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Abstract

Background: The Gaussian or normal distribution is the most established model to characterize quantitative variation of
original data. Accordingly, data are summarized using the arithmetic mean and the standard deviation, by �xx 6 SD, or with
the standard error of the mean, �xx 6 SEM. This, together with corresponding bars in graphical displays has become the
standard to characterize variation.

Methodology/Principal Findings: Here we question the adequacy of this characterization, and of the model. The published
literature provides numerous examples for which such descriptions appear inappropriate because, based on the ‘‘95% range
check’’, their distributions are obviously skewed. In these cases, the symmetric characterization is a poor description and
may trigger wrong conclusions. To solve the problem, it is enlightening to regard causes of variation. Multiplicative causes
are by far more important than additive ones, in general, and benefit from a multiplicative (or log-) normal approach.
Fortunately, quite similar to the normal, the log-normal distribution can now be handled easily and characterized at the
level of the original data with the help of both, a new sign, x/, times-divide, and notation. Analogous to �xx 6 SD, it connects
the multiplicative (or geometric) mean �xx * and the multiplicative standard deviation s* in the form �xx * x/s*, that is
advantageous and recommended.

Conclusions/Significance: The corresponding shift from the symmetric to the asymmetric view will substantially increase
both, recognition of data distributions, and interpretation quality. It will allow for savings in sample size that can be
considerable. Moreover, this is in line with ethical responsibility. Adequate models will improve concepts and theories, and
provide deeper insight into science and life.
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Introduction

Quantitative variation in scientific data is usually described by the

arithmetic mean and the standard deviation in the form �xx 6 SD. In

graphical displays, error bars around mean values display the degree

of precision of the means – which is usually essential for an adequate

interpretation. This characterization is adequate for and evokes the

image of a symmetric distribution or, more specifically, the normal

or Gaussian distribution [1–3]. As is well known, the latter model

implies that the range from �xx - SD to �xx + SD contains roughly the

middle two thirds (68%) of the variation, and the interval �xx 6 2 SD

covers 95%. So widely is this description used that it is almost

mandatory in most scientific journals to present data with their

means and either standard deviations or standard errors of the mean

(SEM), in the form �xx 6 SD or �xx 6 SEM.

Results and Discussion

The Problem
However, there are numerous examples for which the description

by a mean and a symmetric range of variation around it is clearly

misleading. This becomes obvious whenever the standard deviation

is of the same order as the mean so that the lower end of the 95%

data interval extends below zero for data that cannot be negative, as

is the case for most original data in science. In such cases, we say

that the data fail the ‘‘95% range check.’’ Table 1a presents some

recent examples. For instance, in investigations of health risk, a

sample of insulin concentrations in rat blood is described by �xx 6 SD

= 2966172 (4]. If a normal distribution were appropriate, the 95%

range would extend from -48 to 640, and 4% of the animals would

have negative insulin values which is, of course, impossible.

Moreover and worse, in this and many further examples, there is

even a positive threshold below which values cannot occur. Clearly,

data of this kind will be skewed.

The problem is less apparent, but often even more severe if, instead

of standard deviations, standard errors of the mean (SEM) are given

(Table 1b). In such cases the intervals obtained, compared to the

mean value, are shorter, thus hiding the skewed nature of the data.

One example is on data evaluation and error bars and gives

helpful explanations of several points of confusion on this topic [5].

It is highly estimated and one of the top ten of all-time most viewed

papers in biology according to the Faculty of 1000 [6], In this paper,

symmetric error bars showing SEM of n = 3 observations are

displayed for data sets concerning the evolution of clonal cell
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counts, but for 3 out of 8 samples (E2-E4), the estimated

distribution, if assumed normal, would suggest between 12%

and 19% of the data being negative.

A peculiar type of plot is found in [10] (Fig. 4, p. 471). Based on

the established symmetric view at the level of the original data as

described above, the means and standard errors (of n = 3) are

presented in this case on a logarithmically scaled vertical axis. This

results in asymmetric intervals with upward bars that are shorter

than downward ones. Again, as a �xx 6 2 SD interval would enclose

negative numbers in at least one case, the corresponding lower bar

would extend to minus infinity on that plot.

Initially, we noticed such examples from the fields of our own

research [9,14,15]. Extending the scope, we recognized them to

exist across the sciences, with the notable exception of some fields

of research such as atmospheric, hydrological, soil, or financial

sciences. As a general rule, we found one or more papers with

such examples per issue of a journal, including the most

prestigious ones with their spectrum of contributions from across

the sciences and their qualified refereeing systems. A conservative

estimate based on the Journal Citation Report [16] thus leads to

more than one thousand such papers published per week in the

Science Edition only.

The description of data by �xx 6 SD or �xx 6 SEM does, of course,

not formally imply the assumption of a symmetrical distribution,

and many authors will be aware of the asymmetric nature of their

data. Then, for any formal analyses of the data, appropriate

methods, notably nonparametric tests, are used. In the same

paper, however, graphical displays usually still use the symmetric

description, thus pointing to a dilemma. In any case, our emphasis

here is not to criticize inadequate analyses of data, but to highlight

the potential for improved quality and new insights to be obtained

by using an alternative description.

Towards Solving the Problem
In all cases cited in Table 1, the distributions of the datasets will

be skewed, with the longer tail to the right. The simplest model

that describes such variability is the log-normal distribution

[12,17–19]. Fig. 1a shows a typical case of data (last line in

Table 1) with fitted normal and log-normal distributions. The

normal distribution is clearly inappropriate as it suggests a

probability of 20% for negative values. The log-normal model

corresponds to a normal distribution for logarithmically trans-

formed data, which yields a nice fit (Fig. 1b).

Log-normal variation is most adequately characterized by the

geometric - or multiplicative - mean �xx * and the multiplicative

standard deviation s* [18]. These parameters determine an

interval containing 2/3 of the data as does the description �xx 6

SD for (additive) normal data: The interval ranges from �xx * divided

by s* to �xx * times s* and may be denoted by �xx * x/s* (read ‘‘�xx *

times – divide s* ’’). The two types of intervals are indicated in

Fig. 1a. They are compared for all datasets of Table 1 in Fig. 1c.

(Since we do not have access to the original data, �xx * and s* were

calculated from �xx and SD using the formulas for the expectation

and standard deviation of a log-normal distribution, as described

in the footnote of Table 2.) The 95% variation interval for insulin

in rats [4] now covers the range �xx * x/(s*)2 = 256 x/(1.71)2 = 87

to 753 pM, that appears physiologically plausible. For the

respective values and intervals for the other cases, see Table 2,

which contains examples from a variety of fields of science.

[Table 2 about here.]

Table 1. Misleading characterization of data.

Discipline

Character Case �xx ± SEM (n) �xx ± SD 95% (�xx ±2 SD) Reference

a) Cases based on SD

Medicine

Risk factors A- Insulin, pM 2966172 -48 to 640 [4] Table 1

B- Running capacity, m 7006400u -100 to 19500 [4] Fig. 1, HCR, Gen.8

Biology

Genetics C- KAP1, Mest, % tot. input 2.061.9u -1.75 to 5.85 [7] Fig 3b

Cytology D- Exon expres., leukocytes 15.2612.7u -10.2 to 40.5 [8] Fig 4 A

Phytopathology E- Fungic. sensitivity, mg l21 25.0626.4 -27.8 to 77.8 [9], Tab. 2

b) Cases based on SEM

F- Cells/ml, x 106 0.2560.16 u (3) 0.2560.28 -0.30 to 0.80 [5] Fig. 7, E2

Tumorigenesis G- Microadenomas 2.0661.63 (4) 2.0663.26 -4.46 to 8.58 [10] p125, line –18

Marine ecology

H- Cell density 600064400u (3) 600067621 -9242 to 21242 [11] Fig 4 (6 days)

Soil Science

Deforestation I- Calc. P, (kg/ha) 62648u (3) 62683 -104 to 228 [12] Fig 1B, 0 cycles

Food Science

Honey J- HMF-content, mg/kg 10.160.3 (1573) 10.1611.8 -13.5 to 23.7 after [13]

a, Frequently, variation in data from across the sciences is characterized with the arithmetic mean �xx and the standard deviation SD. Often, it is evident from the
numbers that the data have to be skewed. This becomes clear if the lower end of the 95% interval of normal variation, �xx - 2 SD, extends below zero, thus failing the
‘‘95% range check’’, as is the case for all cited examples. Values in bold contradict the positive nature of the data. b, More often, variation is described with the standard
error of the mean, SEM (SD = SEM ? !n, with n = sample size). Such distributions are often even more skewed, and their original characterization as being symmetric is
even more misleading. Original values are given in italics (uestimated from graphs). Most often, each reference cited contains several examples, in addition to the case(s)
considered here. Table 2 collects further examples.
doi:10.1371/journal.pone.0021403.t001
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Table 2. Summarizing data – Problems and solutions.

Discipline Description, original 95% range
Description,
recommended1 95% range

Subject Case, reference �xx 6 SEM (n) �xx 6 SD �xx 6 2 SD �xx * x/SEM* �xx * x/s* �xx * x/(s*)2

Medicine Concentration of insulin, pM, Table 1 in [4] - 2966172 -48 to 640 - 256 x/1.71 87 to 753

Health risk Running capacity, m, Fig. 1, HCR, gen. 8 in [4] - 7006400u -100 to 19500 - 608 x/1.7 210 to 1760

Insulin, 30 min, SD, Fig. 2C in [23] 1.560.6u (5) 1.561.34 -1.18 to 4.18 1.12 x/1.41 1.12 x/2.15 0.242 to 5.18

nflammation, histological score, Fig 3F, GP6 in [42] 1.6960.40u (25) 1.6962.00 -2.31 to 5.7 1.091 x/1.21 1.091 x/2.55 0.17 to 7.1

Inflammation in mice, mRNA expr., Fig 7b in [43] 6.363.85u (3) 6.366.7 -7.0 to 19.6 4.33 x/1.65 4.33 x/2.4 0.76 to 24.5

Tryptophan-
catabolism

Kynurenine mM, Fig 2d, [44] - 0.460.3u -0.2 to 1.0 - 0.32 x/1.95 0.0841 to 1.22

Immune response TNFa mRNA production, Fig. 4F, 0h, [45] - 0.4560.45u -0.45 to 1.35 - 0.318 x/2.3 0.0602 to 1.68

Tumorigenesis Microadenomas, frequency, p 125,
line –18, [10]

2.0661.63u (4) 2.0663.266 -4.46 to 8.58 1.1 x/1.75 1.1 x/3.06 0.117 to 10.3

PCNA-positive cells, %, WT, 4 weeks,
Fig 2A, [46]

4.261.7 (5) 4.263.8 -3.4 to 11.8 3.11 x/1.41 3.11 x/2.17 0.66 to 14.6

Biology KAP1, Mest, % total input, Fig 3b, [7] - 2.061.9u -1.8 to 5.8 - 1.45 x/2.23 0.29 to 7.2

Genetics D- Exon expres., leukocytes, Fig 4A, above, [8] - 15.2612.7u -10.2 to 40.5 - 11.64 x/2.07 2.72 to 49.8

Cytology Fus3ch concentration, nM, Fig. 2, [47] - 1976190u -183 to 577 142 x/2.25 28 to 718

Number of cells/ml x 106, Fig. 7, E2, [5] 0.2560.16u (3) 0.2560.28 -0.30 to 0.80 0.167 x/1.68 0.167 x/2.45 0.028 to 1.0

Evolution Living rotifers, no., after 3d,
Fig. 2A, wind disp., [48]

30619u (17) 30678.3 -127 to 187 10.7 x/1.42 10.7 x/4.2 0.6 to 189

Virology Virus release, x103, Fig. 2C, Cep55, [49] - 40625u -10 to 90 - 33.9 x/1.78 10.8 to 107

Neurology Labled gran. Cells, %, Fig 2G, iiC, [50] - 462.5u -1 to 9 - 3.39 x/1.78 1.1 to 10.7

Freezing kinet., %, Fig 4B, 30s, fNR1, [51] 1565u (12) 15617 -19 to 49 9.92 x/1.3 9.92 x/2.48 1.61 to 61.1

Drosophila, Lunge numbers,
Fig. 2d, 2nd col., [52]

38617u (19) 38674 -110 to 186 17 x/1.33 17 x/3.5 1.4 to 212

Parasitology Luciferase +activity, x 106, Fig 4e, [53] - 2106190u -170 to 590 - 156 x/2.17 33.2 to 731

Ontogeny Cell surv. with gremlin, Fig 3C, CFU-M, [54] - 22612u -2 to 46 - 19.3 x/1.67 6.96 to 53.6

Photosynthesis Nitrite cons., mM, Fig 1, after 8d, [55] - 0.260.36 -0.4 to 0.8 - 0.111 x/2.96 0.013 to 0.973

Signal transduction Fluorescence, Fig 1C, untreated, 4h, [56] 366u (10-20: 14) 3622 -41 to 47 0.405 x/1.71 0.405 x/7.4 0.0074 to 22.2

Fertility, in mice Ovulated oocytes/CD9+/+mice, Tab.1, [57]) 29.6615.3 (42) 29.6699.2 -169 to 228 8.46 x/1.28 8.46 x/4.87 0.357 to 200

in plants Transcript quantity, Fig 2C, [58] 2.561.5u (3) 2.562.6 -2.7 to 7.7 1.73 x/1.64 1.73 x/2.35 0.313 to 9.6

Quiescense Latency, s, p 571-left, line 23, [20] 762 (15) 768 -9 to 23 4.61 x/1.27 4.61 x/2.49 0.741 to 28.7

Phytopathology Bacteria in rhizosphere, 15d x 103, [59] 55613 (10) 55641.1 -27.2 to 137.2 44.1 x/1.23 44.1 x/1.95 11.6 to 167

Cell counts Ps. savastanoi, CFU x 106, Tab. 2, Bagno, [60] 61659 (8) 616170 -279 to 401 20.6 x/1.68 20.6 x/4.36 1.08 to 392

Fungicide
sensitivity

Botrytis cinerea – triadimenol,

mg ml-1, p 173, [61]

- 4.163.7 -3.3 to 11.5 - 3.04 x/2.16 0.65 to 14.3

Wheat p. mildew – fenpropimorph,
mg l-1, [9]

25626.4 -27.8 to 77.8 17.2 x/1.09 17.2 x/2.38 3.04 to 97.1

Aerobiology Colony forming units per m3 air x 106, [62] - 5826510 -582 to 1602 - 438 x/2.13 96.7 to 1981

H. annosum-caused gaps in forests, m2, [63] - 289861898 -898 to 6794 - 2424 x/1.82 734 to 8008

Marine ecology Data indicated at log-scale, Fig. 4, 2. col., [11] 600064400u (3) 600067621 -9242 to 21242 3712 x/1.76 3712 x/2.66 523 to 26355

Nitrate in
foraminifers

Boliv. subaen., Bay of B.,
pmol per cell, Tab. 1, [64]

285646 (47) 2856315 -346 to 916 191 x/1.14 191 x/2.45 32 to 1143

Soil Science Deforestat. Calc. Pi, kg/ha, Fig. 1B, 0 cycles, [12] 62648u (3) 62683 -104 to 228 37.1 x/1.80 37.1 x/2.75 4.89 to 282

Physics Reynolds stress, b, x 10-6,
Fig.4, bottom right, [65]

- 0.563.56 -6.5 to 7.5 - 0.0707 x/7.23 0.0014 to 3.69

Food Sciences HMF-content in honey, mg/kg, after [13] 10.160.3 (1573) 10.1611.8 -13.5 to 23.7 6.57 x/1.02 6.57 x/2.53 1.03 to 42

1 These results were calculated, starting from �xx 6 SD, by �xx /!v and exp(!log(v)), respectively, where v= 1+(SD/�xx )2 (5). The multiplicative standard error is SEM* = (s*)1/!

The collection of datasets in Table 1 is extended, and their more meaningful and, thus, recommended, descriptions based on multiplicative means and multiplicative
standard errors or standard deviations are given. Some comparisons appear to be of interest. Necessarily, arithmetic means exceed multiplicative ones, starting from
some 15% for small s*s around 1.7 up to more than the sevenfold for s* .7. The lower limits of the 95% ranges, relative to the means, turn increasingly negative with s*
growing for the classical version, but remain positive and get smaller for the multiplicative description. Turning to upper limits, the multiplicative limit exceeds the
additive one by some 17% for s* = 1.7. With s* = 2.5, the difference is about 25%. For s* = 4.2, there is no difference, and for s* = 7, the additive mean is only half the
multiplicative one.
doi:10.1371/journal.pone.0021403.t002
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In order to show the advantages of an appropriate description, we

discuss a graph of Raizen et al. [20] reproduced in Fig. 1d. The

symmetrical error bars follow the typical pattern of skewed

distributions discussed above. Using a log scaled vertical axis

(Fig. 1e), the variation in the lower curves appears similar to the

scatter in the upper part, thus reflecting a common relative variation

for all the conditions and groups. This insight leads to more efficient

statistical testing. The three two group t-tests indicated by the authors

(Fig. 1d) become more significant as the p values decrease from 1.8%

to 1.5%, from 4.2% to 0.5%, and from 5.3% to 2.0%, if the t-test on

the original data is replaced by the same test on log transformed data

(Fig. 1e). Thus, in this example, which stands for many analyses

found in science, recognition of the log-normal nature of the data

leads to more informative graphs and more precise statistics.

The Fundamental Role of Multiplication - and of the
Log-Normal Distribution

Heath [21] pointed out that for ‘‘certain types of data the

assumption that the data are drawn from a normal population is

Figure 1. Adequate characterization of data improves the results. - a,b, The frequency distribution of a chemical (hydroxymethylfurfurol,
HMF) in honey is used to illustrate the problem and its solution. a. Obviously, the normal density curve does not fit this skewed dataset, but the log-
normal does. b. the distribution is normal after logarithmic transformation and, thus, log-normal. Back-transforming �xx and SD from the level of the
logarithms gives the multiplicative (or geometric) mean �xx * and the multiplicative standard deviation s* that allow to characterize variation at the
original scale of the data (a), c, Comparing the two types of (1 standard deviation) intervals for the datasets A-J shown in Table 1. Clearly, the
multiplicative intervals are shorter, increasing, thus, the potential for differentiation. Moreover, they never lead to negative values, and usually
describe the variation encountered well. d,e, Multiplicative intervals improve differentiation in an example from [20]. d, Original, additive description
of variation, with two significant differences, *, and a third one, close to significance. Error bars indicate SEM. e, The multiplicative type of intervals
(based on the original, unpublished data received from the authors) shown here with a log-scale on the vertical axis leads to a more plausible picture,
makes all three differences more significant, and one highly significant now. Error bars indicate SEM*.
doi:10.1371/journal.pone.0021403.g001
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usually wrong, and that the alternative assumption of a log-normal

distribution is better’’. As further explained below, this statement

appears to be of a much broader importance: it is in line with the

fact that, in general, laws and processes in science and life are

rather of multiplicative than additive nature. From the ample

evidence (e.g. 22], let us mention some basic features:

Chemistry is fundamental for life. The velocity of the reaction of

A with B is proportional to the product of the individual

concentrations, like v , [A] N [B]. With the complex networks of

biochemical reactions and pathways for, e.g., anabolism, catabolism,

and signalling within the many kinds of biological tissues, this type of

law thus affects innumerable aspects of life such as, e.g.,

concentrations of insulin [4,23]. Secondly, life depends on processes

and laws of mobility and permeability. Baur [24] demonstrated with

thorough documentation these processes not to fit the normal, but

the log-normal distribution. – Similarly, the Hagen-Poiseuille law Vt

= (DP T
4 p)/(8 g L) is important for mobility and, without going into

detail here, consists of several multiplicative (and divisive) steps.

Thirdly, considering growth, it appears that rates are often

constant in first approximation, meaning that the current size is

multiplied by the rate to obtain the new size. Finally, cell numbers

after division follow the exponential row 1-2-4-8-16. With a

median concentration of, e.g., 106 bacteria, one cell division more

or less yields 26106 or 0.56106 bacteria. The variation is

asymmetric and could be described by 106 x/2. This appears to

be the reason why for blood cell counts Sorrentino arrived at a log-

normal fit [25–27] which is supposed to hold for other cell counts,

too [e.g. 5,11,52,54,57,59,60]. In the present context, the name of

one outcome of cell division is interesting to consider, as that

process is simply called multiplication. – Summarizing, more than

50% of the examples from Table 2 can be based on one or the

other of these effects, and for other examples, further multiplica-

tive effects are quite plausible.

The link between multiplicative processes and the log-normal

distribution is straightforward: Whereas additive effects lead to the

normal distribution according to the Central Limit Theorem (CLT)

in its additive form, that is well known and almost exclusively

considered so far, the superposition of many small random

multiplicative effects results in a log-normally distributed random

variable according to the multiplicative CLT [17] that needs to

become better known, and understood. To this aim, statistical

models resembling gambling machines can help. Whereas the

mechanical equivalent of the additive CLT is the established Galton

board [28], the multiplicative CLT can be visualized by an

analogous novel board [18,29,30].To conclude, there is a sound

theoretical justification for thinking in multiplicative terms and

using the log-normal distribution as first choice, at least as an

approximation.

In addition to Heath, Baur and Sorrentino [21,24–27] several

authors have stressed the need for the log-normal view in their fields

of research. Kelly [31], described them for food webs, and Hattis

et al. [32] related health risks caused by toxicants to a chain of

multiplicative steps including contact rate, uptake as a fraction of

contacts, general systemic availability etc. Morrison [33], re-

analysing published data based on using the normal view, even

came, with the log-normal view, to conclusions contradicting the

original ones.

There is also a more general area of concern. It relates to

technical norms and limits of intervention. One example comes

from testing construction material, where procedures to date are

based on a normal approach, but Schäper shows the log-normal to

fit better [34]. Similar considerations relate to limits of medical

and chemical intervention [32], areas that appears to be of

considerable concern.

In some sense, the skewed distributions failing the ‘‘95% range

check’’ form the visible tip of the iceberg, which itself consists of

the predominant multiplicative effects. A question even arises

about the relevance of additive effects – and therefore of the

normal distribution – in nature and science at large.

Normally Distributed Data
Of course, there are sets of original data that can be adequately

described by a normal distribution. Such samples generally have a

low coefficient of variation, and the fitted log-normal and normal

distributions are similar. However, since the log-normal fits many

skewed samples in addition, it is to be preferred because it

describes more often data adequately than the common normal

distribution. Re-examining published original data, we did not

find any samples fitting the (additive) normal distribution that did

not fit the log- or multiplicative normal distribution equally well, or

better. This even applies to examples such as body heights used in

textbooks to illustrate the normal distribution. RA Fisher’s data of

1164 men [1] yield a p value of a Chisquare goodness of fit of 0.13

for the normal, and of 0.48 for the log-normal distribution.

Exceptions to these findings are measurements that can adopt

negative values, like angles and geographical coordinates. In

addition, of course, transformed data and other quantities derived

from original data often show a normal distribution.

It is common practice to first perform a goodness of fit test for

normality of the data and to transform the data or use an

alternative to the t test if the normal distribution is rejected. Note

that this recipe is not supported by statistical theory, one reason

being that for small samples, the goodness of fit tests have low

power to detect any deviations and will therefore rarely lead to the

appropriate test. Nevertheless, we have shown above that the

‘‘95% range check’’ can reject normality even for very few

observations.

Increased Efficiency
Empirical studies are not only conducted to describe the data,

but also to draw formal inference. The simplest and most common

statistical problem is the comparison of two groups of data. To this

aim, graphical descriptions are often augmented by asterisks

indicating statistically significant differences. The description by �xx
6 SD or �xx 6 SEM suggests the application of the t-test as the

natural choice. More careful authors apply the nonparametric

Wilcoxon rank sum test instead if there are enough observations

(.4) in each group. The appropriate alternative for small samples

consists of applying the t-test to logarithmically transformed data.

The widespread multiple comparisons procedures should also be

used on transformed data.

Fortunately, the use of the t-test for skew data usually keeps the

level of the test at or below the assumed level (of usually 5%). Its

use entails, however, the need for more experimental data to

achieve the same precision in conclusions, i.e., the power of the

test is unnecessarily low. Figure 2 makes this point clear. Assuming

two samples of, e.g., n0 = 10 log-normal observations with a given

s*, the difference of parameters �xx * between the two populations

was chosen such that the statistical power of the adequate t-test for

logarithmically transformed data is 90%. When the t-test is applied

to the untransformed data, significance is obtained less often, i.e.,

the power is less than 90%. We therefore increased the sample size

and simulated again, until the (inappropriate) test achieved the

power of 90%. This increased sample size depends on the

multiplicative standard deviation s*, which characterizes the

skewness of the data and on the original sample size n0 as shown

in Fig. 2.

Problems with Using the Normal Distribution
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For our examples chosen arbitrarily (Table 2) n varied from 3 to

47 and was most often around 10. s* varied from 1.7 to 8.6, with

20% of the cases being above 3.1, and with a median s* of 2.4. For

the latter and n0 = 10, a sample size of 16 is needed with the

inappropriate way of testing to achieve the same power. This

means an increase of 60% in sample size. The range of this curve,

n0 = 10, starts from an increase of 20% at s* = 1.7, and as much

as 120% additional effort would be needed with s* = 3.1. For n0

= 50 the curve is little different at the beginning and rises to 80%

additional effort at s* = 3.1. The difference in effort is most

expressed with low sample size. Whereas for n0 = 5 and s* = 1.7

there is an increase of 35%, it rises up to 200% for s* = 3.1. Thus,

for clearly skewed data, adequate evaluation leads to large savings

in experimental effort, i.e., in cost, patients, or animals involved,

and therefore has ethical and political relevance.

More Precise Models
Of course, the log-normal distribution is not always the best model

for skewed data. It is clearly appropriate to select a model that describes

the variation of data as precisely as possible in any given application,

and to use the corresponding optimal inference procedures. For some

fields of science, there is solid theoretical and empirical justifica-

tion to use a particular type of distribution, e.g., the Weibull, Gamma,

Pareto, or Exponential distribution in insurance and reliability.

Note that large samples are needed to select between different

types of distributions empirically. If such data is not available,

nonparametric tests and respective confidence intervals should be

used. Nevertheless, in most cases the description by �xx * x/s* is still

more adequate than �xx 6 SD, and the log-normal model may serve

as an approximation in the sense that many scientists perceive the

normal as a valid approximation now.

Conclusions and Outlook
In the light of the examples considered, it is evident that data

often follow asymmetric variation, even though they are

characterized in symmetric terms, and the question arises: Has

the normal distribution become too normal?

We advocate the use of the log-normal distribution and the

description by �xx * x/s* as a simple standard way of treating data —

unless more adequate specific distributions are available – in the

same spirit as the normal distribution and the �xx 6 SD notation

have been and are used up to date. In the same way, �xx * x/SEM*

should replace �xx 6 SEM when calculating ‘‘inferential error bars’’

[5], and similarly for confidence intervals.

In fact, when assessing the variability of data from the �xx 6 SD

characterization, we usually compare the SD to the mean. The

multiplicative standard deviation does not need such a standard-

isation, and there is evidence that typical values occur within most

kinds of empirical data. Incubation times of human diseases, e.g.,

show a typical range of s* values around 1.4 [18 and Limpert &

Stahel, unpublished), and it would well be of interest to see how

this compares to diseases of animals and plants. Thus, the use of s*

has the potential of providing deeper insight into the variability of

data than the usual standard deviation.

The use of the log-normal model is equivalent to first subjecting

the data to the log transformation and then proceeding with

methods based on the normal distribution. In graphical displays,

the use of logarithmically scaled axes combines the advantages of

appropriate symmetrical error bars with the ease of interpretation

of the shown values (cf. Fig 1e).

When multiplicative effects are quantified by experiments, a

version of analysis of variance with multiplicative instead of

additive effects would be adequate as already recognized by Fisher

and Mackenzie in 1923 [35]. Such models are again akin to

treating log-transformed data by usual, additive analysis of

variance or regression methods. This is in agreement with the

established advice of John Tukey to use logarithms as the ‘‘first aid

transformation’’ in the evaluation of the usual type of quantitative

data–-a type of data that he calls ‘‘amounts’’ [36]. When fitting

such models, it is well known that assessing the distribution of

residuals is important, and we get the impression that this point is

often neglected by those who use the models for untransformed

original data.

In economics and even more so in finance, the log-normal

distribution has been generally used for half a century now [17,37–

39]. This often occurs implicitly through studying, e.g., logarith-

mically transformed returns rather than absolute ones. This view

forms the basis of the more advanced models used, e.g., for option

pricing [40,41]. Similar traditions are also established in some

other fields of science.

Fortunately, characterizing log-normal variation, by �xx * x/s*, is

no more difficult than using the common description by �xx 6 SD.

Thus, there is no reason why the log-normal should, as has been

well expressed by Aitchison & Brown, remain the Cinderella of

distributions, dominated by its famous ‘‘normal’’ sister [17], and

the questions arise, in general: ‘‘How normal are additive effects?’’

and ‘‘How normal is the normal distribution?’’ We believe that the

shift in emphasis, away from additive to multiplicative effects and

from the normal towards the log- or multiplicative normal

distribution, is beneficial and necessary. It will lead to advances

in the interpretation of data, and improve our understanding of

the concepts behind the empirical phenomena in science and life.

Analysis
The data used in this study were obtained from the literature.

Most references were found by browsing through certain issues

of renowned journals and scrutinizing the figures displaying data.

- All calculations were done with the statistical programming

environment R. For obtaining Fig. 2, a function was written that

Figure 2. Savings in sample size. If the t-test, which is based on the
normal distribution, is applied to (skewed) raw data, the statistical
power is lower than for the optimal procedure, which consists of
applying it to the log transformed values. Starting from 2 groups of log-
normal data with a given s*, we calculate the sample size needed in
each group to achieve the same (simulated) statistical power with the
(inappropriate) t-test applied to the raw data as with the optimal test,
applied to n0 = 5, 10, and 50 observations in each group. This sample
size is a function of s*. For the median skewness, s* = 2.4, 16
observations are needed instead of 10, corresponding to 60%
additional effort.
doi:10.1371/journal.pone.0021403.g002
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simulated the power of the t-test on untransformed data for any

given sample size n and multiplicative standard deviation s*. For

given n.n0, the s* leading to 90% power was then calculated by an

ad-hoc method for solving the respective implicit equation.

Acknowledgments

We are grateful to Dr. David Raizen, University of Pennsylvania,

Philadelphia, and coauthors for allowing us to re-analyze their data as

well as for their general interest; to Dr. Robert Merton, Sloan School of

Management, MIT, Cambridge, for helpful comments about the

significance of the log-normal distribution in finance; to Markus Abbt,

Zurich, and Dr. Roy Snaydon for continuous interest and support; and to

the referees for stimulating comments and discussions.

Author Contributions

Conceived and designed the investigation: EL. Collected the data: EL.

Analyzed the data: WAS. Contributed analysis tools: WAS. Wrote the

manuscript: EL WAS.

References

1. Fisher RA (1958) Statistical Methods for Research Workers. Edinburgh: Oliver
and Boyd. 356 p.

2. Snedecor GW, Cochran WG (1989) Statistical Methods. Ames Iowa: Iowa
University Press. 503 p.

3. Rice JA (2007) Mathematical Statistics and Data Analysis. 3rd ed. BelmontCal:

Thomson. 603 p.

4. Wisløff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, et al. (2005)

Cardiovascular risk factors emerge after artificial selection for low aerobic
capacity. Science 307: 418–420.

5. Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. The
Journal of Cell Biology 177: 7–11.

6. Faculty of 1000 website. Available: http://f1000.com/rankings/mostviewed/

alltime/biology. Accessed Jun 9 2011.

7. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, et al. (2010)

KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:
237–240.

8. Tondeur S, Pagnault C, Le Carrour T, Lannay Y, Benmadi R et al (2010)
Expression map of the human exome in CD34+ cells and blood cells: Increased

alternative splicing in cell motility and immune response genes. PloS ONE 5(2):

e8990. doi:10.1371/journal.pone.0008990.

9. Godet F, Limpert E (1998) Recent evolution of multiple resistance of Blumeria

(Erysiphe) graminis f.sp. tritici to selected DMI and morpholine fungicides in
France. Pestic. Sci. 54: 244–252.

10. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal

tumorigenesis through the adaptor protein MyD88. Science 317: 124–127.

11. Smith KL, Robinson BH, Helly JJ, Kaufmann RS, Ruhl HA, et al. (2007) Free-

drifting icebergs: hot spots of chemical and biological enrichment in the weddell
sea. Science 317: 478–482.

12. Lawrence D, D’Odorico P, Diekmann L, DeLonge M, Das R, et al. (2007)
Ecological feedbacks following deforestation create the potential for a

catastrophic ecosystem shift in tropical dry forest. Proc. Natl. Acad. Sci. 104:

20696–20701.

13. Renner E (1970) Mathematisch-statistische Methoden in der praktischen

Anwendung. Berlin: Parey. 116 p.

14. Limpert E (1999) Fungicide sensitivity – towards improved understanding of

genetic variability. In: Lyr H, Russell PE, Sisler HD, eds. Modern Fungicides

and Antifungal Compounds II. Andover, UK: Intercept. pp 187–193.

15. Limpert E, Stahel WA (2003) Life is multiplicative – novel aspects of the

distribution of data (in German). Report 53. Int. Breed. Conf. Austria:
Gumpenstein. pp 15–21.

16. Journal citation report 2008.

17. Aitchison J, Brown JAC (1957) The Lognormal Distribution. Cambridge, UK:

Cambridge University Press. 176 p.

18. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the
sciences – keys and clues. BioScience 51: 341–352.

19. Johnson N, Kotz S, Balakrishnan N (1994) Continuous Univariate Distributions.
NY: Wiley Vol. 1: 761.

20. Raizen D, Zimmermann JE, Maycock MH, Ta UD, You YJ, et al. (2008)

Lethargus is a Caenorhabditis elegans sleep like state. Nature 451: 569–573.

21. Heath DF (1967) Normal or log-normal: Appropriate distributions. Nature 213:

1159–1160.

22. Handbook of Chemistry and Physics. 91 (2011) Cleveland Ohio CRC Press 2:

610 p.

23. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006) Resveratrol

improves health and survival of mice on a high calorie diet. Nature 444:

337–342.

24. Baur P (1997) Lognormal distribution of water permeability and organic solute

mobility in plant cuticles. Plant, Cell and Environment 20: 167–177.

25. Sorrentino RP, Melk JP, Govind S (2004) Genetic analysis of contributions of

dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration
and the egg encapsulation response in Drosophila. Genetics 166: 1343–1356.

26. Sorrentino RP, Tokosumi T, Schulz RA (2007) The Friend of GATA protein U-

shaped functions as a hematopoietic tumor suppressor in Drosophila. Dev.Biol
311: 311–23.

27. Sorrentino RP (2010) Large standard deviations and logarithmic-normality – the
truth about hemocyte counts in Drosophila. Fly 4: 327–332. www.landesbioscience.

com/journals/fly/article/13260.

28. Galton F (1889) Natural Inheritance. London: Macmillan. 259 p.

29. ETH (2011) Department of Computer Science website. Available http://www.
inf.ethz.ch/personal/gut/lognormal/index.html. Accessed Jun 9.

30. Faculty of 1000 website. Available: http://f1000.com/1020726#evaluations.
Accessed Jun 9 2011.

31. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food Web–

Specific Biomagnification of Persistent Organic Pollutants. Science 317:
236–239.

32. Hattis D, Banati P, Goble R, Burmaster DE (1999) Human interindividual
variability in parameters related to health risks. Risk Analysis 19: 711–726.

33. Morrison DA (2004) Technical variability and required sample size of helminth
egg isolation procedures: revisited. Parasitol Res 94: 361–366.
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