Statistical Literacy: Confounding
MILO SCHIELD,
Augsburg College
Director, W. M. Keck Statistical Literacy Project
Vice President, National Numeracy Network US Rep., International Statistical Literacy Project
January 13, 2011
University of Texas San Antonio (UTSA) Slides at www.StatLit.org/pdf/ 2011-Schield-UTSA-Confounding-Slides.pdf

Statistical Literacy

Statistical literacy is the ability to read and interpret summary statistics in everyday life.
Statistical Literacy studies
(1) the relation between statistical associations and causation, and
(2) the full-range of influences on a statistic or on a statistical association. [Take CARE]

Talke CARE: Context
The influence of factors taken into account by
- data broken out by subgroups in tables and graphs
- averages, ratios and comparisons of averages and ratios
- epidemiological models (cf., deaths attributed to obesity)
- regression models and
- the study design (cf., longitudinal vs. cross-sectional;
experiment vs. observational study).
The influence of related factors (confounders)
not taken into account in the study and
not blocked by the study design.

Controlling for a confounder can NULLIFY an association

MD has 3 times as much prison expense as KS

| Controlling for a confounder ${ }^{5}$
 Can NULLIFY an association | | | |
| :--- | :--- | :--- | :---: | | MD has 3 times as much prison expense as KS |
| :--- | :---: | :---: | :---: |
| State Total \# Inmates
 MD $\$ 481 \mathrm{M}$ 21,623
 KS $\$ 159 \mathrm{M}$ 7,148 |
| MD has three times as many inmates as KS |
| MD has the same prison expense per inmate as KS |

MD has three times as many inmates as KS
MD has the same prison expense per inmate as KS

Controlling for a confounder can DECREASE an association

MN has 3.8 times as much prison expense as ME

State	Total	\# Inmates	Per Inmate
MN	$\$ 184 \mathrm{M}$	4,865	$\$ 37,825$
ME	$\$ 48 \mathrm{M}$	1,424	$\$ 33,711$

MN has 3.4 times as many inmates as ME
MN has 25% more prison expense per inmate than ME

Controlling for a confounder can REVERSE an association

CA has 50% more prison expense than NY

State	Total	\# Inmates	Per Inmate
CA	$\$ 2.9 \mathrm{~B}$	136 K	$\$ 21,385$
NY	$\$ 1.9 \mathrm{~B}$	69 K	$\$ 28,426$

CA has almost twice as many inmates as NY
CA has 25% less prison expense per inmate than NY

Controlling for a confounder can INCREASE an association

MN has 27% more prison expense than IA

State	Total	\# Inmates	Per Inmate
MN	$\$ 184 \mathrm{M}$	4,865	$\$ 37,825$
IA	$\$ 144 \mathrm{M}$	5,929	$\$ 24,286$

MN has 18% fewer inmates than IA
MN has 56% more prison expense per inmate than IA

Multivariate Analysis can be Complex

To simplify, consider cases with

- a binary outcome,
- a binary predictor and
- a binary confounder.

What are the necessary conditions for nullification or a reversal?

See Schield (1999) and Schield and Burnham (2003)

SAT VERBAT SCORESE FIAT			
GROUP	1981	2002	CHANGE
White	519 (85\%)	527 (65\%)	8
Black	412 (9\%)	431 (11\%)	19
Asian	474 (3\%)	501 (10\%)	27
Mexican	438 (2\%)	446 (4\%)	8
Puerto Rican	437 (1\%)	455 (3\%)	18
American Indian	471 (0\%)	479 (1\%)	8
ALL Test takers	504 (100\%)	504 (100\%)	ZERO

City Rospital: Fospital of Death??			
Hospital Total Died Death Rate City 1,000 55 5.50% Rural 1,000 35 3.50% Both 2,000 90 4.50% Condition Total Died Death Rate Good 800 15 1.90% Poor 1,200 75 6.30%			

Confounder Reverses; City Fospital is Better				
Condition	Hospital	Total	Died	14 Reath Rate
Good	City	100	1	1.00%
	Rural	700	14	2.00%
	Total	800	15	1.90%
Poor	City	900	54	6.00%
	Rural	300	21	7.00%
	Total	1,200	75	6.30%

Conclusion

Statistical educators must show students how confounders can influence associations and change statistical significance.
The failure of educators to do this may be seen as "statistical negligence."

Schield (1999). Simpson's Paradox and Cornfield's Conditions, See www.StatLit.org/pdf/1999SchieldASA.pdf.
Schield, Milo (2006). Presenting Confounding and Standardization Graphically. STATS Magazine, ASA. Fall 2006. pp. 14-18. Draft at www.StatLit.org/pdf/2006SchieldSTATS.pdf.
Schield, Milo (2009). Confound Those Speculative Statistics. 2009 ASA Proceedings of the Section on Statistical Education. [CDROM] 4255-4266. www.StatLit.org/pdf/2009SchieldASA.pdf

Statistical Literacy: Confounding

MILO SCHIELD,
Augsburg College
Director, W. M. Keck Statistical Literacy Project Vice President, National Numeracy Network
US Rep., International Statistical Literacy Project
January 13, 2011
University of Texas San Antonio (UTSA) Slides at www.StatLit.org/pdf/ 2011-Schield-UTSA-Confounding-Slides.pdf

Statistical Literacy

Statistical literacy is the ability to read and interpret summary statistics in everyday life.

Statistical Literacy studies
(1) the relation between statistical associations and causation, and
(2) the full-range of influences on a statistic or on a statistical association. [Take CARE]

Talke CARE: Context

The influence of factors taken into account by

- data broken out by subgroups in tables and graphs
- averages, ratios and comparisons of averages and ratios
- epidemiological models (cf., deaths attributed to obesity)
- regression models and
- the study design (cf., longitudinal vs. cross-sectional; experiment vs. observational study).

The influence of related factors (confounders) not taken into account in the study and not blocked by the study design.

Controlling for a confounder can DECREASE an association

MN has 3.8 times as much prison expense as ME

State	Total	\# Inmates	Per Inmate
MN	$\$ 184 \mathrm{M}$	4,865	$\$ 37,825$
ME	$\$ 48 \mathrm{M}$	1,424	$\$ 33,711$

MN has 3.4 times as many inmates as ME
MN has 25% more prison expense per inmate than ME

Controlling for a confounder can NULLIFY an association

MD has 3 times as much prison expense as KS

State	Total	\# Inmates	Per Inmate
MD	$\$ 481 \mathrm{M}$	21,623	$\$ 22,250$
KS	$\$ 159 \mathrm{M}$	7,148	$\$ 22,250$

MD has three times as many inmates as KS
MD has the same prison expense per inmate as KS

Controlling for a confounder can REVERSE an association

CA has 50% more prison expense than NY

State	Total	\# Inmates	Per Inmate
CA	$\$ 2.9 \mathrm{~B}$	136 K	$\$ 21,385$
NY	$\$ 1.9 \mathrm{~B}$	69 K	$\$ 28,426$

CA has almost twice as many inmates as NY
CA has 25% less prison expense per inmate than NY

Controlling for a confounder can INCREASE an association

MN has 27\% more prison expense than IA

State	Total	\# Inmates	Per Inmate
MN	$\$ 184 \mathrm{M}$	4,865	$\$ 37,825$
IA	$\$ 144 \mathrm{M}$	5,929	$\$ 24,286$

MN has 18\% fewer inmates than IA
MN has 56% more prison expense per inmate than IA

Adjusting for Land Size: Standardize on Average Lot

SAT VERBAL SCORES: FLAT

GROUP	$\mathbf{1 9 8 1}$	$\mathbf{2 0 0 2}$	CHANGE
White	$519(85 \%)$	$527(65 \%)$	8
Black	$412(9 \%)$	$431(11 \%)$	19
Asian	$474(3 \%)$	$501(10 \%)$	27
Mexican	$438(2 \%)$	$446(4 \%)$	8
Puerto Rican	$437(1 \%)$	$455(3 \%)$	18
American Indian	$471(0 \%)$	$479(1 \%)$	8
ALL Test takers	$\mathbf{5 0 4}(100 \%)$	$\mathbf{5 0 4}(100 \%)$	ZERO

Multivariate Analysis can be Complex

To simplify, consider cases with

- a binary outcome,
- a binary predictor and
- a binary confounder.

What are the necessary conditions for nullification or a reversal?

See Schield (1999) and Schield and Burnham (2003)

City Hospital: Hospital of Death??

Hospital	Total	Died	Death Rate
City	1,000	55	5.50%
Rural	1,000	35	3.50%
Both	2,000	90	4.50%

Condition	Total	Died	Death Rate
Good	800	15	1.90%
Poor	1,200	75	6.30%

Can this confounder nullify or reverse this association?

Death Rates

Confounder Reverses; City Hospital is Better

Condition	Hospital	Total	Died	Death Rate
Good	City	100	1	1.00%
	Rural	700	14	2.00%
	Total	800	15	1.90%
Poor	City	900	54	6.00%
	Rural	300	21	7.00%
	Total	1,200	75	6.30%

Two-Group Rates with a Binary Confounder

B : confounder.

Compare Hospital Death Rates Confounder: Patient Condition

Standardize on combined confounder percentage

Standardizing Can Reverse A Difference

Income: US Families by Race \& Structure

Controlling Can Change Statistical Significance

Percentage of Babies who have low Birth-Weight

Conclusion

Statistical educators must show students how confounders can influence associations and change statistical significance. The failure of educators to do this may be seen as "statistical negligence."

Schield (1999). Simpson's Paradox and Cornfield's Conditions, See www.StatLit.org/pdf/1999SchieldASA.pdf.
Schield, Milo (2006). Presenting Confounding and Standardization Graphically. STATS Magazine, ASA. Fall 2006. pp. 14-18. Draft at www.StatLit.org/pdf/2006SchieldSTATS.pdf.
Schield, Milo (2009). Confound Those Speculative Statistics. 2009 ASA Proceedings of the Section on Statistical Education. [CDROM] 4255-4266. www.StatLit.org/pdf/2009SchieldASA.pdf

