Statistical Literacy: Confounding

MILO SCHIELD,

Augsburg College

Director, W. M. Keck Statistical Literacy Project Vice President, National Numeracy Network US Rep., International Statistical Literacy Project

January 13, 2011
University of Texas San Antonio (UTSA)
Slides at www.StatLit.org/pdf/
2011-Schield-UTSA-Confounding-Slides.pdf

Statistical Literacy

Statistical literacy is the ability to read and interpret summary statistics in everyday life.

Statistical Literacy studies

- (1) the relation between statistical associations and causation, and
- (2) the full-range of influences on a statistic or on a statistical association. [Take CARE]

Take CARE: Context

The influence of factors taken into account by

- data broken out by subgroups in tables and graphs
- · averages, ratios and comparisons of averages and ratios
- epidemiological models (cf., deaths attributed to obesity)
- · regression models and
- the study design (cf., longitudinal vs. cross-sectional; experiment vs. observational study).

The influence of related factors (confounders) **not taken into account** in the study and **not blocked** by the study design.

Controlling for a confounder can DECREASE an association

MN has 3.8 times as much prison expense as ME

State	Total	# Inmates	Per Inmate
MN	\$184M	4,865	\$37,825
ME	\$48M	1,424	\$33,711

MN has 3.4 times as many inmates as ME

MN has 25% more prison expense per inmate than ME

Controlling for a confounder can NULLIFY an association

MD has 3 times as much prison expense as KS

State	Total	# Inmates	Per Inmate
MD	\$481M	21,623	\$22,250
KS	\$159M	7,148	\$22,250

MD has three times as many inmates as KS

MD has the same prison expense *per inmate* as KS

Controlling for a confounder can REVERSE an association

CA has 50% more prison expense than NY

State	Total	# Inmates	Per Inmate
CA	\$2.9B	136K	\$21,385
NY	\$1.9B	69K	\$28,426

CA has almost twice as many inmates as NY

CA has 25% less prison expense per inmate than NY

Controlling for a confounder can INCREASE an association

MN has 27% more prison expense than IA

State	Total	# Inmates	Per Inmate
MN	\$184M	4,865	\$37,825
IA	\$144M	5,929	\$24,286

MN has 18% fewer inmates than IA

MN has 56% more prison expense per inmate than IA

Adjusting for Land Size: Standardize on Average Lot House Prices (Average Acres = 1.6) \$450,000 \$350,000 \$150,000 \$50,000 \$150,000 \$150,000 \$150,000 \$250,000 \$350,

SAT VERBAL SCORES: FLAT GROUP 1981 2002 CHANGE White 519 (85%) 527 (65%) Black 412 (9%) 431 (11%) 19 474 (3%) 501 (10%) 27 Asian 438 (2%) 446 (4%) 8 Mexican Puerto Rican 437 (1%) 455 (3%) 18 American Indian 471 (0%) 479 (1%) **504** (100%) ALL Test takers **504** (100%) ZERO

Multivariate Analysis can be Complex

To simplify, consider cases with

- a binary outcome,
- a binary predictor and
- a binary confounder.

What are the necessary conditions for nullification or a reversal?

See Schield (1999) and Schield and Burnham (2003)

City Hospital: Hospital of Death??

Hospital	Total	Died	Death Rate
City	1,000	55	5.50%
Rural	1,000	35	3.50%
Both	2,000	90	4.50%

Condition	Total	Died	Death Rate
Good	800	15	1.90%
Poor	1,200	75	6.30%

Confounder Reverses; City Hospital is Better					
Condition	Hospital	Total	Died	Death Rate	
Good	City	100	1	1.00%	
	Rural	700	14	2.00%	
	Total	800	15	1.90%	
Poor	City	900	54	6.00%	
	Rural	300	21	7.00%	
	Total	1,200	75	6.30%	

Conclusion Statistical educators must show students how confounders can influence associations and change statistical significance. The failure of educators to do this may be seen as "statistical negligence." Schield (1999). Simpson's Paradox and Cornfield's Conditions, See www.StatLit.org/pdf/1999SchieldASA.pdf. Schield, Milo (2006). Presenting Confounding and Standardization Graphically. STATS Magazine, ASA. Fall 2006. pp. 14-18. Draft at www.StatLit.org/pdf/2006SchieldSTATS.pdf. Schield, Milo (2009). Confound Those Speculative Statistics. 2009 ASA Proceedings of the Section on Statistical Education. [CD-ROM] 4255-4266. www.StatLit.org/pdf/2009SchieldASA.pdf

UTSA Confounding 2011

Statistical Literacy: Confounding

MILO SCHIELD,

Augsburg College

Director, W. M. Keck Statistical Literacy Project Vice President, National Numeracy Network US Rep., International Statistical Literacy Project

January 13, 2011
University of Texas San Antonio (UTSA)
Slides at www.StatLit.org/pdf/
2011-Schield-UTSA-Confounding-Slides.pdf

Statistical Literacy

Statistical literacy is the ability to read and interpret summary statistics in everyday life.

Statistical Literacy studies

- (1) the relation between statistical associations and causation, and
- (2) the full-range of influences on a statistic or on a statistical association. [Take CARE]

Take CARE: Context

The influence of factors taken into account by

- data broken out by subgroups in tables and graphs
- averages, ratios and comparisons of averages and ratios
- epidemiological models (cf., deaths attributed to obesity)
- regression models and
- the study design (cf., longitudinal vs. cross-sectional; experiment vs. observational study).

The influence of related factors (confounders) **not taken into account** in the study and **not blocked** by the study design.

Controlling for a confounder can DECREASE an association

MN has 3.8 times as much prison expense as ME

State	Total	# Inmates	Per Inmate
MN	\$184M	4,865	\$37,825
ME	\$48M	1,424	\$33,711

MN has 3.4 times as many inmates as ME

MN has 25% more prison expense per inmate than ME

Controlling for a confounder can NULLIFY an association

MD has 3 times as much prison expense as KS

State	Total	# Inmates	Per Inmate
MD	\$481M	21,623	\$22,250
KS	\$159M	7,148	\$22,250

MD has three times as many inmates as KS

MD has the same prison expense per inmate as KS

Controlling for a confounder can REVERSE an association

CA has 50% more prison expense than NY

State	Total	# Inmates	Per Inmate
CA	\$2.9B	136K	\$21,385
NY	\$1.9B	69K	\$28,426

CA has almost twice as many inmates as NY

CA has 25% less prison expense per inmate than NY

Controlling for a confounder can INCREASE an association

MN has 27% more prison expense than IA

State	Total	# Inmates	Per Inmate
MN	\$184M	4,865	\$37,825
IA	\$144M	5,929	\$24,286

MN has 18% fewer inmates than IA

MN has 56% more prison expense per inmate than IA

Adjusting for Land Size: Standardize on Average Lot

SAT VERBAL SCORES: FLAT

GROUP	1981	2002	CHANGE
White	519 (85%)	527 (65%)	8
Black	412 (9%)	431 (11%)	19
Asian	474 (3%)	501 (10%)	27
Mexican	438 (2%)	446 (4%)	8
Puerto Rican	437 (1%)	455 (3%)	18
American Indian	471 (0%)	479 (1%)	8
ALL Test takers	504 (100%)	504 (100%)	ZERO

Multivariate Analysis can be Complex

To simplify, consider cases with

- a binary outcome,
- a binary predictor and
- a binary confounder.

What are the necessary conditions for nullification or a reversal?

See Schield (1999) and Schield and Burnham (2003)

City Hospital: Hospital of Death??

Hospital	Total	Died	Death Rate	
City	1,000	55	5.50%	
Rural	1,000	35	3.50%	
Both	2,000	90	4.50%	

Condition	Total	Died	Death Rate	
Good	800	15	1.90%	
Poor	1,200	75	6.30%	

Can this confounder nullify or reverse this association?

Confounder Reverses; City Hospital is Better

Condition	Hospital	Total	Died	Death Rate
Good	City	100	1	1.00%
	Rural	700	14	2.00%
	Total	800	15	1.90%
Poor	City	900	54	6.00%
	Rural	300	21	7.00%
	Total	1,200	75	6.30%

Two-Group Rates with a Binary Confounder

Compare Hospital Death Rates Confounder: Patient Condition

Standardize on combined confounder percentage

²⁰¹¹ 18

²⁰¹¹ 19

Percentage of Renewals which are Agent

²⁰¹¹ **21**

Income: US Families by Race & Structure

Conclusion

Statistical educators must show students how confounders can influence associations and change statistical significance.

The failure of educators to do this may be seen as "statistical negligence."

- Schield (1999). Simpson's Paradox and Cornfield's Conditions, See www.StatLit.org/pdf/1999SchieldASA.pdf.
- Schield, Milo (2006). Presenting Confounding and Standardization Graphically. *STATS Magazine*, ASA. Fall 2006. pp. 14-18. Draft at www.StatLit.org/pdf/2006SchieldSTATS.pdf.
- Schield, Milo (2009). Confound Those Speculative Statistics. 2009 ASA Proceedings of the Section on Statistical Education. [CD-ROM] 4255-4266. www.StatLit.org/pdf/2009SchieldASA.pdf