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I. INTRODUCTION
The primary approaches to statistical inference presented to

students are signi�cance testing and con�dence interval esti-
mation. The interpretations of signi�cance tests and con�dence
intervals play a key role in an introductory statistics course.
In spite of the considerable attention paid to these issues, the
interpretations which are often presented to statistics students
are based on a logical fallacy. This essay introduces readers
to how the "fallacy of the transposed conditional" leads to
interpretations of statistical inferential procedures which lack
proper justi�cation.

II. ISSUES IN SIGNIFICANCE TESTING
For ease of exposition, we will introduce a simple case

of statistical inference. Suppose our data consists of random
variables Y1; Y2; : : : ; Yn distributed independent N

�
�; �2

�
.

The variance �2 is known. The mean � is unknown, but a
nominal value �o is available. Based on the observed data, the
problem is to decide between the competing hypotheses Ho :
� = �o; Ha : � 6= �o. This case can serve as an introduction
to hypothesis testing in a �rst statistics course. The simplicity
of the case results in no loss of generality as an introduction
to hypothesis testing since the interpretations generalize to
more complicated cases. (It is this ability to generalize to the
more complicated which makes teaching introductory statistics
an interesting and important endeavor.) The errors which can
be committed in a hypothesis testing problem are, of course,
denoted as type I (deciding Ha when Ho is true) and type
II (deciding Ho when Ha is true). If committing a type I
error is considered to be severe, a decision rule can be created
where the probability of committing a type I error is controlled
at P (type I error) = P (decide HajHo true) = �, where �
is called the the signi�cance level of the test. Our simple
case then results in a decision of Ha when the test statistic
jZ�j =

��pn �Y � �o� =��� exceeds z (�=2), the upper (�=2)th
percentile of the standard normal distribution.
Because we are presenting a setting where a type I error

carries a higher cost than a type II error, the hypotheses Ho
and Ha are said to be asymmetric. Common explanations for
taking this asymmetric approach to hypothesis testing are that
the alternative hypothesis is "what we hope to establish as
true", so that the "burden of proof", or "suf�cient evidence"
is required before a decision in favor of Ha is reached. A

decision rule created with a type I error probability set at
signi�cance level � can be reasoned to students as initially
believing the null hypothesis as true, and not moving off this
belief unless the observed data is so unusual that doubt must
be cast on this initial belief. A decision in favor of Ha is
commonly interpreted as "rejecting the null hypothesis". A
decision in favor of Ho is explained to students as one for
which the data is not strong enough to cast doubt on the
null hypothesis. It is stressed that the data can not "support"
the truth of the null hypothesis. A decision in favor of Ho is
commonly interpreted as "failing to reject the null hypothesis".

We can not be sure that a decision reached after performing
a hypothesis test is correct. A decision, whether in favor of Ho
or Ha, is made with uncertainty. The implication behind the
interpretations of the decisions "reject Ho" and "fail to reject
Ho" is that the uncertainty behind the decision in favor of
Ha (reject Ho) is negligible, whereas the uncertainty behind
the decision in favor of Ho (fail to reject Ho) is substantial
enough to prevent a strong conclusion. Let's add some rigor
to this discussion. Denote the events B = [Ho true] and
A = [decide Ha]. A signi�cance test is developed so that
P (AjB) = � is small. Aside from the probability of a type
I error, no other probabilities are speci�ed in a signi�cance
test. The probability of a type II error, P (A0jB0), need not
be speci�ed. It is not required to state how the particular test
�ts into a broader array of similar test results. So, P (B) is
not speci�ed. The justi�cation behind "rejection of the null
hypothesis" as an interpretation of a decision in favor of Ha
rests entirely from the idea that P (AjB) is small.

Ziliak and McCloskey (2008) coined the phrase "fallacy of
the transposed conditional" to describe the mistake of stating
that P (BjA) is equal to P (AjB). It is a form of this fallacy
which leads one to argue that deciding Ha on the basis of a
signi�cance test leads to the strong conclusion of "rejecting" a
null hypothesis. But a small conditional probability P (AjB)
is not enough to conclude that the transposed conditional
probability P (BjA) is small. In signi�cance testing, contrary
to what is often taught to introductory students, a decision
in favor of Ha is not necessarily enough to provide strong
evidence that Ha is true and Ho is false. Bayes rule leads to an
expression for the probability that a "rejected" null hypothesis
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is actually true. We have

P (BjA) = � �

� �+ (1� �) �
where � = P (AjB) is the signi�cance level of the test,
� = P (AjB0) is the power of the test, and � = P (B)
represents to probability of a true null hypothesis before data
is observed. Note how the uncertainty involved in "rejecting"
the null hypothesis involves not just the signi�cance level �,
but the power � and the prior probability � as well.
Consider an example to illustrate this point. A drug in the

early stage of development is not believed to have a strong
chance of actually being effective. If the drug if effective,
however, it would represent a major breakthrough. So it is
worthwhile to conduct a clinical trial investigating the effects
of the drug. Suppose that upon completion of the clinical trial,
a hypothesis test at signi�cance level � = :05 results in the
decision to accept the althernative hypothesis that the drug is
effective. Introductory statistics students are taught at this point
to "reject" the null hypothesis in favor of the conclusion that
the drug is effective. For argument's sake, let's set the prior
probability of drug effectiveness at .01, so that P (B) = :99.
Clinical trials are typically designed to achieve power of .8.
Let's set P (AjB0) = :8. A simple calculation using Bayes rule
now reveals the posterior probability on the null hypothesis
that the drug is not effective as P (BjA) = :86. Upon further
consideration, the correct interpretation is quite different from
a "rejection" of the null hypothesis.
The misunderstanding in the interpretation of signi�cance

testing may be explained by the reasons that make the
Bayesian approach to inference so compelling. After data
is collected, it is natural to want an assessment of what is
known about the quantity of interest. In a hypothesis testing
problem, it is natural to want an assessment of the belief in the
competing hypotheses. However, controlling the type I error
rate alone, or controlling the type I error rate and the power,
is not enough to allow for such an assessment. Instead of
fooling ourselves and our students with interpretations about
strong conclusions of "rejecting" a hypothesis on the basis of
a signi�cance test, we need to recognize the limitations of
frequentist based hypothesis testing.
The intention of this essay is not to promote Bayesian

approaches to statistical inference at the expense of frequentist
approaches. We only wish to point out the limitations of fre-
quentist approaches which are quite often misunderstood when
presented to statistics students. It is important to compare the
frequentist and Bayesian approaches to gain an understanding
of the bene�ts and limitations of each. The advantage of
frequentist based hypothesis testing is the ability to control
the probability of error at important values of the parameter.
In signi�cance testing, it is deemed particularly important not
to make the error of deciding the alternative when in fact the
null is true. Thus, signi�cance testing is an approach with
desirable properties when the true parameter is at the null
value. Bayesian tests do not necessarily have this property. In
a case where the null hypothesis is given small probability

a priori, a Bayesian test is more apt to favor the alternative
at the expense of controlling the type I error rate. This is
not a problem in the mind of the Bayesian, as only small
weight is given to the chance that the null hypothesis is true. It
does concern the frequentist who considers protection against
a type I error to be important regardless of how likely the null
hypothesis is to be true. This protection comes at a price. That
price is an inability to necessarily achieve a desired posterior
level of belief in the resulting decision. To provide a decision
with stong belief from a signi�cance test alone would be
committing the fallacy of the transposed conditional.

III. ISSUES IN CONFIDENCE INTERVAL ESTIMATION

We say the random set C (Y ) is a (1� �) 100% con�dence
set for the unknown parameter � if

P� (� 2 C (Y )) = 1� �

for all � in the parameter space �, where P� represents
probability computed under parameter �. If C (Y ) is a random
interval [L (Y ) ; U (Y )], we refer to the con�dence set as a
con�dence interval. We return to the simple case of random
variables Y1; Y2; : : : ; Yn distributed independent N

�
�; �2

�
,

with known variance �2. The mean � is unknown and is to be
estimated by a con�dence interval. It is easy to see that the
random interval Y �z (�=2)�=

p
n satis�es the conditions of a

(1� �) 100% con�dence interval for �. The probability 1��
holds prior to data collection. It also should be emphasized
that the probability holds under all possible �. This is a nice
property that often goes unnoticed. Since the true mean is
unknown, one wants the probability of a correct interval to
hold across the entire parameter space.
The con�dence set de�nition above meets a frequentist

criterion. As in our discussion of frequentist inference from the
last section, the frequentist approach to con�dence estimation
has the advantage of controlling the probability of error at
important parameter values. A con�dence set, in fact, protects
the error probability across the entire parameter space. But
a mistake in interpretation, similar to what we saw in the
section on signi�cance testing, also occurs in the presentation
of con�dence intervals to statistics students. After the data
is observed and the interval is computed, it is natural to
want a degree of certainty placed on the computed interval.
It is explained to students that one can place the same
con�dence on a computed interval as on the process itself. The
implication behind this interpretation is that the uncertainty in
the correctness of the interval prior to data collection is passed
to the computed interval after data collection.
Consider an example to illustrate the �aw in this line of

reasoning. The level of a marker in a patient's body depends
on the stage of the disease. Let's denote the three stages of
the disease as parameter space � = fI; II; IIIg. Consider
the sample space for the observed marker to be the discrete
set f0; 1; 2; 3; 4; 5; 6g. Suppose the sampling distribution of Y
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for each stage can be displayed as

�
I II III

0 .04 .025 .01
1 .2 .025 .02
2 .5 .2 .02

Y 3 .2 .5 .2
4 .02 .2 .5
5 .02 .025 .2
6 .01 .025 .04

Table 1 : Probability distribution for marker level

A 90% con�dence set can be formed by inverting a set of
.90 probability for Y on each stage in the parameter space.
The result of this inversion can be described as a set function
of the random variable Y , as displayed in Table 2.

con�dence set
0 ;
1 fIg
2 fI; IIg

Y 3 fI; II; IIIg
4 fII; IIIg
5 fIIIg
6 ;

Table 2 : Con�dence set function for disease stage

It is easy to verify that the above function satis�es the
requirement for a 90% con�dence set. Prior to data collection,
the probability of a correct set is equal to .90 under each of
the possible disease stages. It is also clear that the de�nition of
a (1� �) 100% con�dence set does not negate the possibility
of an empty interval, or an interval consisting of the entire
parameter space. Suppose one observes y = 0 from one of
the distributions in Table 1. The interpretation put forth by
the approach taught to statistics students would be "We are
90% con�dent that the true mean lies in the empty set." Such
a quanti�cation of con�dence on an estimate that is certain
to be incorrect is not justi�able. If one observes y = 3, the
con�dence set consisting of the parameter space is certain to
be correct. Unfortunately, the interpretation we are passing on
to students is that we can only be 90% con�dent in this certain
event.
A variation of the "fallacy of the transposed conditional"

is being committed when we teach students that a probability
of a correct interval conditional on the parameter becomes a
quanti�cation of con�dence on an interval estimate conditional
on the observed data. As in the interpretation put forth in
signi�cance testing, it is natural here to want to think like a
Bayesian. A measure of the certainty in a computed interval
estimate is desired. Such a measure, however, requires a
Bayesian approach to the estimation problem. Frequentist
con�dence intervals do have desirable properties that Bayesian
intervals lack. As mentioned earlier, frequentist intervals have
the advantage of controlling the probability of error at all

possible values of the parameter. Bayesian intervals do not
necessarily have this property. Bayesians will not protect the
a priori error rates at parameter values considered unlikely.

IV. CONCLUDING REMARKS
The interpretations of signi�cance testing and con�dence in-

terval estimation often presented to statistics students are based
on the "fallacy of the transposed conditional". This essay is
not the �rst attempt to bring attention to the problem. Previous
attempts, most notably those of Ziliak and McCloskey (2008),
have focused on the usage and applications of statistics. The
focus here is on the education of statistics students. I am
not proposing a drastic overhaul of statistics education. The
view presented in this essay is that signi�cance testing and
con�dence interval estimation under frequentist viewpoints
are statistical methods with solid justi�cation. Frequentist
methods can be designed to control, before data collection, the
probability of error at those values of a parameter where such
control is deemed to be important. We can think of frequentists
as prudent for their willingness to protect the error rate under
these scenarios. We are wrong as statistics educators, however,
in giving the impression that frequentist methods allow for a
posterior measure of belief. There is no question that the use
of terms such as "rejection" and "con�dence", purposefully
or not, are misleading. This sort of posterior assessment
is desirable, but requires a Bayesian approach to statistical
inference. A major advantage to a Bayesian approach is the
ability to assess the certainty in an outcome. A disadvantage is
that a Bayesian will not necessarily control the probability of
error conditional on important possible parameter values. If we
think of frequentists as being prudent, perhaps we can think of
Bayesians as being impetuous for not protecting against these
scenarios.
The proposal here is quite modest. Both frequentist and

Bayesian methods should be presented to students in an
introductory course on statistical inference. An understanding
of both approaches is necessary to understand the pros and
cons of each. Furthermore, students will not leave with a
statistics education predicated on a logical fallacy.
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