relationship is that between the Wright and the 
Mini Wright.   Are the two instruments compatible?  Lord (1957b, 1973) provided 
a test of the hypothesis that two instruments measure the same thing (in this 
case, expiratory flow), except for possibly different errors of measurement, 
different metrics (e.g., inches vs. centimeters), and/or origins of measurement 
(e.g., the arbitrary zero points for Fahrenheit degrees vs. Centigrade degrees).  
The calculations are a bit complex (see Lord's articles for the actual formulas), 
but as you might expect from the discussion of the reliability of differences in 
Chapter 6 they involve all six within-instrument and between-instrument 
correlations and all four standard deviations (or functions of them), as well as all 
four means.  Anyhow, for this example it turns out that the hypothesis of 
compatibility is rejected; i.e., the two instruments appear to be measuring 
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different things.  (See my comments regarding Subjects 6, 7, and 16 when this 
example was first introduced in Chapter 3.) 
 
Random samples vs. "convenience" samples 
 
All of the above discussion and the various formulas, strictly speaking, apply only 
to simple random samples, i.e., samples drawn from populations in such a way 
that every combination of n objects in the population has an equal and 
independent chance of being included in the sample.  Such samples are 
exceedingly rare in actual research.  Some (perhaps most) researchers claim 
that inferential statistics are also appropriate for non-random samples that are 
conveniently obtained rather than based upon any chance process.  The matter 
is very controversial.  "Liberal" researchers "regard" their samples as random 
samples from hypothetical populations "like these"; or (b) they use inferential 
statistics in order to provide an objective basis for determining whether or not to 
get excited about a particular sample result; or both.  "Conservative" researchers 
reject both of those arguments, because regarding and having are two different 
things, they have no interest in hypothetical populations, many aspects of 
inferential statistics are subjective, not objective (e.g., the choice of significance 
level), and theory, not statistical inference, should be the basis for "excitement".  
I'm with the conservatives; inferential statistics are vastly overused (in my 
opinion).   
 
Additional reading 
 
For an Excel program that computes confidence intervals for various reliability 
coefficients, see Barnette (2005).  For general information regarding statistical 
inferences for reliability indices, see Sutcliffe (1958), Kristof (1963b; 1970), and  
Charter (1999).  
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CHAPTER 12:  A very nice real-data example 
 
 
In the previous chapters of this book I have made extensive use of two 
examples: (1) a set of hypothetical data for the heights of seven basketball 
players; and (2) a set of real data for 17 subjects measured twice with each of 
two peak expiratory flow meters.  Although both of those examples were helpful 
(I hope) for illustrating various principles of classical reliability theory, neither is 
representative of the kinds of measurement situations that researchers typically 
encounter.  In this chapter I would like to apply many of the concepts that we 
have discussed to a much larger set of real data.  The data served as the 
empirical basis for an article entitled "Is self-reported height or arm span a more 
accurate alternative measure of height?" (Brown, Feng, & Knapp, 2002) and they 
can be found in Appendix A, by courtesy of the senior author of that article, Dr. 
Jean K. Brown, University at Buffalo, State University of New York. 
 
Background and the study itself 
 
The measurement of height is essential for the calculation of body surface area 
and body mass index, which are often the basis for healthcare practices such as 
the determination of drug dosages and weight-reduction therapies.  The 
stadiometers that are commonly found in doctors' and nurses' offices are very 
useful instruments for measuring people's heights.  There is one practical 
problem, however: The measuree must be able to stand up straight.  That is 
difficult, if not impossible, for some people, e.g., hospitalized patients who are 
suffering from multiple sclerosis.  One suggested alternative way to "measure" 
height is to ask the person what (her)his height is and proceed from there.  But 
are self-reported heights reliable?  A few researchers have studied the problem 
of the reliability of self-reported heights and/or the validity of self-reported heights 
(e.g., Pirie, Jacobs, et al., 1981; Stewart, 1982; Larson, 2000).  Another 
suggested alternative is to use arm span as a surrogate measure for height (e.g., 
Engstrom, Roche, & Mukherjee, 1981;  Steele & Mattox, 1987; Kwok & Whitelaw, 
1991; Parker, Dillard, & Phillips, 1996), but the reliability of arm span 
measurement is also questionable.  Following upon some earlier work on arm 
span alone (Brown, Whittemore, & Knapp, 2000), Brown, Feng, and Knapp 
(2002) undertook a study of 409 subjects who self-reported their heights and had 
their arm spans measured (twice each) and had their heights measured (also 
twice each).  What makes that study so interesting and unique is that the 
measurements were taken by 82 different measurers (an average of about five 
subjects each) with 82 different metal rules, which had been checked against a 
StanleyTM model 33-158 rule.  (See Brown, Feng, & Knapp, 2002, for the 
procedural details.)  The study's primary purpose was to compare the criterion-
related validity (see Appendix B) of self-reported height with the criterion-related 
validity of arm span measurement (the criterion being actual measured height).  It 
is the reliability data (two measurements of height and two measurements of arm 
span), however, that are of principal concern here. 
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Over-all parallelism 
 
The mean of the first set of height measurements is 66.84 and the variance is 
15.29.  The mean of the second set of height measurements is 66.87 and the 
variance is 15.37.   Because the means aren't identical to one another, nor are 
the variances, the two sets of height measurements aren't perfectly parallel, but 
they're certainly "close enough for government work"!  
 
For the arm span measurements, the mean of the first set is 67.93, with variance 
20.25; and the mean of the second set is 67.97, with variance 20.43.  Those two 
sets of measurements are also not perfectly parallel, but very close thereto. 
 
[For the validity portion of their study, Brown, Feng, & Knapp, 2002 quite properly 
chose to use only the first height measurement as the dependent variable, and 
the first arm span measurement as one of the independent variables, on the off 
chance that the measurers might have been influenced by their knowledge of the 
first measurement when making and recording the second measurement.] 
 
Over-all reliability 
 
The correlation between the first and the second height measurements (an 
estimate of the reliability coefficient for the measured heights) is .997, an 
indication of extremely high reliability.  The correlation between the first and the 
second arm span measurements (an estimate of the reliability coefficient for the 
measured arm spans) is, interestingly, also .997, and also indicative of excellent 
reliability.  But both of those reliability estimates are a bit deceiving.  The mean 
absolute difference (the statistic emphasized by Brown, Feng, & Knapp, 2002) is 
.17 inches for the heights and .21 inches for the arm spans.  Those look like 
small numbers (less than a quarter of an inch).  What they convey is that if we 
use those metal rules we're likely to be "off" from true height or true arm span by 
somewhat less than 1/4 inch on the average.  But that's "on the average".  We 
could be "off" by a lot less (that's the good news) or by a lot more (that's the bad 
news).  If you look at the actual raw data in Appendix A you will see that there 
were several differences of 0 inches between the two height measurements but 
there were also a few fairly large discrepancies, e.g., for IDs 148, 163, and 173--
differences of an inch or more, and all three with the second height greater than 
the first height (they stretched a little between measurements?).  The same sort 
of thing happened for arm span (several zero differences; a few large 
differences, e.g., for IDs 192, 217, and 247). 
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The 82 measurers 
 
Now for the fun part.  Recall that there were 82 different measurers using 82 
different steel rules to measure the heights and the arm spans of their respective 
subjects.  That raises several interesting questions:   
 
(1) Are those steel rules equally dependable?  Some evidence for the answer to 
this question was provided in the "calibration" phase of the study by the 
distribution of the measurements taken of a cupboard, a human arm span model, 
and two human height models.  Data were available for 80 of the 82 measurers 
who measured the cupboard ("true" width = 48 3/16 or 48.1875 inches--the 
measurers were asked to report their measurements to the nearest sixteenth of 
an inch).  Their actual measurements ranged from a low of 47.50 to a high of  
48.3875 (mean = 48.153 and variance = .01568).  Data were also available for 
79 measurers of the arm span model ("true" arm span = 66.4375 inches, range 
from 65.875 to 66. 875, mean =  66.356 and variance = .04397); for 43 
measurers of one height model ("true" height = 62.9375 inches, range from 
62.1875 to 63.50, mean =  62.631 and variance = .04726); and for 34 measurers 
of the other height model ("true" height = 67.00 inches, range from 66.25 to 
67.25, mean = 66.695 and variance = .06970).   Those numbers are very 
interesting, albeit not directly comparable since they're not all based on the same 
measurers.  For instance, (a) none of the means of the obtained measurements 
are equal to the Platonic true values (that is particularly bothersome for the two 
height models, where there is a decided downward bias); (b) the agreement was 
much greater for the cupboard (variance = .01568) than for the human models 
(variances = .04397, .04726, and .06970); and (c) the agreement was better for 
the shorter height model (variance = .04726) than for the taller height model 
(variance = .06970).  So I guess the answer to the question (Are the 82 rules 
equally dependable?) is "no". 
 
(2) Were the steel rules parallel in the main study?   We have established the 
parallelism of the two OCCASIONS but haven't yet faced up to the parallelism of 
the 82 instruments/measurers.  Instrument and measurer are confounded with 
one another here, because no measurer used more than one instrument, so if 
there is any unreliability we cannot determine whether it is "the instrument's fault" 
or "the measurer's fault".  (Do you follow that?)   
 
(3) (a corollary to the previous question)  Are the data "poolable" across the 82 
instruments?  If, for example, one instrument yielded first and second obtained 
heights of 65 and 65 for Person A, and 70 and 70 for Person B, respectively; but 
another instrument yielded first and second obtained heights of 65 and 70 for 
Person C, and 70 and 65 for Person D, respectively;  the data for those two 
instruments would not be poolable because there is a perfect positive 
relationship (Pearson r = +1) between the height measurements for the first 
instrument and a perfect negative relationship (Pearson r = -1) for the second 
instrument. 
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(4) (the key question)  If the instruments are not parallel, and the data are not 
poolable, what do we do about it? 
 
In the last column of the data in Appendix A there is a code number indicating 
who measured whom.  Although there is a formal test of the parallelism for 
several forms (see Gulliksen, 1950 and Lord, 1964), it's a bit of a mess.  For our 
purposes here I will briefly address the matter of parallelism, try to determine "the 
best measurer" and "the worst measurer", and make a judgment regarding the 
"poolability" of the data across measurers.  By "the best measurer" I mean the 
one for whose data there is the highest reliability coefficient and the lowest mean 
absolute difference, and by "the worst measurer" I mean the one for whose data 
there is the lowest reliability coefficient and the highest mean absolute difference.   
 
The assessment of instrument parallelism is a bit tricky when there is more than 
one measurer but the measurers have measured different measurees.  For the 
Brown, et al. study you can't compare the obtained means and standard 
deviations for the 82 height and arm span measurers as you would several forms 
of a test administered to the same persons, because the true score distributions 
could be vastly different if, for example, one measurer had measured some very 
tall persons and another measurer had measured some very short persons, 
which in fact appears to be the case here.  (The mean--obtained and true by an 
appeal to Theorem #1--first heights range from 62.20 for Measurer 79 to 71.37 
for Measurer 21, and the mean first arm spans range from 63.60 again for 
Measurer 79 to 72.30 for Measurer 37.)  But you can compare the first and 
second measurements of each characteristic (height and arm span) within each 
measurer.  An inspection of the data in Appendix A reveals that four of the 
measurers (# 37, 57, 60, and 71) had identical values for their first and second 
height measurements AND for their first and second arm span measurements, so 
their “forms” were perfectly parallel.  On the other hand, one measurer (#44) had 
rather discrepant values for first and second heights (mean = 65.08 and variance 
= 2.83 for first height; mean = 64.40 and variance = 2.34 for second height) and 
another measurer (#18) had similar discrepancies for first and second arm spans 
(mean = 66.70 and variance = 3.29 for first arm span; mean = 66.25 and 
variance = 2.95 for second arm span).   
 
[Caution:  It is conceivable, but hopefully not the case, that Measurers 37, 57, 60, 
and 71  "dry-labbed" their data by taking only first measurements and making 
their second measurements conform to their first measurements.  The one 
measurer whose measurements are perhaps the most suspect is Measurer 57 
who reported all measurement to only the nearest half-inch and had no 
discrepancies whatsoever!   The reliability coefficient for the other three of those 
aforementioned measurers (#37, 60, and 71) is also 1 and the mean absolute 
deviation is 0 for both height and arm span, so there could be some "hanky-
panky" going on there also.  Some students involved in research studies have 
been known to try to "help out" the principal investigators by providing them with 
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data they think the investigators want; others have been known to try to "louse 
up" the investigators.]  
  
I nominate Measurer 44 (and/or his(her) metal rule) for the "worst" measurer, 
with reliability coefficients of .937 for height and .928 for arm span, accompanied 
by mean absolute differences of .776 and .698, respectively.  Do you agree? 
 
Parallelism of measurers can be studied by comparing the individual measurer 
reliability coefficients and the individual mean absolute differences.  I have 
already cited the ranges, from the lowest reliability coefficient of .937 to the 
highest reliability coefficient of 1 for height and from the lowest reliability 
coefficient of .928 to the highest reliability coefficient of 1 for arm span.  The 
correspondingly lowest mean absolute difference for height is 0 and the highest 
is .776; the correspondingly lowest mean absolute difference for arm span is also 
0 and the highest is .698.  It's a judgment call as to whether or not that range of 
values is indicative of non-parallelism. 
 
That brings us to the matter of the "poolability" of the data.  Clearly, all of the 
measurers did not produce equal means, variances, reliability coefficients, and 
mean absolute differences.  My personal judgment is that they are not terribly 
discrepant, but serious consideration could be given to deleting that "worst" 
measurer (the next worst mean absolute difference for height is .500 and the 
next worst mean absolute difference for arm span is .600, for example, and not 
for the same measurer) and any of those "best" measurers whose data might be 
suspect.     
 
Tidbits 
 
A close examination of the data in Appendix A reveals that the decimal portions 
of some of the height and arm span measurements are not decimal equivalents 
of sixteenths of an inch.  (All of the measuring instruments were graduated in 
eighths of an inch, with the capability of interpolation between adjacent values.)  
For example, Subject 7's first arm span measurement, as reported by Measurer 
2, is 63.20 inches, and the .20, no matter whence it was rounded, is not a 
multiple of .0625 (which is the decimal equivalent of 1/16).  Was the 
measurement that was actually made 63.1875 (= 63 3/16), 63.25 (= 63 1/4), or 
just what?  Unfortunately we'll never know.  As I indicated above, the 82 
measurers were "on their own" after their original calibration exercises.  Dr. 
Brown did not, and could not, monitor each one of them while they were 
measuring their family members or friends.  This is the sort of thing that happens 
in real-world research, and yes, it does contribute to the unreliability of the 
measurements.  [Dr. Brown told me that she had a few foreign students in her 
class who were accustomed to the metric system (meters, centimeters, 
millimeters, etc.), rather than the British/American system (feet, inches, fractions 
of inches, etc.), and although she cannot, and should not, identify who Measurer 
2 was, it is conceivable that (s)he read off the two "tick marks" to the right of the 
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63-inch mark as two tenths of an inch instead of two eighths of an inch.  (The 
decimal portion of her (his) second arm span measurement for Subject 7 was 
also not a multiple of 1/16; but the decimal portions of both height measurements 
were.  Go figure!)] 
 
Although self-reported height is not a variable of direct concern here (it was of 
vital concern to Brown, Feng, & Knapp, 2002), it is interesting to note that most 
people appear to have self-reported their heights to the nearest inch (they were 
not told what precision to use), but there were at least 63 people who did try to 
estimate their heights more precisely (the 63 subjects who had a self-reported 
height that did not end in .00).  If their first actual height measurement can be 
defended as their "gold standard" height, more of them over-estimated than 
under-estimated. 
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CHAPTER 13: Special topics 
 
 

In this chapter I would like to discuss several matters that are of less importance 
(in my opinion) than those that we have already covered and/or didn't fit in very 
well in any of the previous chapters. 
 
Some other conceptualizations of reliability 
 
The first of these topics is concerned with the competing approaches to classical 
reliability theory of generalizability theory, item response theory, and structural 
equation modeling as the foundations for measurement in the social sciences.  
(Once again, those of you who are primarily interested in physical science 
instruments might want to skip this section.)   I will admit at the outset that I am 
far from an authority on any of these alternatives, but I know enough about them 
(I hope!) that I can compare and contrast them with what has been said so far in 
this book, and to point out their advantages and disadvantages relative to the 
classical approach. 
 

Generalizability theory 
 
Generalizability theory is often said to have been originally proposed in an article 
by Cronbach, Rajaratnam, and Gleser (1963) and later in book form by 
Cronbach, Gleser, Nanda, and Rajaratnam (1972), but its history actually pre-
dates both of those sources (see Brennan, 1997).  It has been subsequently 
summarized in somewhat more readable form by Brennan (1998, 2000, 2001a, 
2001b), Shavelson, Webb, and Rowley (1989), Shavelson and Webb (1991), 
Dunn (2004), and others.  It differs from classical reliability theory in one major 
respect:  It attempts to "break down" the measurement error component of an 
obtained score into several sources, rather than lump them all together into one 
big E.  Generalizability theorists want to know how much of the variation in 
obtained scores is attributable to forms (when you have more than one form), 
how much of  the variation is attributable to items (when there are items), how 
much to occasions (when people are tested more than once), etc.  As a result 
they lean heavily on the analysis of variance in so doing.  And because one can 
identify various kinds of errors, there is a reliability coefficient (called, naturally 
enough, a "generalizability coefficient") associated with each kind of error.  There 
are also (hang on to your hats) relative generalizability coefficients and absolute 
generalizability coefficients (see Burns, 1998, for an interesting example). 
 

Item response theory 
 
Item response theory (IRT), formulated by Thurstone (1925), Lord (1952), Rasch 
(1960), and others (see Bock, 1997, Wright, 1997, and McDonald, 1999 for 
accounts of its history), and popularized by Hambleton, Swaminathan, and 
Rogers (1991), Hambleton and Jones (1993), Hambleton and Slater (1997),  and 
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others, starts with the premise that every test item j has an "item characteristic 
curve" such that for each examinee i there is some (unknown but estimable) 
probability pij  that (s)he will answer the item correctly (or, for the case of affective 
measurement, provide the favored response), and a good measuring instrument 
should be constructed in such a way that those item characteristic curves have 
certain desirable properties.  The mathematics gets pretty heavy (with lots of 
emphasis on exponents and logarithms), and there are indices of measurement 
error that correspond to the reliability coefficients, standard errors of 
measurement, etc. of classical reliability theory (see, for example, Lord, 1980; 
Wright & Masters, 1982).  In Rasch measurement there are two kinds of reliability 
coefficients, one for the reliability of item separation (the proportion of between-
item variance that is not associated with measurement error) and one for the 
reliability of person separation (the proportion of between-person variance that is 
not associated with measurement error).  The interested reader is referred to the 
Wright and Masters monograph for the respective formulas and their 
interpretations. 
 
In his very long and technical article, Mislevy (1996) attempted to 
reconceptualize test theory in order to provide a more defensible basis for 
measurement in cognitive and developmental psychology.  Holland & Hoskens 
(2003) discussed classical reliability theory as a general version of item response 
theory.  And  Doran (2005) questioned whether the information function in item 
response theory is an indicator of reliability.  [My answer is "no" (I don't think it 
has anything to do with consistency), but if you're knowledgeable about IRT 
please read Doran's article and see what you think.] 
 

Structural equation modeling 
 
Structural equation modeling (SEM), also known as the analysis of covariance 
structures (and one or two other similar designations), which originated with the 
work of Karl Joreskog (see, for example, Joreskog & Sorbom, 1979), is a 
currently-popular method for investigating the causal connections between 
underlying scientific "constructs" or "latent variables" (what I called "attributes" in 
Chapter 2) as well as their various empirical operationalizations ("indicators" or 
"manifest variables").  It can be thought of as a generalization of path analysis, 
which is itself a special type of regression analysis.  There are two parts to a 
structural equation model: the measurement model, in which the hypothesized 
relationships between the constructs and the indicators are tested; and the 
structural model, in which the relationships between the constructs are 
investigated.  (See Bollen, 1989; Mueller, 1996; and Drewes, 2000 for clear 
discussions of the basic concepts in structural equation modeling.  Bollen’s 
pages 206-223 are particularly good for clarifying the difference between 
classical reliability and SEM reliability, and the difference between SEM reliability 
and SEM validity.)    SEM advocates define the reliability of an indicator variable 
as the square of its "loading" on the construct it is alleged to tap.  (The constructs 
are also often referred to as "factors"--confirmatory factor analysis is an integral 
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part of SEM.)  Although the theoretical constructs can be assumed to be 
measurement-error-free, if that assumption is not warranted their reliability can 
also be estimated.   Fornell and Larcker (1981), Miller (1995), Raykov (1997), 
and Hancock and Mueller (2000) have all derived measures of a construct's 
reliability as a function of the reliabilities of its indicators.  The Hancock and 
Mueller statistic, which they call H, appears to have the most desirable 
properties, e.g. that the reliability of the construct can never be less than that of 
the indicator of highest reliability. 
 
Norm-referenced vs. criterion-referenced reliability 
 
There is a reasonably large literature devoted to the way instrument reliability is 
handled within a "norm-referenced" framework and how it is handled within a 
"criterion-referenced" framework.  (We have been operating in an "un-
referenced" or "raw" framework.)   The terms "norm-referenced" and "criterion-
referenced" come from educational measurement.  The former is concerned with 
the interpretation of a measurement with respect to other measurements that 
have been obtained with the same instrument, a percentile rank being the most 
familiar type.  (Example:  "Mary's obtained score of 37 on a spelling test put her 
at the 91st percentile when compared to a national sample of third-graders.")  
The latter (criterion-referenced, sometimes called "domain-referenced") is 
concerned with either or both of two things: (1) how much of the domain has 
been "bitten off"?; and (2) is that a "passing" performance?  (Example: "John 
spelled 82% of the words correctly, which was below the "cutting point" for 
progressing to the next lesson.") 
 
Educators whose instruments are norm-referenced have adopted reliability 
theory pretty much "as is", with its emphasis on correlation coefficients that are 
indicative of relative associations between variables.  Those whose instruments 
are criterion-referenced have tended to favor a modified version of reliability 
where the emphasis is on measurement error in the vicinity of the cutting point.  
What is of even greater interest is the reliability of the pass-or-fail decision.  In 
parallel-form situations, for example, the issue of whether a person passes both 
Form A and Form B or fails both Form A and Form B takes precedence over how 
high the correlation is between the two forms. 
 
For more on criterion-referenced reliability see Livingston (1972, 1973), Harris 
(1973), Swaminathan, Hambleton, and Algina (1974), Huynh (1976), Subkoviak 
(1976, 1978), Wilcox (1978), Livingston and Wingersky (1979), Huynh and 
Saunders (1980), Peng and Subkoviak (1980), Berk (1980), Traub and Rowley 
(1980) [1980 was a good year for criterion-referenced reliability!], and especially 
Traub (1994), Feldt (1996), Chase (1996), and Puhan and Gall (2005).  Chase's 
article actually discusses a method for estimating the reliability of a criterion-
referenced instrument before it's ever administered! 
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(Non-)Independence of Observations and Unit-of-analysis problems 
 
All four measurement theories (classical reliability theory, generalizability theory,  
item response theory, and structural equation modeling) typically assume that the 
unit of analysis (the object that is measured) is an individual person and not 
some aggregate of objects such as a family, a classroom, or a hospital.  And  if 
the individuals are "nested" in such aggregates the nesting must be taken into 
account in order to cope with the problem of the non-independence of 
observations within aggregate in conjunction with the greater independence of 
observations across aggregates.   
 
A not uncommon occurrence is the ability to be able to measure only at one of 
those "higher" levels of aggregation.  Consider, for example, an instrument that 
has been designed to measure the coherence of a family (how "together" it is).  
The object of measurement is the family itself, and the measuree is usually one 
member of each family who is asked to perceive family coherence; or, if more 
than one family member is measured, the data are immediately aggregated to 
the family level (usually by taking the average of the individual measurements) 
because non-independent observations would result if more than one 
measurement for a given family were to be used.  No matter which way the data 
are obtained, the problem is that evidence regarding the reliability (and validity) 
of the measuring instrument has probably been gathered with the individual 
person, not the family, as the unit of analysis.  A high (or low) reliability coefficient 
for individual observations does not necesarily imply a high (or low) reliability 
coefficient for aggregate observations. 
 
There is an additional problem whenever this "nesting" arises (students nested 
within classrooms, classrooms nested within schools, etc.), even when the unit of 
analysis is the individual object, and that is the matter of whether some statistic 
such as a correlation coefficient should be calculated within each of the 
aggregates, across the aggregates, or both.  In the previous chapter, for 
example, there were 82 sets of aggregate data by virtue of the fact that there 
were 82 measurers nested within the entire data set.  We found that the 
correlation between first actual measured height and second actual measured 
height was .997 (n = 409) across all of the measurers, but the within-measurer 
correlations ranged from .937 (n = 5) to 1 (n = 5). 
 
One of the first methodologists who tried to cope with the unit-of-analysis 
problem in a measurement context was Sirotnik (1980), who used as illustrative 
examples situations involving the measurement of the organizational climate of 
schools (a matter that is substantively similar to the coherence of families).  
Drawing on the unit-of-analysis literature that was available at the time (there is 
now a much larger literature, and it goes by the fancier name "hierarchical linear 
modeling"--see, for example, Raudenbush & Bryk, 2002), he showed that the 
usual formulas for estimating measurement error for individual objects must be 
modified when applied to aggregate data.   
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Following later on Sirotnik's work, Verran, Mark, and Lamb (1992) summarized 
the problem for nursing researchers who have aggregate data and who are 
concerned with the effect of unreliability on such data.  And Forbes and Taunton 
(1994) provided an application to data aggregated to the organizational level.  
(See also Franzen & Derryberry, 1932b  and Brennan, 1975 for harbingers of 
what was to come in Sirotnik’s work.)  More recently, Waller (2008) argued that 
“commingled” samples, i.e., two or more samples pooled together and treated as 
a single sample, can have serious effects on the reliability of the instrument(s) 
used for those samples. 
 
As I indicated in Chapter 9, the intraclass correlation coefficient plays a key role 
in unit-of-analysis problems, but in that context it is usually referred to as a 
correlation ratio, given the symbol 2, and calculated by dividing the between-
aggregate sum of squared deviations from the grand mean by the total sum of 
squared deviations from the grand mean.  For more on the unit of analysis and 
the independence of observations, see my articles: Knapp (1977, 1984). 
 
Weighting 
 
When an instrument is composed of two or more parts, e.g., test items, and the 
measurements for the component parts are to be combined in order to produce a 
total obtained score, there is always the question of how to combine them.  Most 
of the time a simple sum is taken, i.e., the parts are given equal weight, but there 
are times when it might be better to give them different weights.  I have 
mentioned differential weighting a couple of times in previous chapters (when 
getting an over-all estimate of the reliability of an item by combining the "reliability 
for rights" and the "reliability for wrongs", for example--see Chapter 7).  Many 
measurement experts, from Pothoff and Barnett (1932) to Drewes (2000), have 
been concerned with the problem of how to weight the components so as to 
produce a weighted sum that has optimal properties, usually maximum reliability.  
(See Thomson, 1940; Mosier, 1943; Green, 1950; Aiken, 1966, 1988; Stanley & 
Wang, 1970; Conger, 1974, 1980; Li, Rosenthal, & Rubin, 1996; Li, 1997; Li & 
Wainer, 1997; Cliff & Caruso, 1988; and tenBerge, 2000.) 
 
An example of the epitome of reliability optimization was given by Li, et al. 
(1996).  They showed that if a test is to consist of two kinds of items (essay and 
multiple-choice), if each essay item has a reliability of .60 and costs $1.00 to 
score, if each multiple-choice item has a reliability of .10 and costs $.01 to score, 
and if the fixed cost (budget constraint) for scoring the test is $7.00, then a 
maximum reliability (of .97) would be achieved by having the test consist of 200 
multiple-choice items and 5 essay items.  (See also Wainer & Thissen, 1993  and 
Kane & Case, 2004 regarding weighted composite scores.) 
 
The two articles by Aiken, 22 years apart (1966 and 1988) are an interesting pair.    
In the 1966 article he showed that under usual testing conditions (e.g., positive 
inter-item correlations) equal item weighting and differential weighting tend to put 
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examinees in essentially the same rank order, the implication being that 
differential weighting is rarely worth the effort.  But in the 1988 article he provided 
a computer program for determining the maximum reliability of a weighted 
composite! 
 
Other researchers have investigated other weighting problems.  Ebel (1965) and 
Rippey (1968, 1970), for example, studied the effect of "confidence weighting" on 
the reliability of a multiple-choice tests.  Here weights are assigned to each 
choice for each item by the examinees, indicating how certain they are of the 
correctness of that choice, and/or to each item, indicating how certain they are of 
the correctness of their response to the item.  (See also the previous work by 
Davis & Fifer, 1959.)  The results were mixed; sometimes the test versions 
asking the examinees for confidence weighting were found to be more reliable 
than the traditional test versions where no such information is asked, but 
sometimes they were found to be less reliable.  (It's amazing what things 
researchers choose to study, isn't it?) 
 
Missing-data problems 
 
No problem is more frustrating to substantive researchers than that of missing 
data.  They go to great lengths to design their instruments with careful 
instructions concerning how measurements are to be taken, only to later discover 
that one or more measurees refused to provide certain information, the 
measurers didn't record the information properly, the people entering the data for 
analysis purposes omitted the information, or some other goof-up.  What effect 
does that have on the estimation of the reliability of the instrument?   It depends. 
 
If the "missingness" is built into the study (see, for example, Fleiss's 1971 article 
on statistical inferences for Cohen's kappa that was cited in Chapter 11), the only 
sacrifice is a loss of some sensitivity in the data.  But if the "missingness" 
happens a lot and in unplanned places, e.g., every person has missing data for 
different items, the effect can be very severe.  The only remedies are imputation 
and deletion.   Imputation strategies involve the estimation of what each datum 
"might have been"; deletion strategies involve the elimination of some of the non-
missing data (e.g., dropping all of a person's data if (s)he has 5% or more 
missing data), and that approach therefore results in even more missing data!  
The principal objective of an imputation strategy is to salvage all of the non-
missing data while at the same time creating a full data set that has desirable 
properties.  The principal objective of a deletion strategy is to make life easier 
(e.g., to be able to calculate a matrix of correlation coefficients that are always 
possible for real data).  There are a number of different imputation strategies 
available (e.g., mean substitution, use of the Expectation Maximization algorithm) 
as well as a number of deletion strategies (e.g., listwise deletion, pairwise 
deletion).  I discuss some of them briefly in my nursing research textbook 
(Knapp, 1998), but if you're really interested in how to handle missing data the 
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principal resource is the book by Little and Rubin (2002).  [See also Huynh 
(1986b) and Enders (2003; 2004).] 
 
Some miscellaneous educational testing examples 
 
There have been a number of other interesting contributions to the literature on 
the reliability of measuring instruments.  One of my favorites is the article by 
Glass and Wiley (1964) in which they showed that the reliability of multiple-
choice test scores that are not corrected for guessing (i.e., are scored as R, 
where R is the number of correct answers) is higher than the reliability of such 
tests when the scores are corrected for guessing (i.e., are scored as R - W/(c-1), 
where W is the number of wrong answers and c is the number of choices per 
item).  Plumlee (1952, 1954),  Mattson (1965), Zimmerman and Williams (1965), 
and Traub and Hambleton (1972) also studied the effect of the guessing 
correction and the degree of speededness of a test on reliability and/or validity. 
Another of my favorites is the article by Ebel (1969b) in which he showed that the 
finer the scale for grading test performances, the higher the reliability.  That 
shouldn't be surprising to you after you've studied reliability theory (the basis of 
Ebel's proof), but it is fairly common folk "wisdom" that for an essay test, for 
example, you can't make fine distinctions between examinees so you should use 
a very small number of grade categories.  (The extremists recommend just two: 
pass and fail.)  Ebel includes a table that shows, among other things, that 
reducing the number of categories from five to two results in a loss of reliability 
from .85 to .63 for an instrument whose maximum possible reliability is .95.  In 
addition to a loss of reliability, the additional cost of reducing the number of 
categories for any non-continuous variable is a loss of predictability and of 
power, as Cohen (1983) so clearly pointed out about 20 years ago and 
MacCallum, Zhang, et al. (2002) re-emphasized.  Later, Feldt (2005) provided a 
method for deducing the reliability of dichotomized and trichotomized scores from 
the reliability of a continuous score that is “broken down” into two or three 
categories. 
 
But perhaps my most favorite of all is one of the oldest of all, an article written by  
Ruch and Stoddard (1925) on the same topics with which Lord (1944), Glass and 
Wiley (1964), Traub and Hambleton (1972), and Ebel (1969a) were concerned, 
but pre-dating them by several years.  In a controlled experiment involving 562 
high school seniors in Iowa, they investigated the relative reliabilities of five 
different types of objective tests: recall, five-choice, three-choice, two-choice, and 
true-false, with two 50-item parallel forms of each type.  (There is a subtle 
difference between two-choice and true-false, as illustrated by the versions of 
one of their items:  "The American Revolution began in 1762   1775" vs. "The 
American Revolution began in 1775  True  False".)  They found (anticipating 
Lord, Glass & Wiley, Traub & Hambleton, and Ebel?) that as the probability of 
chance success by guessing increased, i.e., as the number of choices 
decreased, the split-halves reliability of the total-test scores generally decreased, 
except for the three-choice version, which was lower than two-choice but higher 
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than true-false:  .811 for recall; .796 for five-response; .598 for three-choice; .737 
for two-response; and .555 for true-false.  (Their empirical findings agree rather 
closely, but not perfectly, with theoretical expectations later derived by Lord, 
1944.  If the assumptions of classical reliability theory are satisfied, reliability 
increases as the number of choices per item increases and as the number of 
items increases--see Ebel, 1972 for more on the latter.)  Few, if any, educational 
studies are carried out today with such care and technical expertise.  They even 
estimated what the various reliability coefficients would have been if all students 
had taken 18.7 minutes to complete 100 items!  (18.7 minutes was the median 
time for the recall version.)   The Ruch & Stoddard study is not cited by Glass 
and Wiley, Traub and Hambleton, or Ebel, but in their partial defense it was an 
empirical investigation and they were probably interested only in theoretical 
precedents. 
 
Some more esoteric contributions 
 
Mathematicians are prone to wanting to generalize results or to see where 
something works and where something doesn't.  If they find, for example, that a 
theorem holds for some k (=2, say), they'd like to know if it holds for all k.  And 
when they present formulas for quotients they always warn the potential user to 
beware of situations where the denominator might be equal to zero, in which 
case things "blow up". 
 
Much of the research concerning the reliability of measuring instruments has 
proceeded in the same way.  We've already talked about split-half reliability, 
where a test is split into two equal parts and the reliability of the total-test is 
estimated by correlating the parts and "stepping up" that correlation by the 
Spearman-Brown formula.  We've also talked about its generalization to the 
estimation of the reliability of a test that is k times as long as the one in hand.  
But what if the test were split into two unequal parts?  Or what if the test were 
split into three parts?  Would you believe that both of those problems have 
already been solved?!  See, for example, Feldt (1975) for two unequal parts, and 
Kristof (1974) for "split-thirds".  Kristof (1971), Gilmer and Feldt (1983), and Liou 
(1989) even worked on the problem of estimating the reliability of a total test 
when the parts are of unknown length!  
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CHAPTER 14:  The reliability of claims 
 
 
All of the preceding chapters were concerned with the reliability of actual 
measuring instruments, where "measuring instruments" were things like math 
tests, yardsticks, thermometers, etc.  In this chapter I would like to extend the 
concept of reliability to various claims that are often encountered in daily life. 
 
Let me begin with an example:  Is global warming a serious problem?  Some 
scientists claim that it is; others claim that it isn't.  How might we determine the 
extent to which such claims are reliable?  (The extent of their validity is much 
more difficult to determine; but as I have tried many times to remind you: this 
book is concerned almost exclusively with reliability.) 
 
Although it might be too much of a stretch, let us consider the claim of each 
claimant as an "item" on a "test".  The test has two forms.  Form A is the "yes" 
form; Form B is the "no" form.  Are the forms "parallel"?  We could  select a 
random sample of k scientists from the "yes" population and have their claims 
constitute Form A.  We could correspondingly select a random sample of k 
scientists from the "no" population and have their claims constitute Form B.  The 
two forms could then be deemed to be randomly parallel, albeit on opposite sides 
of the issue.  Alternatively, we could simply assemble one set of "yes" claims into 
Form A and another set of "no" claims into Form B and make a subjective 
determination of their parallelism, as Truman Kelley did when he argued that 
parallelism is a judgment call (see Chapter 3).   
 
Are the items within form internally consistent?  That should be relatively easy to 
determine, by comparing Scientist  i's reasoning with Scientist j's reasoning (i = 1, 
2, ...,k) within each of the two forms. 
 
How about the "correlation" between Form A and Form B, which serves so well 
as an estimate of the reliability coefficient for measuring instruments?  Aye, 
there's the rub, for two reasons: (1) the items in each of the forms are randomly 
(or purposively) drawn from two different populations (the "yes" population and 
the "no" population); and (2) what would a high correlation suggest, on the one 
hand; and what would a low correlation suggest, on the other hand.  My overly-
optimistic way of coping with both of those problems is to treat the "data" (the 
items in the two forms) just like points that are made in debates, by considering 
the cogency of the items as a whole in Form A in comparison with the cogency of 
the items as a whole in Form B (not their correctness---that would be validity, not 
reliability).  If the two forms contain items of equal or near equal cogency they are 
reliable.  If they don't, they're not.  Does that make sense? 
 
Let me conclude this brief chapter with another example.  (There is one more 
example in Appendix F.)  Here's the example:  Was O.J. Simpson guilty or 
innocent of the murder of his wife and her friend Ronald Goldman?  The 
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arguments of the prosecutor(s) constitute Form A; the arguments of the defense 
attorney(s) constitute Form B.  I rest my case.  (Not really.)     
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APPENDIX A: The very nice data set 
 
          id      age       sex    race       ht1        ht2       arm1     arm2         self    meas 
           1        54         1         0     61.88     61.50     62.25     62.38        63.00      1 
           2        52         0         0     64.00     64.13     64.25     64.50        66.00      1 
           3        23         1         0     64.75     65.00     67.38     67.50        67.00      1 
           4        23         0         0     68.25     68.00     70.00     70.13        68.00      1 
           5        22         0         0     68.25     68.50     71.38     71.50        70.00      1 
           6        50         1         0     62.06     62.19     61.63     61.75        62.00      2 
           7        23         1         0     63.63     63.75     63.20     63.40        63.00      2 
           8        23         0         0     75.81     75.94     74.75     75.00        76.00      2 
           9        22         1         0     66.25     66.33     66.50     66.63        66.00      2 
         10        50         0         0     74.13     74.25     73.50     73.63        74.00      2 
         11        22         1         0     65.94     65.94     65.25     65.75        66.00      3 
         12        22         0         0     66.75     66.69     68.94     69.00        66.50      3 
         13        22         0         0     73.25     73.13     72.75     73.50        73.00      3 
         14        23         0         0     72.00     71.75     75.50     75.44        72.00      3 
         15        22         1         0     64.19     64.00     64.44     64.75        64.50      3 
         16        54         0         0     71.13     71.06     72.06     72.00        71.63      4 
         17        53         1         0     63.69     63.63     60.25     60.13        64.00      4 
         18        50         1         0     66.88     66.94     67.06     67.50        67.50      4 
         19        52         1         0     66.81     66.75     71.94     71.75        67.00      4 
         20        48         0         0     72.06     72.19     73.88     74.00        73.00      4 
         21        23         1         0     66.88     66.88     66.88     66.88        66.00      5 
         22        21         0         1     69.63     69.88     70.88     70.63        69.00      5 
         23        23         1         *     65.25      65.50     67.00     66.75        66.00      5 
         24        22         0         1     73.25     73.50     76.63     76.38        75.00      5  
         25        23         0         1     67.88     68.13     71.75     71.25        68.00      5 
         26        51         1         0     63.50     63.75     63.25     63.50        63.50      6 
         27        52         0         0     75.25     75.50     78.25     78.75        74.00      6 
         28        36         1         0     65.50     65.75     67.50     67.50        67.00      6 
         29        45         1         0     64.00     64.00     66.00     66.00        63.50      6 
         30        22         0         0     67.00     67.25     69.00     69.00        67.00      6 
         31        22         0         0     69.50     69.25     70.50     71.00        68.00      7 
         32        22         0         0     72.50     73.00     74.25     74.25        72.00      7 
         33        63         0         0     67.25     67.50     69.00     68.50        69.00      7 
         34        59         1         *     60.00     60.25      58.00     58.50        60.00      7 
         35        23         0         0     76.25     76.50     79.50     79.50        77.00      7 
         36        58         1         0     61.50     60.94     63.00     63.25        61.00      8 
         37        36         0         0     70.69     70.75     71.75     70.94        71.00      8 
         38        31         1         0     63.63     63.81     64.38     64.38        64.00      8 
         39        31         0         0     69.00     68.94     72.13     71.38        70.00      8 
         40        28         0         0     67.44     67.75     68.63     68.88        68.00      8 
         41        48         0         0     71.31     71.50     73.44     73.63        71.00      9 
         42        65         0         0     67.63     67.56     69.13     69.25        68.00      9 
         43        26         0         0     75.56     75.38     77.88     77.50        76.00      9 



2009Knapp-Reliability.doc  Page 105 

         44        60         1         0     64.50     64.56     65.06     65.06        65.50      9 
         45        52         1         0     64.53     64.63     64.88     64.81        66.00      9 
         46        44         0         0     69.75     69.88     70.06     70.13        70.00    10   
         47        24         0         0     69.25     69.50     70.00     70.13        69.50    10 
         48        43         1         0     63.75     63.63     65.25     65.13        64.00    10 
         49        35         0         0     78.50     78.25     79.00     79.50        79.00    10 
         50        46         0         0     69.13     69.19     69.06     69.13        69.00    10 
         51        40         1         0     59.25     59.56     57.75     57.25        61.00    11 
         52        30         0         0     69.50     69.25     70.25     70.00        68.00    11 
         53        26         1         0     61.50     61.56     59.88     60.00        62.00    11 
         54        57         0         0     71.25     70.50     72.25     71.56        72.00    11 
         55        28         1         0     62.25     62.75     61.56     61.75        62.00    11 
         56        45         1         *     65.50     65.50     64.50      65.00        65.00    12 
         57        24         0         *     71.75     72.00     74.50      74.50        74.00    12 
         58        22         1         *     64.31     64.31     65.19      65.19        64.00    12 
         59        54         0         *     68.50     68.50     69.75      69.75        69.50    12 
         60        21         0         *     67.50     67.50     70.50      70.50        68.00    12 
         61        44         0         0     70.00     70.00     67.00     67.25        70.00    13 
         62        42         1         0     63.00     63.00     61.00     61.00        62.00    13 
         63        24         0         0     69.38     69.38     68.13     68.19        70.00    13 
         64        27         1         0     62.69     62.75     65.50     65.50        64.75    13 
         65        26         0         0     64.19     64.25     65.00     65.00        64.00    13 
         66        48         0         1     70.75     71.00     71.00     70.50        70.00    14 
         67        20         1         1     64.50     65.00     65.00     64.25        64.00    14 
         68        42         1         *     61.75     62.00     62.00      61.75        61.00    14 
         69        24         1         1     67.50     68.00     68.00     68.25        67.00    14 
         70        20         1         1     63.50     64.00     64.00     63.75        62.00    14 
         71        25         1         0     64.00     64.00     64.00     64.00        62.00    15 
         72        39         0         0     72.25     72.25     70.50     70.50        71.75    15 
         73        31         0         0     66.50     66.50     67.50     67.50        67.00    15 
         74        58         0         0     70.50     70.50     72.00     72.00        71.50    15 
         75        58         1         0     58.50     59.00     59.50     59.50        59.00    15 
         76        25         1         0     73.25     73.25     73.88     73.88        74.00    16 
         77        48         0         0     72.00     72.13     77.25     77.25        73.00    16 
         78        51         1         0     67.13     67.38     66.13     66.25        67.00    16 
         79        25         0         0     71.75     71.75     72.75     72.88        71.00    16 
         80        44         0         0     72.00     71.88     71.25     71.50        72.00    16 
         81        46         0         *     69.50     69.50      73.00     73.00        69.00    17 
         82        25         1         0     66.38     66.50     68.00      68.50        67.00    17 
         83        47         1         1     65.00     65.13     68.13      68.06        64.00    17 
         84        29         1         1     63.50     63.50     65.50      65.50        64.00    17 
         85        26         1         1     63.50     63.50     65.17      65.13        63.00    17 
         86        23         1         0     64.50     65.00     67.00      66.50        66.00    18 
         87        28         1         0     70.75     70.75     70.00      69.25        71.00    18 
         88        29         1         1     65.50     65.25     65.50      65.50        65.00    18 
         89        48         1         1     63.75     63.25     64.75      64.00        64.00    18 
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         90        25         0         1     66.75     66.50     66.25      66.00        66.00    18 
         91        21         0         0     71.00     71.25     69.25      69.25        71.00    19 
         92        24         1         0     64.25     64.50     64.25      64.50        64.00    19 
         93        54         1         0     66.50     66.50     66.25      66.00        66.00    19 
         94        44         1         0     66.00     66.00     66.50      67.00        66.00    19 
         95        46         1         0     63.00     63.00     59.00      58.50        64.00    19 
         96        45         1         0     65.38     65.75     65.00      64.75        66.00    20 
         97        61         0         0     67.50     67.50     68.31      69.25        67.50    20 
         98        50         1         0     60.44     60.75     65.25      65.50        60.25    20 
         99        22         0         0     70.00     70.50     72.50      73.38        71.00    20 
       100        23         0         0     68.56     68.81     72.75      73.00        68.50    20 
       101        26         1         0     64.19     64.13     64.19      63.50        63.00    21 
       102       32         0         1      69.00     68.50     63.00      63.50        70.00    21 
       103       24         0         1      78.31     79.13     83.19      84.44        79.00    21 
       104       22         0         1      74.06     74.19     76.25      76.50        73.00    21 
       105       22         1         1      71.31     71.25     73.19      73.13        70.00    21 
       106       23         1         0      64.50     64.50     63.50      63.25        64.00    22 
       107       52         1         0      68.50     68.00     66.00      66.00        69.00    22 
       108       49         0         0      71.25     71.50     69.50      69.50        70.00    22 
       109       21         0         0      68.25     68.00     67.80      67.80        69.00    22         
       110       23         1         0      61.75     62.00     60.75      60.75        61.50    22 
       111       45         1         0      65.00     65.00     65.13      65.13        65.00    23 
       112       52         1         0      60.94     60.94     60.31      60.81        60.00    23 
       113       23         0         0      68.31     68.50     69.38      69.38        70.00    23 
       114       26         1         0      63.25     63.25     63.25      63.25        62.00    23 
       115       45         0         0      68.00     68.00     70.00      70.00        69.50    23 
       116       47         1         0      67.00     67.00     67.50      67.50        67.00    24 
       117       22         1         *      65.00     64.50      63.50      63.50        64.00    24 
       118       22         0         0      70.75     70.75     70.50      70.75        70.00    24 
       119       48         0         0      73.50     73.38     74.25      74.25        74.00    24 
       120       21         1         0      65.25     65.19     64.69      64.88        65.50    24 
       121       41         1         0      65.50     65.44     65.00      65.00        66.00    25 
       122       51         1         0      64.75     64.75     63.50      63.50        65.00    25 
       123       26         0         0      73.50     73.50     75.25      75.25        74.00    25 
       124       24         0         0      71.25     71.25     73.63      73.56        72.00    25 
       125       56         0         0      67.38     67.38     68.00      68.00        68.00    25 
       126       40         1         0      65.75     65.75     66.25      66.13        66.00    26 
       127       42         0         0      70.75     70.75     71.25      71.44        70.00    26 
       128       51         0         0      73.75     73.75     72.50      72.50        72.00    26 
       129       42         1         0      64.50     64.56     66.50      66.50        65.00    26 
       130       45         0         0      69.50     69.75     72.75      72.69        70.00    26 
       131       22         1         0      59.75     59.75     59.75      60.25        60.00    27 
       132       54         0         0      66.88     66.50     68.00      68.00        67.00    27 
       133       52         1         0      61.00     61.50     60.00      60.00        62.00    27 
       134       57         0         0      71.00     70.50     70.00      70.25        71.00    27 
       135       51         1         0      60.50     60.25     60.25      61.00        61.00    27 
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       136       33         0         0      77.16     77.25     77.75      77.75        77.00    28 
       137       32         1         0      58.50     58.62     58.50      58.50        59.00    28 
       138       30         1         0      59.75     59.45     60.00      59.25        60.00    28 
       139       21         1         0      66.50     66.25     66.75      67.00        66.00    28 
       140       29         0         0      71.50     71.50     72.00      72.16        72.00    28 
       141       25         1         0      61.00     61.00     61.50      61.50        60.25    29 
       142       62         0         0      67.25     67.25     72.25      72.25        68.00    29 
       143       29         1         0      65.25     65.50     66.50      66.50        67.00    29 
       144       53         0         0      69.75     69.75     72.00      72.50        69.00    29 
       145       50         1         0      64.75     64.75     68.00      68.00        65.00    29 
       146       22         0         *      69.31     69.25      70.50     71.00         70.00   30 
       147       23         1         0      64.00     64.25     66.00      66.31        65.00    30 
       148       22         0         *      67.19     68.25      68.88      68.69        69.00    30 
       149       23         0         0      70.00     70.19     71.13      71.31        70.00    30 
       150       24         1         0      62.50     62.00     63.13      63.06        63.00    30 
       151       22         1         0      65.25     65.25     70.25      70.25        66.00    31 
       152       23         0         1      68.50     68.50     74.00      74.00        69.00    31 
       153       37         1         1      63.75     63.75     69.00      69.00        64.00    31 
       154       22         1         0      64.25     64.25     69.00      68.75        64.00    31 
       155       23         0         *      65.00     65.25      69.50      69.75        65.00   31 
       156       32         0         0      71.50     71.25     75.25      75.00        72.00    32 
       157       48         1         0      66.69     66.69     68.25      68.25        67.00    32 
       158       44         1         0      63.88     63.88     66.25      66.25        63.00    32 
       159       60         1         0      62.50     62.63     64.75      64.81        62.00    32 
       160       40         1         1      65.31     65.38     67.38      67.44        66.00    32 
       161       21         0         0      67.00     66.75     69.00      69.50        67.00    33 
       162       21         0         0      66.00     66.50     55.50      55.75        67.00    33 
       163       22         0         0      71.25     71.50     68.50      68.75        72.00    33 
       164       21         0         0      70.00     69.00     70.00      70.50        69.00    33 
       165       21         0         0      70.00     70.25     72.00      71.50        69.00    33 
       166       24         1         0      67.25     67.13     66.75      67.00        67.00    34 
       167       23         0         0      69.50     69.50     69.25      69.00        69.00    34 
       168       20         0         0      71.13     71.13     70.50      70.50        71.00    34 
       169       51         1         0      65.00     65.00     64.00      63.50        65.00    34 
       170       53         0         0      71.75     72.00     72.00      72.00        71.00    34 
       171       22         0         *      69.31     69.25      70.50      71.00        70.00    35 
       172       23         1         0      64.00     64.25     66.00      66.31        65.00    35 
       173       22         0         *      67.19     68.25      68.88      68.69        69.00    35 
       174       23         0         0      70.00     70.19     71.13      71.31        70.00    35 
       175       24         1         0      62.50     62.00     63.13      63.06        63.00    35 
       176       22         1         1      65.50     65.50     66.00      66.00        68.00    36 
       177       35         1         0      69.00     69.00     68.55      68.55        68.50    36 
       178       47         1         0      68.50     68.50     68.25      68.50        69.00    36 
       179       24         1         0      69.75     69.50     68.50      68.50        66.00    36 
       180       34         0         0      70.50     70.00     69.00      69.00        71.00    36 
       181       27         0         0      69.50     69.50     72.38      72.38        70.00    37 
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       182       27         0         0      70.00     70.00     72.00      72.00        71.00    37 
       183       49         0         0      68.75     68.75     73.75      73.75        70.00    37 
       184       48         0         0      72.00     72.00     77.25      77.25        72.00    37 
       185       51         1         0      66.13     66.13     66.13      66.13        66.00    37 
       186       57         1         0      65.00     65.25     66.50      66.25        66.00    38 
       187       25         1         0      66.25     66.50     68.25      68.25        68.00    38 
       188       59         0         0      66.25     66.50     66.00      66.25        68.00    38 
       189       24         1         0      68.00     68.00     69.00      69.12        69.00    38 
       190       22         1         0      69.00     69.25     73.25      73.00        69.00    38 
       191       24         0         0      67.25     67.00     68.00      67.50        67.00    39 
       192       23         0         0      68.25     68.38     71.75      70.50        69.50    39 
       193       22         1         0      64.88     64.75     64.00      64.50        65.00    39 
       194       36         1         0      63.50     63.25     61.50      62.00        61.00    39 
       195       25         0         0      71.50     72.00     74.25      74.00        71.00    39 
       196       65         1         0      60.63     60.63     60.75      60.88        61.00    40 
       197       57         1         0      61.75     61.75     62.00      62.13        62.00    40 
       198       50         0         0      72.75     72.75     72.88      72.88        73.00    40 
       199       22         0         0      75.50     75.50     75.13      75.13        75.00    40 
       200       23         1         0      65.25     65.38     65.13      65.00        65.00    40 
       201       50         0         0      66.19     66.19     69.38      68.50        67.00    41 
       202       50         1         *      69.19     69.31     71.25      71.25         68.00    41 
       203       26         1         0      70.31     70.75     72.75      72.31        71.00    41 
       204       23         1         1      62.25     62.19     63.06      63.13        62.00    41 
       205       40         0         *      70.25     69.50     73.38       73.00        71.00    41 
       206       24         0         0      70.06     70.06     70.94      71.00        70.00    42 
       207       26         0         0      69.38     69.38     69.56      69.56        69.50    42 
       208       24         1         0      64.06     64.06     64.25      64.19        64.00    42 
       209       50         0         0      72.06     71.94     71.88      72.00        71.50    42 
       210       50         1         0      60.50     60.44     60.38      60.19        61.00    42 
       211       22         0         0      71.00     71.00     75.25      75.25        72.00    43 
       212       23         1         0      65.50     65.50     66.50      67.00        66.00    43 
       213       22         1         *      63.00     63.00     63.50       63.13        64.00    43 
       214       23         1         1      62.50     62.06     66.63      67.75        63.50    43 
       215       22         1         0      60.50     60.50     61.63      61.63        60.00    43 
       216       36         1         0      63.75     63.00     65.00      65.25        64.00    44 
       217       41         1         0      65.00     63.50     64.88      66.00        64.00    44 
       218       35         1         0      66.88     66.50     67.50      67.75        66.00    44 
       219       41         1         0      67.00     66.00     65.00      63.50        65.00    44 
       220       26         1         0      62.75     63.00     60.63      61.00        63.00    44 
       221       30         1         0      66.25     66.50     68.25      68.00        65.00    45 
       222       34         1         0      64.50     64.75     65.00      65.00        62.50    45 
       223       49         1         0      61.00     60.50     61.00      61.25        61.00    45 
       224       48         1         0      69.25     69.00     68.50      68.50        69.00    45 
       225       30         0         1      69.25     69.50     71.00      71.00        71.00    46 
       226       42         1         1      63.75     63.75     68.00      68.00        65.50    46 
       227       29         0         1      68.50     68.75     73.50      73.50        70.00    46 
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       228       31         1         1      60.50     60.75     64.25      64.00        60.50    46 
       229       64         1         1      61.00     61.00     64.25      64.25        63.00    46 
       230       29         0         1      70.06     70.06     74.38      74.13        70.00    47 
       231       33         0         0      71.06     71.75     73.75      74.00        72.00    47 
       232       43         1         1      65.50     65.38     69.44      69.31        65.50    47 
       233       48         1         1      62.38     62.50     64.25      64.75        62.50    47 
       234       62         1         1      63.13     63.25     65.38      65.63        62.75    47 
       235       25         1         0      67.50     67.88     66.38      66.25        69.00    48 
       236       22         0         0      71.13     71.00     70.00      70.25        71.00    48 
       237       40         1         0      65.50     65.75     65.25      65.63        65.00    48 
       238       43         0         0      73.50     73.25     74.00      74.13        73.00    48 
       239       37         0         *      68.75     68.75     69.00       69.13        69.25   48 
       240       23         0         *      69.31     69.25     71.00       71.20        69.00    49 
       241       24         0         1      66.00     66.00     72.50      72.40        66.00    49 
       242       23         1         1      62.00     61.87     67.50      67.38        62.00    49 
       243       36         0         1      72.00     72.50     75.50      75.44        73.00    49 
       244       29         0         1      68.81     68.75     74.44      75.00        69.50    49 
       245       39         0         0      63.75     63.75     64.00      64.63        64.00    50 
       246       51         1         0      60.00     59.50     60.00      59.63        60.00    50 
       247       23         0         0      70.25     70.13     70.88      72.00        70.00    50 
       248       50         0         0      69.00     69.13     69.75      69.88        69.00    50 
       249       22         1         0      64.50     64.50     63.75      63.75        64.50    50 
       250       22         0         *      68.00     68.25     71.31       71.25        68.00    51 
       251       21         1         *      63.94     63.81     65.75       65.56        64.00    51 
       252       30         1         0      58.25     58.25     59.63      59.50        59.00    51 
       253       48         1         *      63.63     63.25     65.00       65.13        63.00    51 
       254       54         1         *      65.00     64.88     68.25       68.13        64.00    51 
       255       60         1         0      64.00     64.00     64.50      64.00        65.50    52 
       256       38         1         0      68.00     68.00     67.00      67.50        67.50    52 
       257       23         0         0      71.00     71.00     71.50      71.50        71.00    52 
       258       31         1         0      62.00     62.00     62.25      62.25        62.00    52 
       259       22         1         0      70.75     70.75     70.50      70.50        70.00    52 
       260       25         1         0      63.50     63.50     65.00      65.00        62.00    53 
       261       53         1         0      64.63     64.50     63.00      63.00        64.00    53 
       262       25         0         0      71.38     71.63     71.25      71.19        71.00    53 
       263       33         0         0      69.88     70.50     72.56      72.56        71.00    53 
       264       22         0         0      69.75     69.88     72.00      71.63        71.00    53 
       265       26         0         0      70.50     69.50     72.00      73.00        69.00    54 
       266       54         0         0      75.88     75.88     80.00      80.25        77.00    54 
       267       51         1         0      66.88     66.63     67.38      67.38        67.00    54 
       268       20         1         0      65.13     65.13     64.50      64.38        66.00    54 
       269       62         1         0      65.13     65.13     65.13      65.13        64.00    54 
       270       41         1         0      61.00     61.06     61.00      61.06        61.00    55 
       271       37         1         0      68.37     68.43     69.00      69.50        69.00    55 
       272       34         1         0      69.37     69.25     72.18      72.18        69.00    55 
       273       52         1         0      61.00     61.00     61.00      61.00        61.00    55 
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       274       37         1         0      68.12     68.06     68.50      68.30        68.50    55 
       275       25         1         0      65.19     65.25     67.25      67.19        65.00    56 
       276       23         0         0      69.44     69.44     72.25      72.50        69.50    56 
       277       45         1         0      62.44     62.38     63.50      63.63        63.00    56 
       278       25         1         0      61.25     61.25     61.88      60.88        57.00    56 
       279       47         0         0      71.19     71.19     72.88      72.88        73.00    56 
       280       22         1         1      61.50     61.50     64.50      64.50        63.00    57 
       281       28         1         0      67.50     67.50     69.50      69.50        69.00    57 
       282       20         0         0      64.00     64.00     66.00      66.00        64.00    57 
       283       26         0         0      73.00     73.00     78.00      78.00        73.00    57 
       284       23         0         1      67.50     67.50     73.50      73.50        68.00    57 
       285       25         0         *      68.00     67.94     72.25       72.50        69.00    58 
       286       21         1         *      65.56     65.50     68.25       68.13        66.00    58 
       287       22         1         *      65.13     65.31     65.38       65.44        65.00    58 
       288       33         1         0      64.25     64.38     65.56      65.88        63.00    58 
       289       22         1         *      65.19     65.44     64.81       65.19        65.00    58 
       290       42         0         0      68.56     68.69     69.25      69.19        69.00    59 
       291       44         0         0      72.38     72.31     72.50      72.50        71.50    59 
       292       40         1         0      61.19     61.25     63.50      63.75        60.00    59 
       293       40         1         0      67.19     67.00     67.25      67.19        67.50    59 
       294       40         1         0      64.50     64.56     63.75      63.00        64.25    59 
       295       25         0         0      67.50     67.50     67.50      67.50        68.00    60 
       296       31         0         0      71.69     71.69     69.38      69.38        71.00    60 
       297       52         0         0      66.75     66.75     64.75      64.75        66.00    60 
       298       50         1         0      66.75     66.75     66.00      66.00        67.00    60 
       299       44         0         0      65.38     65.38     65.00      65.00        65.00    60 
       300       23         0         1      72.19     72.06     74.63      74.81        72.00    61 
       301       22         1         0      63.31     63.19     63.69      63.81        63.50    61 
       302       44         0         0      73.88     73.81     74.13      74.06        74.00    61 
       303       43         1         0      62.56     62.63     63.50      63.44        62.00    61 
       304       47         1         1      63.00     63.13     65.19      65.19        63.00    61 
       305       23         0         *      71.00     71.00     73.00       72.75        71.00   62 
       306       52         1         *      62.75     63.00     64.13       64.00        63.00   62 
       307       21         1         0      61.75     61.75     62.13      62.25        62.50    62 
       308       30         1         0      58.00     58.25     59.00      59.25        59.00    62 
       309       49         0         0      70.13     70.25     71.13      71.00        70.00    62 
       310       45         1         0      56.88     56.88     59.75      59.63        60.00    63 
       311       21         1         0      61.13     61.13     64.50      64.56        64.00    63 
       312       24         0         0      68.75     68.75     69.00      69.13        74.00    63 
       313       56         0         0      68.50     68.50     71.00      70.88        73.00    63 
       314       22         0         0      65.00     64.88     71.50      71.00        67.00    63 
       315       32         0         0      73.50     75.30     76.80      76.50        73.00    64 
       316       30         0         0      69.30     69.50     72.00      73.00        70.00    64 
       317       29         0         0      66.50     67.00     66.50      67.00        68.00    64 
       318       48         0         0      68.00     68.00     72.00      72.30        68.00    64 
       319       48         1         0      70.00     70.00     69.30      69.00        68.00    64 
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       320       24         0         0      72.00     71.00     70.88      70.75        72.00    65 
       321       44         1         0      62.63     62.50     63.38      63.50        64.00    65 
       322       42         0         0      74.00     73.00     72.00      72.00        73.50    65 
       323       47         0         0      71.00     71.13     71.50      71.00        69.00    65 
       324       22         1         0      64.88     64.88     62.50      62.25        62.75    65 
       325       28         0         0      72.13     72.00     74.38      74.50        72.00    66 
       326       48         1         1      66.00     66.00     67.00      67.00        67.00    66 
       327       47         1         0      62.00     62.00     63.00      63.00        62.00    66 
       328       24         1         1      64.38     64.38     68.38      68.38        66.00    66 
       329       22         1         1      65.38     65.38     68.50      68.38        67.00    66 
       330       26         0         1      69.50     69.50     68.25      68.25        69.50    67 
       331       20         0         0      66.00     66.00     67.13      67.00        66.00    67 
       332       48         0         0      70.56     70.31     68.00      68.00        70.00    67 
       333       22         1         0      66.31     66.44     66.25      66.25        67.00    67 
       334       60         1         0      64.00     64.00     65.50      65.50        65.00    67 
       335       22         1         0      60.31     60.44     59.13      58.88        60.00    68 
       336       56         0         0      65.50     65.69     67.38      66.50        66.50    68 
       337       50         1         0      65.38     65.38     65.63      66.38        66.00    68 
       338       22         1         0      64.38     64.75     66.13      66.00        65.00    68 
       339       22         1         0      65.56     66.25     66.06      66.44        66.00    68 
       340       24         1         0      67.25     67.13     66.75      67.00        67.00    69 
       341       23         0         0      69.50     69.50     69.25      69.00        69.00    69 
       342       20         0         0      71.13     71.13     70.50      70.50        71.00    69 
       343       51         1         0      65.00     65.00     64.00      63.50        65.00    69 
       344       53         0         0      71.75     72.00     72.00      72.00        71.00    69 
       345       24         0         1      66.00     66.00     68.30      68.30        67.00    70 
       346       35         1         0      67.00     67.00     67.00      67.00        67.00    70 
       347       22         1         0      65.00     65.00     68.00      68.00        66.00    70 
       348       23         0         1      68.50     69.00     74.60      74.50        69.00    70 
       349       40         0         1      66.00     66.00     70.70      70.60        66.00    70 
       350       21         1         0      66.59     66.59     66.50      66.50        66.50    71 
       351       23         1         *      61.00     61.00     60.10       60.10        60.50    71 
       352       51         1         0      67.00     67.00     66.75      66.75        66.25    71 
       353       24         1         0      64.00     64.00     63.50      63.50        63.00    71 
       354       53         0         0      70.25     70.25     74.88      74.88        70.00    71 
       355       22         1         0      62.19     62.06     65.00      65.00        63.50    72 
       356       25         0         0      68.88     68.88     68.75      69.00        69.00    72 
       357       47         1         0      62.19     62.25     63.25      63.50        62.00    72 
       358       51         0         0      68.88     68.88     70.25      70.13        69.00    72 
       359       50         1         0      67.63     67.63     66.74      66.25        68.00    72 
       360       45         0         0      68.00     67.75     69.00      69.00        70.00    73 
       361       25         0         0      70.13     70.13     68.06      69.50        72.00    73 
       362       21         0         0      73.13     73.75     76.25      76.25        74.00    73 
       363       46         1         0      63.50     63.50     61.00      61.50        64.00    73 
       364       40         1         0      66.38     66.38     64.50      64.50        66.00    73 
       365       37         1         1      63.50     63.50     68.80      68.80        63.50    74 
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       366       28         0         1      66.50     66.00     66.80      66.80        66.50    74       
       367       29         1         1      61.50     61.50     61.50      61.50        63.50    74 
       368       27         1         1      63.50     63.70     67.50      67.50        62.50    74 
       369       28         0         1      66.50     66.80     66.80      66.50        67.50    74 
       370       24         1         0      63.00     63.00     66.00      66.00        64.00    75 
       371       23         1         0      67.50     68.00     68.50      68.50        68.00    75 
       372       26         0         0      71.00     71.00     74.00      74.00        73.00    75 
       373       25         0         *      70.00     70.00     73.00      73.50         71.00    75     
       374       23         1         1      69.00     69.50     74.00      74.50        68.00    75 
       375       28         0         1      68.38     68.38     72.00      72.13        70.00    76 
       376       36         0         0      68.88     68.75     70.50      71.25        70.00    76 
       377       31         0         0      71.25     71.31     76.00      76.13        72.00    76 
       378       53         1         0      62.63     62.75     64.38      63.75        63.00    76 
       379       27         1         *      64.38     64.25     68.25      67.75         65.00   76 
       380       23         1         1      63.00     62.25     64.50      64.75        63.00    77 
       381       37         0         1      68.56     68.63     73.00      73.00        70.50    77 
       382       23         0         1      64.50     64.50     67.00      67.00        64.00    77 
       383       23         0         1      70.75     70.75     71.06      71.06        71.00    77 
       384       26         1         1      64.50     64.50     64.00      64.00        64.50    77 
       385       22         0         *      69.75     69.87     69.87      70.00        70.00    78 
       386       21         1         0      66.87     66.75     66.75      66.75        67.00    78 
       387       22         0         0      68.12     68.37     68.25      68.12        68.00    78 
       388       22         1         1      64.12     64.12     64.25      64.12        64.00    78 
       389       22         1         0      65.12     65.12     65.12      65.00        65.00    78 
       390       61         1         0      60.13     61.13     61.13      61.38        61.00    79 
       391       39         1         0      62.50     62.50     65.25      65.63        63.00    79 
       392       55         1         0      60.63     60.56     64.00      64.13        62.00    79 
       393       55         1         1      59.25     59.50     63.75      63.88        59.50    79 
       394       38         1         0      68.50     68.88     69.25      69.00        68.50    79 
       395       58         1         0      65.00     65.25     66.75      67.00        66.50    80 
       396       50         0         0      73.50     73.00     75.75      76.00        73.00    80 
       397       19         1         0      66.75     67.00     68.75      69.00        67.00    80 
       398       60         1         *      60.00     60.00     61.00       61.00        61.00    80 
       399       67         1         *      61.00     61.25     64.00       64.50        62.00   80 
       400       46         1         0      58.13     58.13     57.50      57.25        58.50    81 
       401       51         1         0      66.50     66.50     70.00      69.88        67.00    81 
       402       52         0         0      71.50     71.50     72.50      72.50        72.50    81 
       403       47         0         0      73.13     73.00     74.50      74.50        73.00    81 
       404       21         0         0      68.00     68.00     68.50      68.25        69.00    81 
       405       22         1         0      62.50     62.75     63.50      63.00        63.00    82 
       406       22         1         0      66.00     66.50     62.50      62.75        65.00    82 
       407       22         0         0      70.75     70.00     71.50      71.00        71.50    82 
       408       23         1         0      65.75     65.50     64.75      64.75        65.00    82 
       409       47         1         0      61.00     61.50     62.50      63.75        61.00    82 
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Legend:  id  = subject identification number 
     age = age in years at time of study 
     sex =  0 if male, 1 if female 
     race = 0 if white, 1 if black 
     ht1 = first measured height (in inches) 
     ht2 = second measured height (") 
     arm1 = first measured arm span (") 
     arm2 = second measured arm span (") 
     self = self-reported height (") 
     meas = measurer identification number 
     *  = missing data (for subjects of races other than white and black) 
 
 
Note:   The height and arm span measurements are reported to the nearest 
hundredth of an inch.  For example, Subject 1's height measurements were 61 
7/8 inches  (decimal equivalent = 61.875, rounded to 61.88) and 61 1/2 inches 
(decimal equivalent = 61.50); and her arm span measurements were 62 1/4 
inches (decimal equivalent = 62.25) and 62 3/8 inches (decimal equivalent = 
62.375, rounded to 62.38).   Some of the measurements have been incorrectly 
reported and/or rounded (see text).
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APPENDIX B: The validity of measuring instruments 
 
 
The validity of a measuring instrument is usually defined as the extent to which 
an instrument measures "what you want it to measure" or "what it purports to 
measure".  (I've never heard the word "purport" used in any other context.  Have 
you?)  Validity is concerned with relevance, just as reliability is concerned with 
consistency. 
 
In the old days (when I was starting out in the measurement and statistics 
business in the early sixties, and prior to that time as well) people talked about 
three kinds of validity: (1) content validity--the extent to which a measuring 
instrument "covered" the domain for which it was intended; (2) criterion-related 
validity--the extent to which the measurements obtained with a given instrument 
agreed (relatively, but not necessarily absolutely) with some external "gold-
standard" criterion; and (3) construct validity--the extent to which the 
measurements obtained with a given instrument agreed with theoretical 
expectations.  The term "face validity" was sometimes used as synonymous with 
content validity, but usually referred to the extent to which the "objects" (people) 
that were measured with the instrument agreed that the instrument was valid.   
Criterion-related validity was further broken down into concurrent validity and 
predictive validity, depending upon whether the gold-standard measurements 
were taken at approximately the same time as the measurements for the 
instrument whose validity was in question, or were taken at a later point in time 
(thus the "predictive" label).   Construct validity was similarly broken down into 
convergent validity and discriminant (sometimes called divergent) validity--see, 
for example, Campbell and Fiske (1959). 
 
Shortly thereafter, discussions of several additional kinds of validity appeared in 
the literature, largely due to the unfortunate (in my opinion) choice of the terms 
"internal validity" and "external validity" by Campbell and Stanley (1966) and by 
Cook and Campbell (1979) in their now-classic treatises on experimental design 
(those two terms have little or nothing to do with validity in the measurement 
sense of the term).   
 
More recently, the term "construct validity" has been alleged to subsume all of 
the other kinds of measurement validity (see Messick, 1989 and elsewhere), and 
it has taken a pre-eminent (although controversial) position in the literature.  The 
term has become almost synonymous with the term "science" (in my opinion) 
and has consequently lost (again, in my opinion) its formerly admirable 
specificity.  Advocates of the pre-eminence of construct validity even proclaim 
that an investigation of an instrument's validity must include evidence regarding 
the consequences of its use.  (That proclamation, frankly, blows my mind.  Could 
a yardstick that is alleged to measure height really be declared invalid if a person 
who is measured with it does not make her(his) school's basketball team 



2009Knapp-Reliability.doc  Page 115 

because (s)he is declared to be too short, and as a result loses interest in all 
physical exercise?) 
 
My personal position is that validity ultimately, if not immediately, boils down to a 
matter of expert judgment--content validity, if you will.  (Who qualifies as an 
expert may be difficult to determine, but see Weiss & Shanteau, 2003a and 
2003b for one possible approach). Those who advocate correlating 
measurements obtained for a given instrument with those obtained with a gold-
standard instrument must either assume that the gold-standard instrument has 
itself been declared to be valid by expert judgment or be willing to acknowledge a 
situation of infinite regress--correlating the gold-standard measures with 
platinum-standard measures, for example?!  (See Ebel, 1961 regarding this 
same “infinite regress” argument, and see Wacholder, Armstrong, & Hartge, 
1993 for an interesting discussion of the use of an "alloyed" gold standard in 
epidemiological research.)  Comparing obtained measurements with theoretical 
expectations is commendable, but if the two disagree how do we know whether it 
is the instrument or the theory, or both, that is at fault?  (Things aren't much 
better if the two agree.  Again, both could be wrong.) 
 
In Chapter 4 of this book I discussed the concept of attenuation.  One of the most 
common applications of the correction for attenuation is to the correlation 
between scores obtained for a measuring instrument whose validity is being 
investigated and scores obtained for an external criterion that serves as a gold 
standard.  The simplest case is the correlation between aptitude test scores and 
subsequent achievement scores.  If an aptitude test is to be valid that correlation 
must be high and positive.  (Those who obtain higher aptitude test scores must 
also obtain higher achievement test scores, by definition of the concept of 
aptitude.)   Suppose a validity study of the Scarlet Aptitude Test (I'm making up 
these names) yielded the data that I cited earlier in Chapter 4, i.e., an obtained 
correlation of .54, a reliability coefficient of .64 for the aptitude test, and a 
reliability coefficient of .81 for the Gold Achievement Test.  Application of the 
correction for attenuation formula would produce an estimate for the true 
correlation of .75.  So far, so good.  Now suppose that a validity study of a 
competing instrument, the Gray Aptitude Test, yielded the same obtained 
correlation with the scores obtained on the Gold Achievement Test, .54, a 
reliability coefficient of .49 for that aptitude test, and the same reliability 
coefficient, .81, for the achievement test.  The correction for attenuation formula 
would produce an estimate for the true correlation of .86.  This would seem to 
indicate that you could get better validity (stronger estimated correlation between 
true aptitude and true achievement) by using the less reliable test!   
 
There is also something called “the attenuation paradox” (see, for example, 
Loevinger, 1954), where it is alleged that if you increase internal consistency 
reliability to the point where all of the items on a test correlate perfectly with one 
another so that there are only two possible total scores, 0 and k (k is the number 
of items on the test) the validity of the test may actually decrease, contrary to the 
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expectation provided by the “correction for attenuation” formula.  Humphreys 
(1956) claimed, however, that the paradox vanishes when you give up the 
normality assumption for the gold-standard criterion variable.  [See also Feldt, 
1997 for a discussion of reliability and validity going in opposite directions.] 
 
Many of the same people who object to talking about the reliability of an 
instrument (rather than the reliability of scores obtained by using the instrument) 
also object to talking about the validity of an instrument.  They insist that we 
should refer to the validity of the measurements, i.e., the obtained scores, or to 
the validity of interpretations made concerning the measurements.  I respectfully 
disagree and believe that this is making much ado about nothing.  Of course 
validity will vary from time to time, from study to study, etc., just like reliability 
does, but if you are concerned with validity for this object (or these objects) on 
this occasion (or these occasions), no great harm is done by attaching the term 
"validity" to the instrument itself.   For more on the "evolving" concept of validity, 
see the article by Borsboom, Mellenbergh, and Van Heerden (2002) and Chapter 
6 of Boorsboom's text (2005).  
 
In the next three appendices I include a discussion of the reliability and the 
validity of  birth certificates and death certificates, measurements of height and  
weight, and the gospels of Matthew, Mark, Luke, and John. 
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APPENDIX C:  The reliability and validity of birth and death certificates 
 
Two examples of measuring instruments that have items but do not have total 
scores are birth certificates and death certificates.  My colleague, Dr. Sally 
Northam (University of Texas at Tyler),  and I have recently written papers on the 
reliability and validity of those instruments.   In this appendix I would like to 
summarize some of our findings. 
 
The first thing we found is that the terms “reliability” and “validity” are not 
universally used to indicate the consistency and relevance (respectively) of birth 
and death certificates.  Just as I indicated in Chapter 1 of this book, synonyms for 
reliability such as “agreement” and synonyms for validity such as “accuracy” are 
commonly encountered in reports of the reliability and/or validity of the various 
items on the certificates. 
 
Another finding was that the type of reliability most often studied was inter-rater 
reliability--the extent to which two or more equal status persons agree with 
respect to the data recorded on the certificates.  The situation regarding validity 
was less clear, and actually rather confusing.  The researchers seemed to be 
reluctant to proclaim the certificates themselves as the “gold standards” or to 
designate any other sources (e.g., medical records) as the criteria against which 
those certificates need to be validated.  Curious. 
 
The agreement between raters (or sources of ratings) was generally good, but 
ranged from less than 50% for month prenatal care began (birth certificate) to 
approximately 90% for maternal age (also birth certificate).  People who fill out 
birth certificates or death certificates are often poorly trained in the proper 
completion of such forms.  [We discovered that nurses are permitted to certify 
deaths in certain states.  Sally is a nurse, and I was a faculty member of schools 
or colleges of nursing for 20 years, but we were both surprised to find out that 
some nurses actually had such responsibilities.] 
 
When an external source was taken as a gold standard, the criterion-related 
validity ranged from 0 to almost perfect.  (The authors of one study of 68 death 
certificates reported that not a single one of them indicated the correct cause of 
death; whereas the authors of another study reported a sensitivity of 94.8% for 
the identification of congenital abnormalities on birth certificates.)  Although an 
autopsy is arguably the most defensible gold standard for determining cause of 
death, only about 10-15% of deaths are subject to autopsies. 
 
The most serious weakness of death certificates was their under-estimation of 
numbers of particular kinds of deaths and their under-estimation of particular 
causes of deaths.  Most prominent in the former category was fetal deaths; they 
do not include spontaneous abortions (miscarriages), legal therapeutic abortions 
(a very controversial matter), or illegal therapeutic abortions (obviously).  Most 
prominent in the latter category were suicides (also a very controversial matter). 
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APPENDIX D:  The reliability and validity of height and weight measurements 
 
 
[This section consists of excerpts from my book on height and weight (Knapp, 
2004).] 
 
Reliability of height measurements 
 
For a sample of 229 subjects (95 male, 134 female) in NHANES II, Marks, 
Habicht, and Mueller (1989) found the measure/re-measure correlation (reliability 
coefficient) of a height stadiometer (that instrument in doctors' offices that you 
stand on) to be very high (a correlation of approximately .97). 
 
Voss, Bailey, et al. (1990) measured ten children three times each with five 
different stadiometers.  The children's "true" heights ranged from 106.0 cm to 
152.0 cm.  The average difference from true height was about .2 to .3 cm. 
 
In a study carried out by Rodacki, et al. (2001), ten subjects (five males and five 
females) had their standing heights measured with a stadiometer 150 times each 
[wow!], in 3 series of 10 sets of 5 measurements, with "breaks" between the 
series for the subjects to get off and then back on the stadiometer.  (See their 
article for more details and for some great pictures.)  The average discrepancy 
between one measure and another ("un"reliability) was of an order of magnitude 
of approximately one-half millimeter.  (Again see their article for more details--the 
analysis was rather complicated--and for a comparable discussion of their 
findings regarding the measurement of the sitting heights of ten other subjects.) 
 
 Dr. Janet Engstrom and her colleagues have carried out several investigations 
of the reliability of infantometers (and of tape measures--see below) for 
measuring the supine length of newborns.  They concentrate on absolute 
measures of reliability, such as average discrepancies between corresponding 
measurements, rather than correlations between two sets of measurements, 
because, as she (Engstrom, 1988) and others (e.g., Rogosa, 2002; Baker & 
Kramer, 2003) have argued, you can get a perfect correlation between two sets 
of measurements, e.g., 1, 2, 3, 4, 5 and 10, 20, 30, 40, 50, yet have very poor 
agreement between the actual magnitudes of the measurements.  Here are 
some of their findings: 
 
Johnson, et al. (1998):  Using the Neo-infantometer for a sample of 32 babies, 
the within-examiner mean absolute discrepancy (intra-examiner reliability) was 
.50 cm for one examiner and .71 cm for a second examiner.  The  between-
examiner mean absolute discrepancies (inter-examiner reliability) were .81 cm 
for the first comparison between the two examiners (Examiner A's first set of 
measurements vs. Examiner B's first set of measurements) and .61 cm for the 
second comparison (of their second sets of measurements). 
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Johnson, et al. (1999):  Using the Auto-lengthTM measuring device for a sample 
of 48 healthy term infants, the intra-examiner reliabilities for two examiners were 
.60 cm and .84 cm, respectively; and their inter-examiner reliabilities were 1.02 
cm and .82 cm. 
 
For references to some older studies of the reliability of infant stadiometers, see  
Table 1 in the Johnson, Engstrom, and Delhar (1997) article.  And if you're 
interested in the history of the measurement of infant length, see the excellent 
article by Johnson and Engstrom (2002).  
 
As I indicated above, some of Engstrom's studies were also concerned with the 
reliability of tape measures for measuring infant length.  For a sample of 48 
infants measured twice by each of two registered nurses, Rosenberg, et al. 
(1992) found a mean absolute difference between first and second 
measurements of .64 cm for Nurse 1 (intra-measurer reliability), a mean absolute 
difference of .50 cm for Nurse 2 (also intra-measurer reliability), a mean absolute 
difference of .89 cm between their first measurements (inter-measurer reliability), 
and a mean absolute difference of .84 cm between their second measurements 
(also inter-measurer reliability).  Johnson, et al. (1997) reported mean intra-
examiner absolute differences of .92 cm and 1.18 cm for two examiners who 
measured a sample of 50 newborns twice each; the corresponding inter-
examiner statistics were .74 cm and .84 cm.   Johnson, et al. (1998) reported 
average intra-examiner discrepancies of .80 cm and .53 cm, and average inter-
examiner discrepancies of .74 cm and .84 cm for a sample of 32 babies.   And 
Johnson, et al. (1999) reported intra-examiner reliabilities of .92 cm and .74 cm, 
and inter-examiner reliabilities of 1.13 cm and 1.39 cm (n = 48). 
 
A first study carried out by Dr. Jean Brown and her colleagues (Brown, 
Whittemore, & Knapp, 2000) provided some evidence for the reliability of tape 
measures for measuring height.  They found a measure/re-measure reliability 
coefficient of .998 and a mean absolute difference of .20 cm for the Stanley 
model 33-158 tape measure.  In their second study (Brown, Feng, & Knapp, 
2002) the measure/re-measure reliability coefficient was .997 and the mean 
absolute difference was .43 cm. 
 
Validity of height measurements 
 
Research on the validity of height measurements is rather scarce.  A stadiometer 
looks like it measures height (so-called "face validity") and the experts (the 
anthropometrists) tell us that it does (a type of content validity).  Most 
investigators who use stadiometers tacitly assume that they are the "gold 
standards" for measuring height and they see no reason to "validate" them. 
 
One of the best studies of the validity (they call it reliability) of devices for 
measuring infant length is the research reported by Byrne and Lenz (2002).  
They compared three instruments: an ordinary cloth tape measure, a portable 
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device (the Measure Mat), and a traditional stationary infantometer (the Fairgate 
Rule stadiometer, which seemed to be the gold standard).   For the tape 
measure they found a mean absolute difference (between the tape measure and 
the infant stadiometer) of 1.75 inches for one sample of 30 infants and a mean 
absolute difference of 1.05 inches for a second sample of 15 infants.  For the 
Measure Mat the mean absolute differences (between the MeasureMat and the 
infant stadiometer) were smaller: .92 inches for one sample of 15 infants and .57 
inches for a second sample of 15 infants. 
 
In an interesting study of 28 parents' ability to make accurate measurements of 
their infants' recumbent length (RL) and other anthropometric variables, Bradley, 
Brown, and Himes (2001) found that for RL the correlation with measurements 
made by a trained observer was a disappointing .81.  (They also called their 
study a reliability study, but since the measurements provided by a trained, 
"higher status" observer served as the criteria, it is better designated as a validity 
study.)  
 
There has been recent research and development work on three-dimensional 
surface anthropometry that would provide height, weight, and other body 
measurements "in one fell swoop", so to speak.  (See, for example, Jones & 
Rioux, 1997 and/or any of the other articles in that special issue of Optics and 
Laser Engineering.)  That would make such a device "the new gold standard" for 
the measurement of height and weight (and body mass index and body surface 
area, as well as other dimensions that are presently determined one variable at a 
time.) 
 
Reliability of weight measurements 
 
Empirical investigations of the reliability and the validity of weight scales (top-
quality scales found in doctors' offices and ordinary bathroom scales) are even 
more scarce than their height counterparts.  For the "gold standard" scales there 
appears to be the same acquiescence to the experts and to the manufacturers 
that such scales are both reliable and valid.  (Researchers consider ordinary 
bathroom scales as inferior for measuring weight as yardsticks are for measuring 
height, so the former have also not been seriously studied, as far as I can tell.). 
 

The best empirical studies of the reliability of weight scales have been carried out 
by Engstrom and her colleagues, often in conjunction with their studies of the 
reliability of instruments for measuring infant length.   Johnson, Engstrom, & 
Delhar (1997) used an electronic scale (Smart Scale Model 20, Olympic Medical; 
Seattle, WA, U.S.A) to measure the weights of a sample of 50 infants.  To quote 
from their article: "This scale integrates the activity level of an infant by 
automatically taking 10 weights in rapid succession.  A mean of the 10 weights is 
calculated and displayed as a digital readout. “ (p. 500)  They found very small 
mean absolute differences  (intra-examiner 1.88 and 3.28 g; inter-examiner 1.94 
and 1.66 g). 
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In an earlier set of three related articles, Kavanaugh, Meier, & Engstrom (1989), 
Kavanaugh, Engstrom, et al. (1990), and Meier, Lysakowski, et al. (1990) 
reported the results of a study of the weighing of a sample of 50 infants with two 
types of scales (a traditional mechanical scale and a an electronic SMARTTM 
scale).  They investigated both intra-measurer and inter-measurer reliability.  For 
the former they found a mean absolute difference of 5.50 g for the mechanical 
scale and a mean absolute difference of 1.36 g for the electronic scale.  For the 
latter they found a mean absolute difference of 18.00 g for the mechanical scale 
and a mean absolute difference of .88 g for the electronic scale.  (As in several of 
their studies of infant length they also reported the technical error of 
measurement and other indicators of the reliability of the two types of scales.) 

Validity of weight measurements 

In two later studies of the measurement of weight for atypical infants, Meier, 
Engstrom, et al. (1994) and Engstrom, Kavanaugh, et al. (1995) investigated the 
measurement properties of the BabyWeighTM electronic scale and two SMART 
scales (Model 20 and Model 35). The former study was concerned with the 
validity of the BabyWeigh scale for in-home weighing of 30 preterm and/or high 
risk infants, using the SMART Model 20 scale as the "gold standard".  The mean 
absolute difference between corresponding measurements for the two scales 
was 1.30 g.  The latter study was concerned with the reliability of the SMART 
Model 35 scale for the in-bed weighing of 32 critically ill infants.  They provided 
several summary statistics for both intra-measurer and inter-measurer reliability 
(there were four examiners who took the measurements).  The mean absolute 
intra-measurer difference was 12.58 g for weights obtained in the incubator and 
was 19.19 g for weights obtained under the radiant warmer; the corresponding 
mean absolute intermeasurer differences were 14.29 g for incubator and 24.42 g 
for radiant warmer.  
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APPENDIX E:  The reliability and validity of the four gospels:  
     A statistical approach 
 
  
Introduction 
 
There is a vast literature regarding the extent to which the gospels of Matthew, 
Mark, Luke, and John are historically trustworthy.  (See, for example, Cable, no 
date; Ehrman, 2005; Funk, et al., 1993, 1998; Habermas, 2005; and Roberts, 
2007 for a variety of viewpoints.)  Most authors use the term "reliable" as 
synonymous with "true"; others use the term "valid" as synonymous with "true".  
None, as far as I can determine, explain the important technical difference 
between reliability and validity; and most offer various substantive, non-statistical 
arguments as evidence pro or con the truth of those gospels.  In what follows I 
provide some statistical evidence regarding their reliability and their validity.  And 
in so doing I appeal to the analogue of standardized educational testing.  (There 
are a few other statistical analyses of the gospels.  See, for example, the 
linguistic approach by Dave Gentile.  His unpublished results can be found at 
www.davegentile.com/synoptics/main.html.) 
 
Reliability vs. validity 
 
Something is reliable if it is consistent from source to source.  Something is valid  
if it is accurate.  My favorite example to illustrate the distinction is the problem: 
"What is the probability of getting two heads in four tosses of a fair coin?"  Most 
people say 2/4 or 1/2 or .5 or 50%.  They are consistent with one another.  
However, the correct answer is 6/16 or 3/8 or .375 or 37.5%.  (Do the math.)  
Those sources (the people who say 2/4) are reliable but they're not valid. 
 
Standardized tests 
 
Most readers of this paper are familiar with standardized tests such as the 
Scholastic Aptitude Test (SAT), the Graduate Record Examination (GRE), the 
Law School Admission Test (LSAT), and the like.  Each of those tests has 
multiple "forms" that have been developed to be "parallel"; i.e., they are 
interchangeable, so that it doesn't matter which form is given to which examinee 
at which sitting.  In order to determine how parallel they are, they are subjected 
to several statistical evaluations.  Do they yield equal, or approximately equal, 
average scores?  Do scores on the various forms correlate highly?  Etc.  Those 
questions are concerned primarily with the reliability of the particular test that is 
being evaluated.  The closer the average scores are on, say, Form A and Form 
B, and the higher the scores on the two forms correlate with one another, the 
more reliable they are. 
 
But reliability is not enough.  The forms also need to be shown to be valid, i.e., 
that they are measuring what they are supposed to be measuring.  That requires 
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some external evidence in the form of expert judgment and/or high correlations 
with already-established criteria.  For the SAT, GRE, and LSAT, the evidence is 
typically provided by subject-matter panels and by the relationship between 
scores on those tests and the grades obtained in courses that the examinees 
later pursue. 
 
Similarities between four forms of the SAT and the four gospels 
 
Parallelism of the gospels of Matthew, Mark, Luke, and John has been the focus 
of much biblical research.  There are many books and many easily-accessible 
internet sources (some free, some requiring a modest fee) that provide chapter-
and-verse comparisons of the four gospels.  The one I prefer is the one called 
www.gospelparallels.com, in which the interested person can determine whether 
or not, or to what extent, a description of a particular event in a passage of one of 
the gospels is replicated in a passage in one or more of the other gospels.  To 
take a rather well-known example, the Parable of the Sower is found in Matthew 
(13:1-9), Mark (4:1-9), and Luke (8:4-8), but not in John. 
 
Investigating the reliability of the four gospels is very much like investigating the 
reliability of four of the forms (say A, B, C, and D) of the SAT.  Do the four 
gospels have the same numbers of "test items" (events to which they refer)?  No. 
(See below.)  How well do the "items" in the four gospels agree with one 
another?  Fairly well, except for the well-known discrepancies between John and 
the other three.  (Also see below.)  The principal difference between an 
evaluation of the reliability of the SAT and an evaluation of the reliability of the 
four gospels is that there are no "scores" for the gospels. 
 
Ah, but how about validity?  The validity of the SAT has been controversial ever 
since the test was first introduced over 80 years ago.  Who are the "experts" who 
say that the test measures scholastic aptitude?  Are college grades the 
appropriate criteria?  The validity of the four gospels is equally controversial.  
Whose external-to-the-New Testament writings can we turn to for evidence?  
Josephus?  Eusebius?  Those are tough questions.  As you will see, I take a stab 
at answering such questions, but I will be much more successful in providing 
evidence for the reliability of the gospels than for their validity.   
  
The gospel parallels and their reliability 
  
The following table, which has been reproduced with the permission of Geoff, 
webmaster of the www.gospelparallels.com website, tells much of the story 
regarding the harmony (parallelism) of the four gospels.  [I have modified it by 
eliminating repeated events.] 
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Table 1:  Gospel Harmony  
 
 Matthew Mark Luke John 
Prologues 1:1 1:1 1:1-4 1:1-18 
The Promise of the Birth of John the 
Baptist 

    1:5-25   

The Annunciation     1:26-38   
Mary's Visit to Elizabeth     1:39-56   
The Birth of John the Baptist     1:57-80   
The Genealogy of Jesus 1:2-17   3:23-38   
The Birth of Jesus 1:18-25   2:1-7   
The Adoration of the Infant Jesus 2:1-12   2:8-20   
The Circumcision and Presentation in 
the Temple 

    2:21-38   

The Flight into Egypt and Return 2:13-21       
The Childhood of Jesus at Nazareth 2:22-23   2:39-40   
The Boy Jesus in the Temple     2:41-52   
John the Baptist 3:1-6 1:2-6 3:1-6 1:19-23 
John's Preaching of Repentance 3:7-10   3:7-9   
John Preaching and Replies to 
Questioners 

    3:10-14   

John's Messianic Preaching 3:11-12 1:7-8 3:15-18 1:24-28 
The Baptism of Jesus 3:13-17 1:9-11 3:21-22 1:29-34 
The Temptation 4:1-11 1:12-13 4:1-13   
The Call of the First Disciples       1:35-51 
The Marriage at Cana       2:1-11 
The Sojourn at Capernaum       2:12 
The First Journey to Jerusalem       2:13 
     
Jesus in Jerusalem (Cleansing the 
Temple), Return to Bethany 

21:10-17 11:15-17 19:45-46 2:14-22 

Jesus' Ministry in Jerusalem       2:23-25 
The Discourse with Nicodemus       3:1-21 
Jesus' Ministry in Judea       3:22 
John's Testimony to Christ       3:23-36 
The Journey into Galilee 4:12 1:14a 4:14a 4:1-3 
The Discourse with the Woman of 
Samaria 

      4:4-42 

Ministry in Galilee 4:13-17 1:14b-15 4:14b-15 4:43-46a 
Jesus' Preaching at Nazareth 13:53-58 6:1-6 4:16-30   
The Call of the Disciples 4:18-22 1:16-20     
Teaching in the Synagogue at 
Capernaum 

  1:21-22 4:31-32   
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The Healing of the Demoniac in the 
Synagogue 

  1:23-28 4:33-37   

The Healing of Peter's Mother-in-law 8:14-15 1:29-31 4:38-39   
The Sick Healed at Evening 8:16-17 1:32-34 4:40-41   
Jesus Departs from Capernaurn   1:35-38 4:42-43   
First Preaching Tour in Galilee 4:23 1:39 4:44   
The Miraculous Catch of Fish     5:1-11   
The Cleansing of the Leper 8:1-4 1:40-45 5:12-16   
The Healing of the Paralytic 9:1-8 2:1-12 5:17-26  
The Call of Levi (Matthew) 9:9-13 2:13-17 5:27-32   
The Question about Fasting 9:14-17 2:18-22 5:33-39   
Plucking Grain on the Sabbath 12:1-8 2:23-28 6:1-5   
The Man with the Withered Hand 12:9-14 3:1-6 6:6-11   
Jesus Heals Multitudes by the Sea 4:24-25

12:15-21
3:7-12 6:17-19   

The Commisioning of the Twelve 
Apostles 

10:1-16 3:13-19 
6:7-13 

6:12-16 
9:1-6 

  

The Beatitudes  5:1-12   6:20-23   
The Salt of the Earth 5:13 9:49-50 14:34-35   
The Light of the World 5:14-16 4:21 8:16   
On the Law and the Prophets 5:17-20   16:16-17   
On Murder and Anger and 
Reconciliation 

5:21-26   12:57-59   

On Adultery and Divorce 5:27-32  16:18   
On Swearing and Oaths 5:33-37       
On Retaliation 5:38-42   6:29-30   
On Love of One's Enemies 5:43-48   6:27-28 

6:32-36 
  

On Almsgiving 6:1-4       
On Prayer 6:5-6       
The Lord's Prayer 6:7-15  11:1-4   
On Fasting 6:16-18       
On Treasures 6:19-21   12:33-34   
The Sound Eye 6:22-23   11:34-36   
On Serving Two Masters 6:24   16:13   
On Anxiety 6:25-34   12:22-32   
On Judging 7:1-5  6:37-42   
On Profaning the Holy 7:6       
God's Answering of Prayer 7:7-11   11:9-13   
The Golden Rule 7:12   6:31   
The Straight and Narrow and Wide 
Broad Gate  

7:13-14   13:23-24   
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The Test of a Good Person, “By their 
Fruits” 

7:15-20   6:43-45   

Not Every One who “Says Lord, Lord” 
shall Enter into the Kingdom 

7:21-23   6:46 
13:25-27 

  

The House Built upon the Rock 7:24-27   6:47-49   
The End and the Effect of the 
Sermon 

7:28-29      

The Woes     6:24-26   
The Centurion of Capernaum and his 
Servant  

8:5-13  7:1-10 
13:28-29 

4:46b-54 

The Widow's Son at Nain     7:11-17   
On Following Jesus, the Would-be 
Followers  

8:18-22   9:57-62   

Stilling the Storm 8:23-27 4:35-41 8:22-25   
The Gadarene (Gerasene) 
Demoniacs 

8:28-34 5:1-20 8:26-39   

Jairus' Daughter and the Woman with 
a Hemorrhage 

9:18-26 5:21-43 8:40-56   

Two Blind Men Healed  9:27-31
20:29-34

10:46-52 18:35-43   

The Dumb Demoniac Healed  9:32-34
12:22-24

 11:14-15   

The Harvest is Great 9:35-38  
 

10:2   

The Coming Fate and Persecution of 
the Disciples 

10:17-25
24:9-14 

13:9-13 12:11-12 
21:12-19 

 

Exhortation to Fearless Confession 10:26-33   12:2-9   
Divisions within Households 10:34-36   12:51-53   
Conditions of Discipleship 10:37-39   14:25-27  
Rewards of Discipleship 10:40-42  10:16  
Continuation of Journey 11:1       
John the Baptist's Question and 
Jesus' Answer 

11:2-6   7:18-23   

Jesus' Witness concerning John 11:7-19   7:24-35 
16:16 

  

Woes Pronounced on Galilean Cities 11:20-24   10:12-15   
Jesus' Thanksgiving to the Father 11:25-27   10:21-22   
“Come unto Me” 11:28-30       
The Woman with the Ointment 26:6-13 14:3-9 7:36-50 12:1-8 
The Ministering Women     8:1-3   
Jesus is Thought to be Beside 
Himself 

  3:20-21     

The Sin against the Holy Spirit 12:31-37 3:28-30 12:10   
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Against Seeking Signs, the Sign of 
Jonah 

12:38-42
16:1-4 

8:11-12 11:16 
11:29-32 

  

The Return of the Unclean Evil Spirit 12:43-45   11:24-26   
Jesus' True Kindred Relatives  12:46-50 3:31-35 8:19-21  
The Parable of the Sower 13:1-9 4:1-9 8:4-8   
The Reason for Speaking in Parables 13:10-17 4:10-12

 
8:9-10 
8:18b 
10:23-24 

  

Interpretation of the Parable of the 
Sower 

13:18-23 4:13-20 
4:22-25 

8:11-15   

The Parable of the Seed Growing 
Secretly 

  4:26-29     

The Parable of the Tares (Weeds)  13:24-30       
The Parable of the Mustard Seed 13:31-32 4:30-32 13:18-19   
The Parable of the Leaven (Yeast)  13:33   13:20-21   
Jesus' Use of Parables 13:34-35 4:33-34     
Interpretation of the Parable of the 
Tares 

13:36-43       

The Parables of the Hidden Treasure 
and of the Pearl 

13:44-46       

The Parable of the Net 13:47-50       
Treasures New and Old 13:51-52       
Second Journey (to Jerusalem)       5:1 
The Healing at the Pool called 
Bethesda  

      5:2-47 

Herod Thinks Jesus is John, Raised  14:1-2 6:14-16 9:7-9   
The Imprisonment and Death of John 
the Baptist 

14:3-12 6:17-29 3:19-20   

The Return of the Apostles   6:30-31 9:10a   
Feeding the Five Thousand 14:13-21 6:32-44 9:10b-17 6:1-15 
The Walking on the Water 14:22-33 6:45-52   6:16-21 
Healings at Gennesaret 14:34-36 6:53-56   6:22-25 
The Bread of Life       6:26-59 
What Defiles a Person - Traditional 
and Real 

15:1-20 7:1-23 11:37-41 
6:39 

  

The Syrophoenician (Canaanite) 
Woman 

15:21-28 7:24-30     

Jesus Heals a Deaf Mute and Many 
Others 

15:29-31 7:31-37     

Feeding of the Four Thousand 15:32-39 8:1-10     
The Leaven (Yeast) of the Pharisees 16:5-12 8:14-21 12:1   
A Blind Man is Healed at Bethsaida   8:22-26     
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Many Disciples Take Offense at 
Jesus 

      6:60-66 

Peter's Confession at Caesarea 
Philippi 

16:13-20 8:27-30 9:18-21 6:67-71 

Jesus Foretells His Passion 16:21-23 8:31-33 9:22   
“If Any Man would Come after Me” 16:24-28 8:34-9:1 9:23-27  
The Transfiguration 17:1-9 9:2-10 9:28-36   
The Coming of Elijah 17:10-13 9:11-13     
Jesus Heals a Boy Possessed by a 
Spirit 

17:14-18 9:14-29 9:37-43a  

On Faith 17:19-21 9:28-29 17:5-6  
Jesus Foretells His Passion again 17:22-23 9:30-32 9:43b-45   
Payment of the Temple Tax 17:24-27       
True Greatness 18:1-5 9:33-37 9:46-48  
The Strange Exorcist  9:38-41 9:49-50   
Warnings concerning Offenses 18:6-9 9:42-50 17:1-2  
The Parable of the Lost Sheep 18:10-14   15:3-7   
On Reproving One's Brother 18:15-18   17:3  
“Where Two or Three are Gathered 
Together” 

18:19-20       

On Reconciliation 18:21-22   17:4   
The Parable of the Unforgiving 
Servant 

18:23-35       

Decision to Go to Jerusalem 19:1-2 10:1 9:51   
Jesus is Rejected by Samaritans     9:52-56   
The Return of the Seventy     10:17-20   
The Lawyer's Question 22:34-40 12:28-34 10:25-28   
The Parable of the Good Samaritan     10:29-37   
Mary and Martha     10:38-42   
The Importunate Friend at Midnight     11:5-8   
True Blessedness     11:27-28   
Warning against Greed for Wealth      12:13-15   
The Parable of the Rich Fool     12:16-21   
Watchfulness and Faithfulness 24:42-51   12:35-48   
Repentance or Destruction (the 
Parable of the Barren Fig Tree) 

    13:1-9   

The Healing of the Crippled Woman 
on the Sabbath 

    13:10-17   

A Warning against Herod     13:31-33   
The Lament over Jerusalem 23:37-39   13:34-35   
The Healing of the Man with Dropsy     14:1-6   
Teaching on Humility     14:7-14   
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The Parable of the Great Supper 22:1-14   14:15-24   
The Parable of the Lost Coin     15:8-10   
The Parable of the Prodigal Son and 
his Brother  

    15:11-32   

The Parable of the Unjust Steward     16:1-9   
On Faithfulness in What is Least     16:10-12   
The Pharisees Reproved     16:14-15   
Concerning Divorce and Celibacy 19:3-12 10:2-12 16:18   
The Parable of the Rich Man and 
Lazarus 

    16:19-31   

      
We are Unprofitable Servants     17:7-10   
The Cleansing of the Ten Lepers     17:11-19   
On the Coming of the Kingdom of 
God 

    17:20-21   

The Parable of the Widow and Unjust 
Judge 

    18:1-8   

The Pharisee and the Publican     18:9-14   
Jesus Remains in Galilee       7:1-9 
Journey to Jerusalem in Secret       7:10-13 
Teaching in the Temple       7:14-39 
Division among the People regarding 
Jesus 

      7:40-52 

The Woman Caught in Adultery       7:53-
8:11 

“I am the Light of the World”       8:12-20 
Discussion with the Jews       8:21-29 
“The Truth will Make You Free”       8:30-36 
Children of the Devil       8:37-47 
“Before Abraham was, I am”       8:48-59 
Jesus Heals the Man Born Blind       9:1-41 
“I am the Good Shepherd”       10:1-18 
Division among the Jews again       10:19-21 
Jesus Blesses the Children 19:13-15 10:13-16 18:15-17   
The Rich Young Man 19:16-22 10:17-22 18:18-23   
On Riches and the Rewards of 
Discipleship 

19:23-30 10:23-31 18:24-30 
22:28-30 

  

The Parable of the Laborers in the 
Vineyard 

20:1-16 10:31 13:30   

Jesus at the Feast of Dedication in 
Jerusalem 

      10:22-39 

Jesus Withdraws across the Jordan       10:40-42 
The Raising of Lazarus       11:1-44 
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The Chief Priests and Pharisees 
Take Counsel against Jesus 

      11:45-53 

Jesus Retires to Ephraim       11:54-57 
The Third Prediction of the Passion 20:17-19 10:32-34 18:31-34   
Jesus and the Sons of Zebedee; 
Precedence among the Disciples 

20:20-28 10:35-45 22:24-27   

Zacchaeus    19:1-10   
The Plot against Lazarus       12:9-11 
The Triumphal Entry into Jerusalem  21:1-9 11:1-11 19:28-40 12:12-19 
Jesus Weeps over Jerusalem     19:41-44   
      
The Cursing of the Fig Tree 21:18-19 11:12-14     
The Chief Priests and Scribes 
Conspire against Jesus 

  11:18-19 19:47-48   

The Lesson from the Withered Fig 
Tree 

21:20-22 11:20-26     

The Question about Jesus' Authority 21:23-27 11:27-33 20:1-8   
The Parable of the Two Sons 21:28-32       
The Parable of the Wicked 
Husbandmen 

21:33-46 12:1-12 20:9-19   

The Parable of the Great Wedding 
Dinner 

22:1-14   14:15-24   

On Paying Tribute to Caesar 22:15-22 12:13-17 20:20-26   
The Question about the Resurrection 22:23-33 12:18-27 20:27-40   
The Question about David's Son 22:41-46 12:35-

37a 
20:41-44   

Woe to the Scribes and Pharisees 23:1-36 12:37b-
40 

20:45-47   

Jesus' Lament over Jerusalem 23:37-39   13:34-35   
The Poor Widow's Gift of two Mites    12:41-44 21:1-4   
Prediction of the Destruction of the 
Temple 

24:1-2 13:1-2 21:5-6   

Signs before the End 24:3-8 13:3-8 21:7-11   
The Desolating Sacrilege 24:15-22 13:14-20 21:20-24   
False Christs and False Prophets 24:23-28 13:21-23 17:22-24   
The Coming of the Son of Man 24:29-31 13:24-27 21:25-28   
The Time of the Coming. the Parable 
of the Fig Tree 

24:32-36 13:28-32 21:29-36   

The Parable of the Flood and 
Exhortation to Watchfulness 

24:37-44 13:33-37 17:26-37 
12:39-40 

  

The Parable of the Good Servant and 
the Wicked Servant 

24:45-51   12:41-46   

The Parable of the Ten Virgins 25:1-13       
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The Parable of the Talents 25:14-30  19:11-27   
The Last Judgment 25:31-46      
The Ministry of Jesus in Jerusalem     21:37-38   
Greeks Seek Jesus; Discourse on 
His Death 

      12:20-36 

The Unbelief of the People       12:37-43 
Judgment by the Word       12:44-50 
Jesus' Death is Premeditated 26:1-5 14:1-2 22:1-2   
The Betrayal by Judas 26:14-16 14:10-11 22:3-6   
Preparation for the Passover 26:17-20 14:12-17 22:7-14   
Washing the Disciples' Feet     13:1-20 
Jesus Foretells His Betrayal 26:21-25 14:18-21 22:21-23 13:21-30 
The Last Supper 26:26-29 14:22-25 22:15-20   
The New Commandment of Love       13:31-35 
Peter's Denial Predicted 26:30-35 14:26-31 22:31-34 13:36-38 
The Two Swords     22:35-38   
“Let Not Your Hearts be Troubled”       14:1-14 
The Promise of the Paraclete       14:15-26 
The Gift of Peace       14:27-31 
Jesus the True Vine       15:1-8 
“Abide in My Love”       15:9-17 
The World's Hatred       15:18-25 
The Witness of the Paraclete       15:26-27 
On Persecutions       16:1-4 
The Work of the Paraclete       16:5-15 
Sorrow Turned to Joy       16:16-22 
Prayer in the Name of Jesus       16:23-28 
Prediction of the Disciples' Flight       16:29-33 
The Intercessory Prayer       17:1-26 
Jesus in Gethsemane 26:36-46 14:32-42 22:39-46 18:1 
Jesus Arrested 26:47-56 14:43-52 22:47-53 18:2-12 
Jesus before the Sanhedrin  26:57-68 14:53-65 22:54 18:13-24 
Peter's Denial 26:69-75 14:66-72 22:55-62 18:25-27 
Jesus Delivered to Pilate 27:1-2 15:1 23:1 18:28 
The Death of Judas 27:3-10       
The Trial before Pilate 27:11-14 15:2-5 23:2-5 18:29-38 
Jesus before Herod     23:6-12   
Pilate Declares Jesus Innocent     23:13-16   
Jesus or Barabbas? 27:15-23 15:6-14 23:17-23 18:39-40 
Pilate Delivers Jesus to be Crucified 27:24-26 15:15 23:24-25 19:16 
Jesus Mocked by the Soldiers 27:27-

31a 
15:16-
20a 

  19:1-15 
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The Road to Golgotha 27:31b-
32 

15:20b-
21 

23:26-32 19:17 

The Crucifixion 27:33-37 15:22-26 23:33-34 19:18-27 
Jesus Derided on the Cross 27:38-43 15:27-

32a 
23:35-38   

The Two Thieves 27:44 15:32b 23:39-43   
The Death of Jesus 27:45-54 15:33-39 23:44-48 19:28-30 
Witnesses of the Crucifixion 27:55-56 15:40-41 23:49 19:25-27 
Jesus' Side Pierced       19:31-37 
The Burial of Jesus 27:57-61 15:42-47 23:50-56 19:38-42 
The Guard at the Tomb 27:62-66       
The Women at the Tomb 28:1-8 16:1-8 24:1-12 20:1-13 
Jesus Appears to the Women 28:9-10 16:9-11 24:10-11 20:14-18 
The Report of the Guard 28:11-15       
Jesus Appears to Two on the Way to 
Emmaus 

  16:12-13 24:13-35   

Jesus Appears to His Disciples 
(Thomas being Absent) 

    24:36-43 20:19-23 

Jesus Appears to His Disciples 
(Thomas being Present) 

      20:24-31 

Jesus Appears to the Eleven While 
They Sit at Table 

  16:14-18     

Jesus Appears to the Eleven on a 
Mountain in Galilee 

28:16-20       

Jesus Appears to His Disciples by the 
Sea of Tiberias 

      21:1-25 

 Jesus'  Ascension   16:19-20 24:44-53   
 
 
As can be easily observed from that table, there are different numbers of "items" 
(events) in the four gospels; there is more agreement among the three synoptic 
gospels (Matthew, Mark, and Luke) than there is between each of them and 
John; etc.  But the amount of agreement needs to be quantified.  I have 
accordingly added another table (Table 2) in which I have displayed for each pair 
of evangelists the percent of the time they agree with each other: number of 
agreements divided by the maximum number of times they could have agreed 
(given that there are differing numbers of items in each of the four gospels, 
ranging from 85 in John to 192 in Luke.) 
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Table 2: Between-evangelist item agreement 
 
 
   Mark   Luke   John 
       
Matthew  104/118  139/176  29/85 
(176items)   88.14%  78.98%  34.12% 
          
Mark     85/118  30/85 
(118items)    72.34%  35.29% 
       
Luke      29/85 
(192items)     34.12% 
       
John       

 (85items) 
 
 
As indicated in that table, and as is well-known, the strongest agreement is 
between Matthew and Mark.  (Most biblical scholars claim that Matthew based 
much of his gospel on that of Mark, which is believed to have been written 
earlier.)   
 
Their validity 
 
Here are a few excerpts that provide at least partial historical corroborations of 
some of the gospel events.  I have drawn upon Josephus as the principal source 
for these "confirmations". 

1. Josephus, in his Antiquities of the Jews, Book 18, Chapter 3, Paragraph 3, 
says: 

"Now there was about this time Jesus, a wise man, if it be lawful to call him a 
man; for he was a doer of wonderful works, a teacher of such men as receive the 
truth with pleasure. He drew over to him both many of the Jews and many of the 
Gentiles. He was [the] Christ. And when Pilate, at the suggestion of the principal 
men amongst us, had condemned him to the cross, those that loved him at the 
first did not forsake him; for he appeared to them alive again the third day; as the 
divine prophets had foretold these and ten thousand other wonderful things 
concerning him. And the tribe of Christians, so named from him, are not extinct at 
this day." 

That paragraph, which has been regarded as authentic by some scholars and 
has been questioned by others, would appear to lend validity to several 
passages in the four gospels, namely those concerned with Jesus' miracles, His 
ability to attract large crowds in addition to His disciples, His being Christ, His 
suffering and death at the hands of Pilate, His betrayal by Judas, His denial by 
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Peter, and His subsequent appearances to His followers.  Some of those 
passages are (see Table 1): 

Matthew 4:18-22, 8:14-15, 8:16-17, 8:1-4, 9:1-8, 12:9-14,  
     4:24-25/12:15-21, 10:1-16, 8:5-13, 8:23-27, 8:28-34, 
     9:18-26, 9:27-31/20:29-34, 9:32-34/12:22-24, 14:13-21, 
     14:22-33, 14:34-36, 15:21-28, 15:29-31, 15:32-39, 
     17:14-18, 26:14-16, 26:47-56, 26:69-75, 27:1-2, 
     27:11-14, 27:24-26, 27:33-37, 27:45-54, 28:9-10, 28:16-20   
             [31 items]      
 
Mark  1:16-20, 1:23-28,1:29-31, 1:32-34, 1:40-45, 2:1-12, 3:1-6,    3:7-
12, 3:13-19/6:7-13, 4:35-41, 5:1-20, 5:21-43, 10:46-52, 
 6:32-44, 6:45-52, 6:53-56, 7:24-30, 7:31-37, 8:1-10, 
 8:22-26, 9:14-29, 14:10-11, 14:43-52, 14:66-72, 15:1, 
 15:2-5, 15:15, 15:22-26, 15:33-39, 16:9-11, 16:12-13, 
 16:14-18 
 [32 items] 
 
Luke  4:33-37, 4:38-39, 4:40-41, 5:1-11, 5:12-16, 5:17-26, 6:6-11, 
 6:17-19, 6:12-16/9:1-6, 7:1-10/13:28-29, 7:11-17, 8:22-25,  8:26-39, 
8:40-56, 18:35-43, 11:14-15, 9:10b-17, 9:37-43a,  13:10-17, 14:1-6, 17:11-
19, 22:3-6, 22:47-53, 
 22:55-62, 23:1, 23:2-5, 23:13-16, 23:24-25, 23:33-34, 
 23:44-48, 24:10-11, 24:13-35, 24:36-43 
 [33 items] 
 
John  1:35-51, 2:1-11, 4:46b-54, 5:2-47, 6:1-15, 6:16-21, 6:22-25, 
 9:1-41, 11:1-44, 16:29-33, 18:25-27, 18:28, 18:29-38, 19:16,  19:18-27, 
19:28-30, 20:14-18, 20:19-23, 20:24-31, 21:1-25 
 [20 items] 
 
2.  Some evidence regarding the validity of a few other gospel items might be 
found in Paragraph 1, Chapter 9, Book 20 of Josephus'  Antiquities, which reads 
in part: "... Festus was now dead, and Albinus was but upon the road; so he 
assembled the sanhedrim of judges, and brought before them the brother of 
Jesus, who was called Christ, whose name was James, and some others, [or, 
some of his companions]; and when he had formed an accusation against them 
as breakers of the law, he delivered them to be stoned..."  (Scholars also 
disagree about the authenticity of this writing of Josephus and whether or not 
Jesus had a brother.)  Those items are: 
 
Matthew  10:17-25/24:9-14, 10:37-39, 10:40-42, 12:46-50,  
       19:23-30, 24:23-28 
       [6 items] 
 
Mark  13:9-13, 3:31-35, 10:23-31, 13:21-23 
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 [4 items]       
 
Luke  14:25-27, 10:16, 8:19-21, 18:24-30/22:28-30,17:22-24 
 [5 items] 
 
3.  Another section of Antiquities (Book 18, Chapter 5, Paragraph 2) makes some 
explicit references to John the Baptist.  It reads: 
 
"Now some of the Jews thought that the destruction of Herod's army came from 
God, and that very justly, as a punishment of what he did against John, that was 
called the Baptist: for Herod slew him, who was a good man, and commanded 
the Jews to exercise virtue, both as to righteousness towards one another, and 
piety towards God, and so to come to baptism; for that the washing [with water] 
would be acceptable to him, if they made use of it, not in order to the putting 
away [or the remission] of some sins [only], but for the purification of the body; 
supposing still that the soul was thoroughly purified beforehand by 
righteousness. Now when [many] others came in crowds about him, for they 
were very greatly moved [or pleased] by hearing his words, Herod, who feared 
lest the great influence John had over the people might put it into his power and 
inclination to raise a rebellion, (for they seemed ready to do any thing he should 
advise,) thought it best, by putting him to death, to prevent any mischief he might 
cause, and not bring himself into difficulties, by sparing a man who might make 
him repent of it when it would be too late. Accordingly he was sent a prisoner, out 
of Herod's suspicious temper, to Macherus, the castle I before mentioned, and 
was there put to death. Now the Jews had an opinion that the destruction of this 
army was sent as a punishment upon Herod, and a mark of God's displeasure to 
him." 
 
At the very least, that section supports the validity of Matthew 3:1-6, 3:7-10, 3:11-
12, and 14:3-12; Mark 1:2-6, 1:7-8, and 6:17-29; Luke 3:1-6, 3:7-9, 3:10-14, and 
3:19-20; and John 1:19-23 and 1:24-28;  i.e., an additional four items for 
Matthew, three for Mark, four for Luke, and two for John. 
 
4.  There are a few other extra-biblical sources that might provide some evidence 
for the validity of other gospel items.  For example, the existence of a Roman 
census at the time supports Luke 2:1-7.  And if the Shroud of Turin is the burial 
cloth in which Jesus was wrapped, Matthew 27:57-61; Mark 15:42-47; Luke 
23:50-56; and John 19:38-42 might also be valid.  That is one more item for 
Matthew, one for Mark, two for Luke, and one for John. 
 
5.  Members of the controversial "Jesus Seminar" met several times about 20 
years ago and tried to reach some consensus regarding the extent to which 
various sayings and deeds could be attributed to Jesus.  The results of those 
meetings were compiled in two long books, the first concerned with what Jesus 
said (Funk, et al., 1993; they also included the gnostic gospel of Thomas) and 
the second concerned with what Jesus did (Funk, et al., 1998; they also included 
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the gnostic gospel of Peter).  The methodology they employed was a type of 
statistical approach whereby each saying and each deed was given a rating by 
each seminar member on the following four-point scale by dropping a colored 
bead into a voting box: 

A red bead indicated the voter believed Jesus did say the words in the passage 
quoted (did the deed described), or something very much like it. (3 Points) 

A pink bead indicated the voter believed Jesus probably said (did) it. (2 Points) 

A grey bead indicated the voter believed Jesus probably did not say (do) it. (1 
Point) 

A black bead indicated the voter believed Jesus did not say (do) it, and that it 
came from later admirers or a different tradition. (0 Points) 

An average was taken across the ratings and subsequently converted to a 
proportion of maximum  possible, a rank order, and a "consensus" red, pink, 
grey, or black.  For example, the "Turn the other cheek" passage that appears in 
both Matthew 5:39 and Luke 6:29b received the highest rating (proportion .92, 
rank 1, red), whereas the "Saving one's life" passage that appears in all four 
gospels received a variety of ratings, ranging from a consensus black for Mark 
8:35 to a consensus pink for Luke 17:33.  (See pp. 549-553 in Funk, et al., 1993.) 

Do those ratings add any additional items to the validity list?   I've looked at the 
data in both of the Funk et al. books and found support (consensus red) for the 
following items that I have not previously indicated above:   

Matthew 5:38-42, 5:43-48, 13:33, 22:15-22, 20:1-16, 6:7-15, 
      3:13-17, 9:10-13, 1:18-25 
 
Mark 12:13-17, 1:9-11, 1:14-15, 2:15-17 
 
Luke 6:29-30, 6:20-23, 6:27-28/32-36; 13:20-21, 20:20-26, 
 10:29-37, 16:1-9, 11:1-4, 3:21-22 
 
If I have counted correctly, the total numbers of defensibly valid items in the four 
gospels are   
 
Matthew: 53 out of a possible 176, for a "validity index" of 30.11% 
Mark:  44 out of 118, validity index = 37.29% 
Luke:  53 out of 192, validity index = 27.60% 
John:  23 out of 85, validity index = 27.06% 
 
Those numbers are smaller than many scholars would claim, larger than most 
skeptics would accept, and suggest that Mark is "the most valid".  But extreme 
caution must be observed in interpreting such data. 
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Questions and comments 
 
As food for thought, I would like to devote the remainder of this paper to some 
questions and comments (in no particular order) regarding the information  
contained in Tables 1-2 and in the previous section.  In the process of so doing, I 
would like to call additional attention to the similarities and the differences 
between the four gospels and four forms of a standardized test. 
 
1.  The parallelism of the four gospels is OK but not great: quite different 
numbers of items, low correlations of John with the other three.  In educational 
testing a small number of items usually results in lower reliability as well.  But in 
fairness to the evangelists, they didn't have the time, the money, or the interest in 
making their gospels parallel that the Educational Testing Service has! 
 
2.  Why are some of the gospel items so short and some so long?  A few of the 
items that appear in all four gospels even vary considerably in length, e.g., "The 
death of Jesus", to which Matthew devotes 10 verses, Mark 7, Luke 5, and John 
13.  That sort of thing happens occasionally in standardized testing; it's not 
necessary that parallel items have exactly the same numbers of words. 
 
3.  Table 1 combines a few pairs of events that might be referred to separately, 
e.g., "Jairus' Daughter and the Woman with a Hemorrhage", although both are 
intertwined in each of Matthew, Mark, and  Luke.  In standardized testing that 
item would be called "double-barreled".  Such items are generally frowned upon, 
since a person might be knowledgeable about part of the item but unfamiliar with 
the other part. 
 
4.  On the other hand, there are a few instances in which more than one 
reference is made to the same event.  For example, both Mark and Luke make 
two references to "The Commissioning of the Twelve Apostles".  Duplicate or 
near-duplicate items are also frowned upon in standardized testing.  
 
5.  Are Bethesda and Bethsaida the same town?  I assume so.  Are the 
Gadarene demoniacs and the Gerasene demoniacs the same persons? I 
assume that also.  Differences in the wordings of place names are quite common 
in the New Testament.  That's not acceptable in standardized testing. 
 
6.  What about the various people named John or James?  Apparently there are 
at least three Johns (the Baptist, the apostle, the evangelist) and at least three 
Jameses (two of the apostles and Jesus' alleged brother).  That would wreak 
havoc on standardized tests. 
 
7.  Would different versions of the bible have differing reliability and validity?  
That matter is similar to having different versions of college aptitude tests, e.g., 
the SAT and its longtime competitor, the ACT (American  College Testing) 
program . 
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8.  The numbers of men from whom demons were cast out and the numbers of 
blind men whose sight was restored occasionally varies from gospel to gospel 
(usually one vs. two) despite the appearance of those events in two or more of 
the gospels, thus decreasing their parallelism. 
 
9.  John the Baptist's beheading appears in both Matthew and Mark, but much 
earlier chronologically in Mark.  That sort of thing is not a problem in 
standardized testing, since the items often appear in random order, so that "What 
are the roots of the following quadratic equation...?" might be one of the first few 
items on Form A of the quantitative portion of the SAT and one of the last few on 
Form B. 
 
10.  Mark was found to be one of the most reliable.  It was also found to be the 
most valid.  Is that always the case with standardized tests?  Why or why not? 
 
After reading this paper, how would you answer the following questions (on a 
scale of 1 to 10, with 1=very bad and 10=very good)? 
  
(1)  How reliable are the four gospels? 
(2)  How valid are the four gospels? 
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 APPENDIX F:  The Reliability and validity of the claim that secondhand smoke  
     causes 3,000 lung cancer deaths each year in the U.S. 
 
 
Introduction 
 

“Secondhand smoke causes approximately 3,000 lung cancer deaths 
among U.S. nonsmokers each year."  (OSH/CDC, 2006)   Do people agree about 
that?  Is it true?  In other words, is it a reliable claim?  Is it valid?  In what follows 
I shall attempt to determine the extent to which that claim regarding cause of 
death is consistent from one source to another and is accurate.  But first some 
important terms must be defined and/or explicated. 
 
The distinction between reliability and validity 

 
In order for a claim or a measurement to be reliable it must be consistent 

from claimant to claimant or from measuring instrument to measuring instrument, 
whether or not it is accurate.  In order for a claim or a measurement to be valid it 
must be declared to be accurate by reference to a “gold standard” of some sort.  
For example, a claim such as "the probability of two heads in four tosses of a fair 
coin is  2/4, or 1/2, or .5"  is highly reliable (lots of people think that is the right 
answer), but it is invalid (the correct answer is 6/16= 3/8=.375; do the math).  
Ideally, we would like any claim to be both reliable and valid.  [For more on 
reliability and validity see Knapp (1985) or any good measurement text such as 
Dunn (2004) or Borsboom (2005).] 
 
Some preliminary remarks regarding causality in general 

 
The usual criteria for the defensibility of a claim that something, X, causes 

something else, Y, are: (1) association, i.e., there is a strong relationship 
between X and Y; (2) temporal precedence, i.e., X comes before Y; and (3) non-
spuriousness, i.e., the relationship between X and Y does not vanish when other 
variables U,V, W, etc. are taken into account.  Some authorities specify 
additional criteria such as (4) theoretical meaningfulness, i.e., it makes scientific 
sense; and/or (5) “dose response”, i.e., the greater  the X the much greater the Y.  
Those criteria are more likely to be satisfied by true experiments (randomized 
clinical trials) than by observational research.   

 
For the secondhand smoke claim, if  there is a strong relationship between 

amount of exposure to secondhand smoke (X) and mortality from lung cancer (Y, 
a died vs. lived dichotomy); if the exposure occurred before the mortality (in this 
case, how else?!); if there is no confounding factor (e.g., concurrent exposure to 
some other possible cause that might account  for the relationship); if the claim is 
biologically plausible; and if there is empirical evidence for a dose response; then 
the allegation “secondhand smoke causes lung cancer deaths” would be 
supported.  How many such deaths there are each year is a separate matter.   
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Much has been written about causality in the literature of philosophy, 

epidemiology, statistics, and  other scientific disciplines.   My favorite sources are 
the articles by Holland (1986; 1993),  the book by Pearl (2000), and the articles 
by Hernan (2004) and by Hernan and Robins (2006).   All of those sources are 
rigorous, occasionally obtuse, and, if you skip around a bit, enlightening.   
Especially enlightening (and understandable) are Sections 3 and 7 in Holland’s 
1986 article; Sections 1.2.1, 3.3.3, 7.3.2, and the Epilogue in Pearl’s book; and 
the delightful hypothetical data set in the Hernan articles.  Section 3 in Holland 
(1986) is particularly relevant for individual vs. group causality (see below), as is 
the first part of Hernan (2004).  The Epilogue in Pearl is a marvelous historical 
summary of the development of the concept of causality, complete with great 
illustrations.  And Hernan's choices of Greek names (Zeus,  Hera, etc.) for 
patients are hilarious. 
 
A cause vs. the cause 

 
It is important to differentiate between a claim of the form “X is a cause of 

Y” and a claim of the form “X is the cause of Y”.  It is difficult enough to obtain 
evidence concerning the former; it is almost impossible to obtain evidence 
concerning the latter.  If X is a cause of Y, the occurrence of X is sufficient  for Y 
to occur.  If Y cannot occur without X, the occurrence of X is necessary for Y to 
occur.  If X is the (one and only) cause of Y, the occurrence of X is both 
necessary and sufficient for Y to occur.  Many causal claims in the field of public 
health are of the more general form “X causes Y” (e.g., “smoking causes lung 
cancer”), and it is therefore much more difficult to determine their reliability and 
their validity.  (See Spirtes, Glymour, & Scheines, 2000, esp. pp. 239-249, for an 
excellent discussion of the difficulty of actually testing the hypothesis that 
[firsthand, mainstream] smoking causes lung cancer.) 
 
Deterministic (structural) causality vs. probabilistic causality 

 
A claim such as “smoking causes lung cancer” is probabilistic; i.e., “if you 

smoke you might get lung cancer", not “if you smoke you must get lung cancer”, 
since it is known that there are some smokers who get lung cancer and there are 
some who don’t; there are some nonsmokers who get lung cancer and some 
who don’t.  All we can say from the empirical evidence is that if you smoke there 
is a greater risk (higher probability) of getting lung cancer than if you don’t 
smoke.   

There are very few examples of deterministic causality.  One that comes 
immediately to mind is the claim that the bullet fired from Jack Ruby’s gun 
caused Lee Harvey Oswald’s death.  Many of us saw that on national television.  
(The claim that the bullet fired from Oswald’s gun was the cause of President 
Kennedy’s death is extremely controversial, albeit deterministic, and in the eyes 
of conspiratorial theorists it is not even highly probable.) 
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 An interesting concept in the legal literature is "the probability of 
causation" (Parascandola, 1998; Robins, 2004; Scheines, 2008; and Swaen & 
vanAmelsvoort, 2009), which is often used to assess liability and damages in 
lawsuits, especially toxic tort cases, that are brought against parties alleged by 
the plaintiffs to have caused injury or death.  It is an attempt to reconcile 
individual causality with group causality, and  is a function of relative risk.  (See 
the following sections.) 

 
Individual (singular, token, single-event) causality vs. group (general) causality 

 
Is it possible that X caused Y for a group, but we are unable to identify any 

individual within that group for whom X caused Y?   Apparently (see Holland, 
1986; Hernan, 2004), and that is reflected in the literature concerning the effects 
of secondhand smoke on lung cancer.  Except for a couple of high-profile cases 
such as Dana Reeve (nonsmoking wife of Superman-portrayer Christopher 
Reeve) and Heather Crowe (nonsmoking Canadian anti-tobacco activist), and an 
unidentified asthmatic waitress in Michigan (see Stanbury, et al., 2008), I know of 
no other individuals for whom it has been claimed that secondhand smoke 
caused the lung cancer that resulted in their deaths, and even in those three 
cases the evidence is not clear.  Yet the claim of  thousands of deaths for a 
group of people persists--see, for example, the Surgeon General’s recent report 
on the effects of secondhand smoke (U.S. Department of Health and Human 
Services, 2006).  [In that report "secondhand smoking" is referred to as 
“involuntary smoking”.  The terms “passive smoke”, “sidestream smoke”, and 
“environmental tobacco smoke” are also often used as synonyms for 
secondhand smoke.] 
 
Attributable risk 
  
 Most of the epidemiological claims of causes of deaths are based upon 
the concept of attributable risk.  That concept was originally due to Levin (1953) 
as one of three indexes of the relationship between firsthand smoking and lung 
cancer (he didn't actually use the term "attributable risk"), and is defined as 
follows (his notation): 
 
S =   b(r-1)/ [b(r-1) + 1], 
 
where b is the proportion of the population under consideration that is exposed 
(e.g., the proportion of smokers), and r is the ratio of the incidence of the disease 
(e.g., lung cancer) in the exposed sub-population to the incidence of the disease 
in  the unexposed sub-population.   [In the more recent epidemiological literature, 
S has been replaced by PAF (the population attributable fraction) or PAR (the 
population attributable risk), b has been replaced by p, and r has been replaced 
by RR (relative risk).]   In order to estimate numbers of a certain kind of death 
attributable to an exposure, one determines the prevalence of the exposure (b) 



2009Knapp-Reliability.doc  Page 142 

and the relative risk of death from that exposure (r), calculates the attributable 
risk, and multiplies that by the total number of deaths of that kind. 
 
 ["The probability of causation", PC (see above), is equal to 1 - 1/RR,  and 
is usually required to be greater than .50, which corresponds to a relative risk of 
2, in order for a judgment to be made in a plaintiff's favor.] 
 
 It is important to note that Levin claimed the attributable risk calculated by 
the above formula is a maximum risk (see p. 536 of his paper).  It is also 
important to note that he assumed both b and r to have been determined for the 
same population (e.g., a population cohort consisting of an exposed sub-
population and an unexposed sub-population).  It is common practice in 
epidemiological research to obtain an estimate of b from one source and an 
estimate of r from another source, especially in case-control studies. 
 
 One of the problems with this method is that estimates of PAFs for 
diseases with multiple risk factors can add to more than 1 (see, for example, 
Rowe, Powell, and Flanders, 2004).   Several explanations of, and/or alternatives 
to, Levin's formula for the determination of attributable risk have been suggested 
by Miettinen (1974),  as reinforced by Hanley (2001); and by  Begg, Satagopan, 
and Berwick (1998);  Begg (2001);  Eide and Heuch (2001); Uter and Pfahlberg 
(1999, 2001); Heller, Buchan, et al. (2003); Ha-Duong, Casman, and Morgan 
(2004); and others.  The approach taken by Ha-Duong et al. is called "bounding 
analysis", and was severely criticized by Greenland (2004; see also the response 
by Casman, Ha-Duong, and Morgan, 2004). 
 
Death certificates 
 
 In their article concerned with the quality of information for causes of death 
in 115 countries, Mathers, Fat, et al. (2005) argued that “who dies from what” is 
“the most basic of health statistics” (abstract).  The document that is most 
relevant for the determination of cause of death in this country is the U.S.  
Standard Certificate of Death.  The section on cause(s) of death (Items 31-37) 
contains information provided by a medical certifier.  The certifier can be a 
coroner, a medical examiner, or a family physician.  [See Magrane, Gilliland, & 
King (1997) and the associated editorial by Huffman (1997) for a discussion of 
the role of a family physician in the certification of death.] 
 

Item 35 asks if tobacco use contributed to the death.  That item had 
already been included in the death certificates used in Colorado, Louisiana, 
Maryland, Nebraska, North Dakota, Oregon, Texas, Utah, and New York City 
since 1989, but is new to the other states.  Zevallos, Huang, et al. (2004) claimed 
that its addition to the Texas death certificate increased the reporting of tobacco 
use as a contributor to mortality.  [N.B.  "Tobacco use" is not the same as 
"exposure to secondhand smoke", but in certain situations it can be used as a 
surrogate for it--see below.] 
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Is the death certificate the gold standard for cause of death or just one 

source that must itself be evaluated for reliability and validity?  The literature is 
surprisingly equivocal about that.  Death certificates have been subjected to 
various criticisms over the years (see, for example, Gittlesohn & Royston, 1982; 
Feinstein, 1985;  Messite & Stellman, 1996; Lenfant, Friedman, and Thom, 1998; 
and Lloyd-Jones, Martin, et al., 1998), but no other readily available source has 
been suggested that might be a more accurate indicator of cause of death.  
Consider, for example, the study reported by Thomas, Hedberg, and Fleming 
(2001).  They compared the numbers of deaths estimated by epidemiologists to 
be attributable to cigarette smoking (using the SAMMEC software that is based 
upon the method for investigating group causality originally due to Levin, 1953) 
with a tally of deaths having cigarette smoking as the principal cause indicated 
on the death certificate (Item 31 on the current version) for a sample of persons 
who died in Oregon between 1989 and 1996.   The agreement was in general 
quite good, but there were a few rather large discrepancies (e.g., cervical cancer: 
109 for SAMMEC vs. 29 for death certificates).  The authors were unwilling to 
claim that the death certificate was the gold standard; they regarded both 
approaches as alternatives that were likely to be convincing to different 
audiences.  It is therefore best to consider their study as a reliability study. 
 
Autopsies 
  
 It could be argued that autopsies are, or should be, the “platinum 
standard” for cause of death.  Fortunately, or unfortunately, depending upon 
one’s point of view, autopsies are rare, being reserved primarily for deaths that 
are suspected to be murders.  There have been a few studies in which the 
validity of certain alleged causes of death has been investigated, using autopsy 
as the external criterion.  For example, Nashelsky and Lawrence (2003) reported 
that medical examiners and coroners were wrong in 28% of 261 cases in 
determining the cause of death when blinded to actual autopsy results.  And 
autopsies also were found to disagree with death certificates in 37% of 155 
forensic exhumations (Karger, de la Grandmaison, et al., 2004). 
   
 There are also “verbal autopsies”, which consist of cause-seeking 
interviews with the relatives and/or friends of decedents in places where there 
are no medical certifiers, such as Third World countries.  [For further information 
concerning verbal autopsies see Fauveau (2006) and King & Lu  (2006).] 
 
Secondhand smoke (and numbers of lung cancer deaths) 
  
 Nothing has been more controversial and politically charged than the 
allegation that secondhand smoke causes thousands of deaths and those deaths 
are preventable by banning smoking in public places.  The allegation can be 
written as: firsthand smoking→secondhand smoke→health problems→death.  
On one side of the controversy are the Surgeons General; the Centers for 
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Disease Control and Prevention (CDC);  the American Cancer Society (ACS); the 
American Heart Association (AHA); the American Lung Association (ALA);  and 
Stanton Glantz, James Repace, and other anti-smoking activists (especially New 
York City’s Mayor Michael Bloomberg) who wholeheartedly support the claim.  
On the other side are the tobacco industry [naturally]; Enstrom and Kabat (2003); 
Elizabeth Whelan, President of the American Council on Science and Health 
(ACSH); and writers such as Jerry Arnett, Gio Gori, Michael McFadden, Michael 
Siegel, and Jacob Sullum who contend that the effects of secondhand smoke 
have been vastly exaggerated.  There is also the critique by Feinstein (1992) of 
the article by Smith, Sears, et al. (1992); the opposing positions by Gross and by 
Rockette (1993); a subsequent article by Gross in 1995, the rejoinders by 
Bayard, Jinot, & Flatman and Hanley to that article, and Gross’s response; the 
recent piece in JAMA by Kuehn (2006);  the article by Stranges, Bonner, et al. 
(2006); and many others. 
 
The evidence 
  
 So, what is the actual evidence regarding the reliability and the validity of 
the claim that "Secondhand smoke causes approximately 3,000 lung cancer 
deaths among U.S. nonsmokers each year"? 
 
    Reliability 
 
 The 3,000 figure has been cited in numerous sources ever since the 
report on the effects of secondhand smoke was issued by the U.S. 
Environmental Protection Agency  (EPA, 1992).  [The report was extremely 
controversial at the time, resulting in a number of lawsuits, judicial decisions, and 
smoking bans of various sorts.  It still is controversial.]   The agreement among 
most sources is quite good.  For example, although they do not all differentiate 
between never smokers and former smokers (current smokers are presumed to 
die from their own firsthand smoke), and they are not completely independent, 
most of the entries returned when you Google the words "lung cancer deaths 
secondhand smoke") claim 3,000 to 3,400 deaths per year.  The modifiers 
"about", "approximately", "at least", or "more than" are sometimes added, as are 
additional words such as "adult", "excess",  "premature", and "preventable".  [For 
a critique of the concept of "premature death", see Trisel, 2007.]  The 3,400  
figure comes from an updated analysis carried out by the CalEPA (2005) and is 
cited by both  the American Cancer Society and the American Lung Association 
on their websites.  [At one point in its report, on page 7-62, CalEPA  claims "a 
range of 3423 to 8866".]  The only claims I could find that were considerably 
different from 3,000 (other than those who argue that there are at most a handful) 
were an estimate of 5,000 (actually 4,665 rounded to 5,000) made by Repace 
and Lowrey (1985) and an estimate of 300,000 attributed to former surgeon 
general Dr. David Satcher in his 1999 G. Gayle Stephens lecture (Coastal 
Research Group, 2004), but the latter might very well have been a 
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"voiceographical" or typographical error.  There is therefore reasonably strong 
evidence for the reliability of the claim. 
  
 Some observations regarding internal consistency: 
 
1.   The American Cancer Society  estimated that in 2007 there would be 
approximately 160,000 lung cancer deaths (ACS, 2007), 85-90% of which would 
be to smokers (Thun, 2006) and the remaining 10-15% to nonsmokers, giving an 
estimate of approximately 20,000 lung cancer deaths for nonsmokers.  ACS has 
further estimated that there are approximately 11,000 lung cancer deaths per 
year for never smokers (a subset of nonsmokers), 27% of which are attributable 
to secondhand smoke (ACS, 2006), i.e., approximately 2,970 such deaths.  That 
is a bit lower than their 3,400 estimate for all nonsmokers (the other 430 are 
former smokers?). 
 
2.  It is interesting to analyze the data for the two states that have the highest 
(Kentucky) and the lowest (Utah) prevalences of cigarette smoking.  According to 
the 2000 Census (see Table 5 in its December 28, 2000 release), the population 
of Kentucky was 4,041,769, which was approximately 1.436% of the total U.S. 
resident population of 281,421,906.  If the number of lung cancer deaths for 
nonsmokers in the country as a whole were 3,000, and if Kentucky had a 
proportionate share, then there would have been approximately 43 such deaths 
in that state.  The prevalence of smoking in Kentucky in the year 2000 was 
estimated to be 30.5% (MMWR, 2001).  The relative risk of lung cancer for those 
exposed to secondhand smoke vs. those not exposed has been variously 
reported as ranging between 1.20 and 1.30 (i.e., an elevated risk of 20 to 30%), 
although Enstrom and Kabat (2003) estimated it to be very close to 1.00.  The 
prevalence of firsthand smoking provides an estimate of the probability of 
exposure of nonsmokers to the smoke emitted by smokers (see page 8-38 of the 
CalEPA report  for an example of an analysis of the number of cardiovascular 
deaths from secondhand smoke based upon that assumption).   Using that 
estimate of a p of .305 together with an RR of 1.25 in the SAMMEC version of 
Levin's  attributable risk formula, a PAF of .0708 is obtained.  The age-adjusted 
lung cancer death rate in Kentucky in 2000 was estimated to be 80.2 per 100,000 
persons.  Applying that estimate to Kentucky's population in that year yields 
3,242 lung cancer deaths.  .0708 (3,242) = approximately 230 of them would be 
estimated to be for nonsmokers.  The 43 and the 230 are reconcilable if the 43 is 
for never smokers and the 230 is for all nonsmokers; i.e., the difference of 187 is 
for former smokers.   As indicated above, many of the claimants do not clarify 
whether the estimate is for never smokers only or for never smokers and former 
smokers combined.          
 
Utah's population in 2000 was reported to be 2,233,169, or approximately .793% 
of the total U.S. resident population.  Its proportionate share of 3,000 lung cancer 
deaths for nonsmokers would be approximately 24.  Utah's smoking prevalence 
was 12.9% (MMWR, 2001).  For a p of .129 and an RR of 1.25, PAF = .0312.  
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The age-adjusted lung cancer death rate in Utah was estimated to be 26.3 per 
100,000, yielding 587 lung cancer deaths, which when multiplied by .0312 is 18 
for nonsmokers.  The 24 and the 18 are not reconcilable.  If the former number is 
for never smokers only, the latter number does not make sense, since 
subtraction of the 24 from the 18 would yield a figure of -6 lung cancer deaths for 
former smokers.  
 
The 43 for Kentucky and the 24 for Utah are commensurate with what would be 
expected for their respective populations in conjunction with the ACS's estimate 
of 2.970 lung cancer deaths for never smokers attributable to secondhand smoke 
in the entire U.S. per year. 
 
    Validity 
 
 Unfortunately there is no consensus regarding what constitutes a gold 
standard for the accuracy of the claim.  The closest thing is the analysis carried 
out and reported by the EPA in 1992, which, as indicated above, was the subject 
of considerable controversy.  In my opinion it was actually a laudable attempt 
(see Chapter 6 of that report) to estimate the annual number of lung cancer 
deaths (particularly for nonsmoking adult females) that might have been 
attributable to secondhand smoke up until that time (emphasis mine) and it has 
been frequently cited as the basis for the 3,000 figure.  The actual EPA estimate 
for the year 1985 was 3,060 and included both never smokers (2000 deaths) and 
former smokers (1060 deaths);1130 male deaths, 1930 female deaths; 860 
deaths from exposure at home, 2200 deaths from exposure at work--see their 
Table 6-3).  The amazing thing, however, is that the claim has essentially 
remained fixed at 3,000 ever since, despite the fact that there has been a 
decrease in firsthand smoking, and consequently a decrease in exposure to 
secondhand smoke, in the intervening years (see, for example, Soliman, Pollack, 
& Warner, 2004; Pirkle, Bernert, et al., 2006; CDC, 2008).  The determination of 
the accuracy of the claim is admittedly  extremely difficult.  Not only is it almost 
impossible to agree upon a gold standard, but there are additional problems: 
 
1.  The definition of smokers and nonsmokers.  [Smokers are almost always 
equated with cigarette smokers, with little or no attention to pipe smokers or cigar 
smokers.]  In most of the literature (see, for example, MMWR, 2001) smokers are 
defined as persons who have smoked at least 100 cigarettes in their lifetimes 
and are currently smoking every day or on some days.  Nonsmokers are divided 
into former smokers and never smokers.  Former smokers are said to have 
smoked at least 100 cigarettes in their lifetimes but are not currently smoking. 
Never smokers are those who have smoked fewer than 100 cigarettes in their 
lifetimes.  Such definitions are both vague and debatable. 
 
2.  The measurement of amount of exposure to secondhand smoke.  The most 
common approach is the use of questionnaires, in which respondents are asked 
to recall how much they have been exposed to secondhand smoke in their 
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homes and/or at their workplaces.   Biomarkers such as urine cotinine, saliva 
cotinine, or hair nicotine have also been suggested--see, for example, Benowitz 
(1996), Al-Delaimy, Crane, & Woodward (2002), Siegel and Skeer (2003), Stark, 
Rohde, et al. (2007), and Okoli, Hall, et al. (2007)--as have airborne particle 
monitors for outdoor tobacco smoke (Klepeis, Ott, & Switzer, 2007). 
 
3.   The need for constant updating of the prevalence of smoking, the relative risk 
of death for the exposed vs. the unexposed, and the numbers of lung cancer 
deaths.   
 
 
Cardiovascular deaths 
 
 Reference was made above to an analysis of the estimated number of 
cardiovascular deaths that are attributable to secondhand smoke (CalEPA, 2005, 
page 8-38).  That estimate was a range of 22,669 to 69,553 deaths, with a 
midpoint of 46,111.  (See also  Glantz  & Parmley, 1991, 1995, and 2001 for 
similar claims.)  Those claims are considerably less reliable and their validity is 
equally problematic.  (See, for example, Nilsson, 2001 and Enstrom & Kabat, 
2006.)  Mayor Bloomberg once claimed that secondhand smoke caused 1,000 
deaths each year in New York City alone (a figure that Elizabeth Whelan argued 
was much too high).  The city's proportionate share of  3,000 lung cancer deaths 
for non- smokers for the country as a whole, given its population of approximately 
8 million and a population of 300 million for the entire U.S., would be about 80.  
Its proportionate share of 46,000 cardiovascular deaths would be over 1,200.   
 
Thirdhand smoke 
 
 Believe it or not, some researchers are claiming that there are effects of 
thirdhand smoke [and even fourthhand and fifthhand smoke] on non-smokers.  
The term "thirdhand smoke" was first coined by Gerald Nachman  (1991) [as far 
as I have been able to determine], but it was recently redefined in an article by 
Winickoff et al. (2009) regarding the need for banning smoking in homes. 
 
Summary 
  
 Since autopsies are rare, death certificates have a number of 
shortcomings, and the public health community does not seem to be able to 
agree upon a gold standard for cause of death, the validity of the allegation 
regarding the number of lung cancer deaths for nonsmokers caused by 
secondhand smoke is likely to remain indeterminate.  The reliability of such 
claims will continue to be addressed, but even there the choice of sources to 
compare with one another presents a serious challenge.  
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