Randomness & Chance

VOD

VOD

VOD

Statistical Literacy 2009 Chapter 7 Overview

by Milo Schield www.StatLit.org/... pdf/2009StatLitTextHandoutCh7.pdf audio/2009StatLitTextHandoutCh7.mp3

Randomness

2009 Statistical Literacy Textbook Handout, Ch 7

3

1. How do random excesses correct? Offset or dilution?

2. How can we use chance to estimate and adjust?

- Truthful Answers on Sensitive Issues using Chance
- Adjusting for Guessing using Chance
- Estimating Population Size Using Chance
- 3. How to estimate survey sampling error @ 95% confidence.
- 95% Margin of Error for subgroups
- Sample size needed to achieve desired accuracy.
- 4. What is statistical significance? Calculation and meaning.

Overcoming Excess

A fair coin has been giving an excess of 'heads'. Should you bet 'tails'? Must coin offset to get 50-50? A roulette wheel has been giving an excess of 'Red'. Should you bet 'black'? Must wheel offset the 'red'?

No! A coin and a wheel have no memory. They have no power to offset. Offset is impossible! So how do they return to 50-50? By dilution. Just doing 50-50 will dilute any excess.

2009 Extended Likewy Teelook Heeded: Co.7 5

on Sensitive Issues

Sensitive question: Have you done something bad? Assign people to two groups: Truthful and "Yes-only"

	A	В	С	D
1		Randomly assigned		
2		Say "Yes"	Tell the Truth	ALL
3	Answered "No"	0	+D3	+D5-D4
4	Answered "Yes"	+B5	+C5-C3	# Saying Yes
5	ALL	+D5/2	+D5/2	Total #

Fraction of truthful who say Yes: (Yes - N/2) / (N/2)This assumes random assignment gives a 50-50 split. Never check on this. Doing so breaks anonymity.

Adjust for Guessing

VOD

N multiple-choice questions with k possible answers. Decision: Mark answer or leave blank.

If one guesses: 1 chance in k of correct answer. Pure chance: N/k right; N-N/k = N[(k-1)/k] wrong.

To minimize guessing, make net score equal to zero Subtract 1/(k-1) points for each wrong answer. N/k right. Subtract $\{N[(k-1)/k]\}[1/(k-1)] = N/k$.

Rule: Guess only if chance of right answer > 1/(k-1)

Estimate hard-tocount population

7

9

VOD

VOD

VOD

Examples: Fish in a lake or uncounted in a census. This method of estimating the population (N), involves capture-recapture: taking two random samples at different times.

- Count and mark those in the first sample. Call the count n.
 At a later time, take a second *random* sample of size s.
- Find that m of these s are marked from the first sample. 3.Results:
 - Proportional reasoning: If m/s = n/N then N = n(s/m).
 - Fractional method: If m/n = s/N = p, then N = n/p.

Example: 100 tagged in 1st group. 2% of 2^{nd} random catch had tags. Estimated population = N = 100/0.02 = 5,000.

Margin of Error Proportions

2009 Statistical Literacy Textbook Handout: Ch 7

The exact 95% margin of error for a proportion is: 1.96 * Sqrt[p*(1-p)/n] where *p* is sample proportion.

The conservative 95% margin of error is:

1/Sqrt(n) where *n* is the sample size.

This conservative value is typically reported in surveys. It always includes the entire group and it always assumes p=50% so it gives the largest interval.

Confidence interval of a proportion = $p \pm ME$

Survey Margin of Error For Subgroups

Most polls show the Survey 95% margin of error. This is the most-conservative margin or Error for the entire survey. Assumes $p \sim 50\%$.

Let N be size of random sample; n = size of subgroup. Let F = fraction of group that is in a subgroup = (n/N).

Result:

Subgroup ME = Survey ME $\sqrt{(N/n)}$ = Survey ME/Sqrt(F)

If F = 9%, then 95% subgroup ME = 95% Survey ME/0.3

Confidence Intervals: Measurements

Conf. Interval: Sample Mean±ME. 95% Margin of Error≈2s/sqrt(n)

Randomly select 100 students (n). Suppose they average 8 hours working per week with a standard deviation (s) of 5 hours.

- 1) What is the estimated population mean? Answer: 8 hrs.
- 2) What is the 95% margin of error for the average time working/week? A. 1 hr: 95% ME = 2s/Sqrt(n)=2*5/Sqrt(100)
- 3) What is the upper limit of 95% confidence interval for average time working? Answer. 9 hrs: 8 hrs + 1 hr
- 4) What is the lower limit of 95% confidence interval for average time working? Answer. 7 hrs: 8 hrs 1 hr

Required Sample Sizes [Not in this text yet]

Suppose allowable Margin of Error = E

- 1) Proportions (most conservative): ME = 1/sqrt(n) = ESo $n = (1/E)^2$ Doubling E quadruples n Example: If E = 0.02 then $n = (1/0.02)^2 = 50^2 = 2,500$.
- 2) Proportions (Exact). ME = 2*Sqrt[p(1-p)/n] = E. n = $[p(1-p)] (2/E)^2$. IF E = 0.02, p = 0.2; n = 1,600.

 3) Measures: ME = 2s/sqrt(n) = E n = [E/(2s)]^2. If E = 100 and s = 1, then n = 2,500.

Statistical Significance: Unlikelv

Statistical significance (statistically significant):

Unlikely (< 1 chance in 20) if due just to chance

- Coins: 5 heads in a row (1 chance in 32)
- Cards: Dealt two Aces ((4/52)(3/51) = 0.038 < 1/20

Stat. Significant => More likely due to non-chance!

Statistically insignificant (not statistically significant) *Likely or not unlikely* (> 1 chance in 20) if due to chance

- Coins: 4 heads in a row (1 chance in 16).
- Cards: Dealt one Ace (4/52 or 1 chance in 13)

Statistical Significance & Confidence Intervals

Statistically insignificant (not statistically significant) Likely (> 1 chance in 20) if due just to chance Difference: Two 95% confidence intervals do overlap

Statistical significance (statistically significant)

Unlikely (< 1 chance in 20) if due just to chance Difference: Two 95% confidence intervals do not overlap Extremely conservative. Sufficient but not necessary.

Suppose the percentage who are for Obama was 47% last month and 51% this month – with a 2 point margin of error. Is this change statistically significant? A. No!

Statistical Significance: Importance and Cause

Being statistically-significant

- Does NOT mean "important" or "note-worthy"!
- · Does not mean "unlikely TO BE due to chance"

Being statistically significant

- · Means "unlikely IF due just to chance"
- Does support the claim that the outcome is more likely to be due to something other than chance.

Statistical Significance: Not Due to Chance?

Q. Does statistical-significance ever mean unlikely *to be due* to chance?

A. Depends on whether one allows these statements Yes! If the chance the alternate is true is more than 50%. No! If the chance the alternate is true is less than 50%.

Example: In an ESP experiment, a subject's choices compared to chance were statistically-significant.

Analysis. Since the chance that ESP is real is much less than 1%, this result is still likely *to be due* to chance.

Statistical Significance: Necessary?

Q. Is statistical-significance necessary?

A. Sometimes

- Yes! In clinical trials of new drugs or medical procedures where highest standards are required. C.f., criminal trials with presumption of innocence and requirement of 'guilt beyond reasonable doubt."
- No! In polls there is no reason to assume there is no difference in the popularity of two candidates (or in the popularity of a single candidate over time). C.f., civil trials – no presumption; requirement is "preponderance of evidence" (More likely than not)

Statistical Insignificance Explanations

Q. What explains statistical insignificance?

- A. Two kinds of explanations:
- 1. Nothing real; no real difference; just coincidence.
- 2. Real difference but small so it is indistinguishable from chance/noise. Might be seen in a larger sample.

Cannot conclude there is no real difference (#1)!!!

"No difference between samples" does not mean "no difference between populations." VOD

2009 Statistical Literacy Textbook Handout: Ch 7 **Summary: Randomness**

19

Sampling error is often overlooked as an influence on statistics or statistical associations.

A 95% confidence interval includes the population parameter (is right) 95% of the time.

A statistically-significant association is not necessarily an important association.

A statistically In-significant association may be pure coincidence or it may be a real association.