

Adjust for Guessing

N multiple-choice questions with k possible answers. Decision: Mark answer or leave blank.

If one guesses: 1 chance in k of correct answer.
Pure chance: N / k right; $\mathrm{N}-\mathrm{N} / \mathrm{k}=\mathrm{N}[(\mathrm{k}-1) / \mathrm{k}]$ wrong.
To minimize guessing, make net score equal to zero Subtract $1 /(k-1)$ points for each wrong answer.
N / k right. Subtract $\{\mathrm{N}[(\mathrm{k}-1) / \mathrm{k}]\}[1 /(\mathrm{k}-1)]=\mathrm{N} / \mathrm{k}$.
Rule: Guess only if chance of right answer > $1 /(\mathrm{k}-1)$

VOD
 Estimate hard-tocount population

Examples: Fish in a lake or uncounted in a census. This method of estimating the population (N), involves capturerecapture: taking two random samples at different times.

1. Count and mark those in the first sample. Call the count n.
2. At a later time, take a second random sample of size s .

Find that m of these s are marked from the first sample.
3.Results:

- Proportional reasoning: If $m / s=n / N$ then $N=n(s / m)$.
- Fractional method: If $m / n=s / N=p$, then $N=n / p$.

Example: 100 tagged in $1^{\text {st }}$ group. 2% of $2^{\text {nd }}$ random catch had tags. Estimated population $=\mathrm{N}=100 / 0.02=5,000$.

vod

Margin of Error

 ProportionsThe exact 95% margin of error for a proportion is:
$1.96 * \operatorname{Sqrt}\left[p^{*}(1-p) / n\right]$ where p is sample proportion.
The conservative 95% margin of error is:
$1 / \operatorname{Sqrt}(n) \quad$ where n is the sample size.
This conservative value is typically reported in surveys.
It always includes the entire group and it always
assumes $\mathrm{p}=50 \%$ so it gives the largest interval.
Confidence interval of a proportion $=\mathrm{p} \pm \mathrm{ME}$
vod

Sampling Eyror

Sample means are distributed around population mean. Sample error: Sample mean minus population mean.

Margin of error:
$1)$ is expected sample error with 95% confidence.
2) decreases as sample size (n) increases.

3) is proportional to $1 /$ square root of n.
Quadruple sample to cut error in half.
4) is independent of size of population.

Counter-intuitive. Key is randomness: well-mixed.
To see if coffee is too weak/strong, need just one sip.
2 is expected; 3 is a small surprise; 4 is a big surprise.

Survey Margin of Error For Subgroups

Most polls show the Survey 95\% margin of error.
This is the most-conservative margin or Error for the entire survey. Assumes p ~50\%.

Let N be size of random sample; $\mathrm{n}=$ size of subgroup. Let $\mathrm{F}=$ fraction of group that is in a subgroup $=(\mathrm{n} / \mathrm{N})$.

Result:
Subgroup ME $=$ Survey ME $\sqrt{ }(\mathrm{N} / \mathrm{n})=$ Survey ME/Sqrt(F)

If $\mathrm{F}=9 \%$, then 95% subgroup $\mathrm{ME}=95 \%$ Survey ME/0.3

Confidence Intervals: Measurements

Conf. Interval: Sample Mean \pm ME. $\mathbf{9 5 \%}$ Margin of Error $\approx \mathbf{2 s / s q r t (n)}$
Randomly select 100 students (n). Suppose they average 8 hours working per week with a standard deviation (s) of 5 hours.

1) What is the estimated population mean? Answer: 8 hrs.
2) What is the 95% margin of error for the average time working/week? A. 1 hr : $95 \% \mathrm{ME}=2 \mathrm{~s} / \operatorname{Sqrt}(\mathrm{n})=2 * 5 / \operatorname{Sqrt}(100)$
3) What is the upper limit of 95% confidence interval for average time working? Answer. 9 hrs: $8 \mathrm{hrs}+1 \mathrm{hr}$
4) What is the lower limit of 95% confidence interval for average time working? Answer. 7 hrs : $8 \mathrm{hrs}-1 \mathrm{hr}$
\qquad

VOD 2009 Slaststar Llemeacy Textbock teandout Ch 7 . 12
 Required Sample Sizes [Not in this text yet]

Suppose allowable Margin of Error $=\mathrm{E}$

1) Proportions (most conservative): $\mathrm{ME}=1 / \mathrm{sqrt}(\mathrm{n})=\mathrm{E}$

So $n=(1 / E)^{2} \quad$ Doubling E quadruples n
Example: If $\mathrm{E}=0.02$ then $\mathrm{n}=(1 / 0.02)^{2}=50^{2}=2,500$.
2) Proportions (Exact). $\mathrm{ME}=2 * \operatorname{Sqrt}[\mathrm{p}(1-\mathrm{p}) / \mathrm{n}]=\mathrm{E}$.
$\mathrm{n}=[\mathrm{p}(1-\mathrm{p})](2 / \mathrm{E})^{2} . \quad$ IF $\mathrm{E}=0.02, \mathrm{p}=0.2 ; \mathrm{n}=1,600$.
3) Measures: $\mathrm{ME}=2 \mathrm{~s} / \mathrm{sqrt}(\mathrm{n})=\mathrm{E}$ $\mathrm{n}=[\mathrm{E} /(2 \mathrm{~s})]^{\wedge} 2 . \quad$ If $\mathrm{E}=100$ and $\mathrm{s}=1$, then $\mathrm{n}=2,500$.

VOD 2009 Slassisaat Lleferey Teetbook hamadout Cn7 13
 Statistical Significance: Unlilzely

Statistical significance (statistically significant):
Unlikely (<1 chance in 20) if due just to chance

- Coins: 5 heads in a row (1 chance in 32)
- Cards: Dealt two Aces $((4 / 52)(3 / 51)=0.038<1 / 20$

Stat. Significant => More likely due to non-chance!
Statistically insignificant (not statistically significant)
Likely or not unlikely (> 1 chance in 20) if due to chance

- Coins: 4 heads in a row (1 chance in 16).
- Cards: Dealt one Ace (4/52 or 1 chance in 13)

Statistical Significance \& Confidence Intervals

Statistically insignificant (not statistically significant) Likely (> 1 chance in 20) if due just to chance Difference: Two 95% confidence intervals do overlap
Statistical significance (statistically significant)
Unlikely (<1 chance in 20) if due just to chance
Difference: Two 95% confidence intervals do not overlap
Extremely conservative. Sufficient but not necessary.
Suppose the percentage who are for Obama was 47% last month and 51% this month - with a 2 point margin of error. Is this change statistically significant? A. No!

 Statistical Significance: Importance and Cause

Being statistically-significant

- Does NOT mean "important" or "note-worthy"!
- Does not mean "unlikely TO BE due to chance"

Being statistically significant

- Means "unlikely IF due just to chance"
- Does support the claim that the outcome is more likely to be due to something other than chance.

Statistical Significance: Not Due to Chance?

Q. Does statistical-significance ever mean unlikely to be due to chance?
A. Depends on whether one allows these statements Yes! If the chance the alternate is true is more than 50%. No! If the chance the alternate is true is less than 50%.

Example: In an ESP experiment, a subject's choices compared to chance were statistically-significant.
Analysis. Since the chance that ESP is real is much less than 1%, this result is still likely to be due to chance.

Statistical Significance: Necessary?

Q. Is statistical-significance necessary?
A. Sometimes

Yes! In clinical trials of new drugs or medical procedures where highest standards are required. C.f., criminal trials with presumption of innocence and requirement of 'guilt beyond reasonable doubt."
No! In polls there is no reason to assume there is no difference in the popularity of two candidates (or in the popularity of a single candidate over time). C.f., civil trials - no presumption; requirement is "preponderance of evidence" (More likely than not)

 Statistical Insignificance Explanations

Q. What explains statistical insignificance?
A. Two kinds of explanations:

1. Nothing real; no real difference; just coincidence.
2. Real difference but small so it is indistinguishable from chance/noise. Might be seen in a larger sample.

Cannot conclude there is no real difference (\#1)!!!
"No difference between samples" does not mean "no difference between populations."


```
    Summmary: Randommess
Sampling error is often overlooked as an influence on statistics or statistical associations.
A 95\% confidence interval includes the population parameter (is right) \(95 \%\) of the time.
A statistically-significant association is not necessarily an important association.
A statistically In-significant association may be pure coincidence or it may be a real association.
```

