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Statistical Literacy

Statistical literacy 1s the ability to read and
Interpret summary statistics in everyday life.

Statistical Literacy studies

(1) the relation between statistical associations
and causation, and

(2) the full-range of influences on a statistic
or on a statistical association. [ Take CARE]



Take CARE: Context

The influence of factors taken into account by

data broken out by subgroups in tables and graphs
averages, ratios and comparisons of averages and ratios
epidemiological models (cf., deaths attributed to obesity)
regression models and

the study design (cf., longitudinal vs. cross-sectional,
experiment vs. observational study).

The Influence of related factors (confounders)

not taken into account in the study and
not blocked by the study design.
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Controlling for a confounder
can DECREASE an association

MN has 3.8 times as much prison expense as ME

State | Total | # Inmates | Per Inmate
MN | $184M 4 865 $37.,825
ME $48M 1,424 $33.711

MN has 3.4 times as many inmates as ME

MN has 25% more prison expense per inmate than ME
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Controlling for a confounder
can NULLIFY an association

MD has 3 times as much prison expense as KS

State Total # Inmates | Per Inmate
MD $481M 21,623 $22.250
KS $159M 7,148 $22.250

MD has three times as many inmates as KS

MD has the same prison expense per inmate as KS
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Controlling for a confounder
can REVERSE an association

CA has 50% more prison expense than NY

State Total # Inmates | Per Inmate
CA $2.9B 136K $21,385
NY $1.9B 69K $28.426

CA has almost twice as many inmates as NY

CA has 25% less prison expense per inmate than NY
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Controlling for a confounder
can INCREASE an association

MN has 27% more prison expense than |A

State Total # Inmates | Per Inmate
MN $184M 4 865 $37.825
IA $144M 5,929 $24.286

MN has 18% fewer inmates than IA

MN has 56% more prison expense per inmate than |A
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Adjusting for Land Size:
Standardize on Average Lot

House Prices (Average Acres =1.6)
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SAT VERBAL SCORES: FLAT

GROUP

1981

2002

CHANGE

White

Black

Aslan

Mexican

Puerto Rican

American Indian

ALL Test takers

504 (100%)

504 (100%)

ZERO
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Multivariate Analysis
can be Complex

To simplify, consider cases with
e a binary outcome,

 a binary predictor and

pinary confounder.

d
d

What are the necessary conditions for
nullification or a reversal?

See Schield (1999) and Schield and Burnham (2003)

11
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City Hospital:

Hospital of Death??
Hospital Total Died Death Rate
City 1,000 55 5.50%
Rural 1,000 35 3.50%
Both 2,000 90 4.50%
Condition| Total Died Death Rate
Good 800 15 1.90%

Poor 1,200 75 6.30%
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Can this confounder nullify or
reverse this association?

Death Rates
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Confounder Reverses;
City Hospital is Better

Death
Condition | Hospital | Total Died Rate

Good City 100 1 1.00%
Rural 700 14 2.00%

Total 800 15 1.90%

Poor City 900 54 6.00%
Rural 300 21 7.00%

Total 1,200 75 6.30%
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Two=-Group Rates
with a Binary Confounder
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Compare Hospital Death Rates
Confounder: Patient Condition

Death Rate

A Confounder can Influence a Difference
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Standardize on combined
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confounder percentage

17

Death Rate

Standardizing Can Reverse A Difference
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Death Rate per 10,00

Accidents ..

Auto Deaths and Airbag Presence
Confounded by Seatbelt Use
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Renewal Rate
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NAEP Scores
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Mean Income

Income: US Families by Race & Structure
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Percentage of Babies who have low Birth-Weight
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Controlling Can Change
Statistical Significance

Percentage of Babies who have low Birth-Weight

Standardize

=
=

4

Mom smoked.

- -

@0
=

2

L

o

QL

; w
§ 1% 4
m

3

7%

.—l‘
2%

?I;nom idn't smoke

0%

1 fe. *% 30% 40% 50% 60% 70% 80% 90%
Percentage of Moms who are Under 19




Dec 2010 2 4

Conclusion

Statistical educators must show students how
confounders can Influence associations and
change statistical significance.
Their failure to do this may be seen as
“statistical negligence.”

Schield (1999). Simpson's Paradox and Cornfield's Conditions,
See www.StatL it.org/pdf/1999SchieldASA.pdf.

Schield and Burnham (2003): Confounder-Induced Spuriosity and
Reversal: Algebraic Conditions for Binary Data. Copy at:
www.StatLit.org/pdf/2003SchieldBurnhamASA.pdf

Schield, Milo (2006). Presenting Confounding and Standardization
Graphically. STATS Magazine, ASA. Fall 2006. pp. 14-18.
Draft at www.StatLit.org/pdf/2006SchieldSTATS.pdf.




