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    Preface 
 
 
What is the meaning of the word "random"?  What is the difference between 
random sampling and random assignment?  If and when a researcher finds that 
some data are missing in a particular study, under what circumstances can such 
data be regarded as "missing at random"?  These are just a few of the many 
questions that are addressed in this monograph.  I have divided it into 20 
sections--one section for each of 20 questions--a feeble attempt at humor by 
appealing to an analogy with that once-popular game.  But it is my sincere hope 
that when you get to the end of the monograph you will have a better 
understanding of this crucial term than you had at the beginning. 
 
To give you some idea of the importance of the term, the widely-used search 
engine Google returns a list of approximately 1.4 billion web pages when given 
the prompt "random".  Many of them are duplicates or near-duplicates, and some 
of them have nothing to do with the meaning of the term as treated in this 
monograph (for example, the web pages that are concerned with the rock group 
Random), but many of those pages do contain some very helpful information 
about the use of "random" in the scientific sense with which I am concerned. 
 
I suggest that you pay particular attention to the connection between 
randomness and probability (see Section 2), especially the matter of which of 
those is defined in terms of the other.  The literature is quite confusing in that 
respect. 
 
There are very few symbols and no formulas, but there are LOTS of important 
concepts.  A basic knowledge of statistics, measurement, and research design 
should be sufficient to follow the narrative (and even to catch me when I say 
something stupid). 
 
Thanks for stopping by, and enjoy! 
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Section 1:  What is the meaning of the word "random" 
 
 
According to Random House Webster's Dictionary [forgive me, but I just had to 
cite that source!], "random" is an adjective that means "occurring or done without 
definite aim, reason, or pattern".  But that is a layperson's definition.  A currently 
popular scientific definition of a random phenomenon, as given by Starnes, 
Yates, and Moore (2012) ---the authors of the textbook used in many Advanced 
Placement statistics courses in high schools--is one for which individual 
outcomes cannot be specified but there is a mathematical distribution of 
outcomes when the number of repetitions is very large.  However, Liu and 
Thompson (2002) claimed that interpretations of such a definition are often 
circular, and in his article "What is random?"  Kac (1983) argued that most 
scientists never even bother to define "random"; they just take for granted that 
everyone knows what it means.  He went on to say that the notion of something 
being "random" is actually very complicated.  
 
[There is an article by May (1997) that is also entitled "What is random?", in 
which he refers to Kac's article.  And there is a book entitled What is random?, by 
Beltrami (1999), which bears the subtitle Chance and order in mathematics and 
life.  He (Beltrami) said that Kac's article "prompted the title of this book." (p. 
146)] 
 
My personal preference is that something is random if it is the result of a process 
in which chance is permitted to operate and plays a key role in the outcome. 
 
Associated with the adjective "random" is the rather awkward noun 
"randomness".  (At the amazon.com website a book-search of the word 
"randomness" results in 534 hits.)  Wallis and Roberts (1962) included a chapter 
on randomness in their statistics book; it was defined as a property of a 
probabilistic process.   In her book that bears the one-word title, Randomness, 
Bennett (1998) provided several definitions of randomness, but all were 
concerned with the notions of uncertainty and unpredictability.  She also pointed 
out that even the experts have different views of it.  In his book, The jungles of 
randomness, Peterson (1998) provided "a set of mathematical X rays that 
disclose the astonishing scope of randomness" (Preface, p. xii).  The late 1990s 
seems to have been a productive time for books about randomness! 
 
[TheThesaurasize website lists 71 synonyms for the word "randomness", but 
precious few of them have anything to do with chance.] 
 
Perhaps equally as important as what the word "random" DOES mean is what 
the word DOES NOT mean (in science): 
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1.  It does not mean "haphazard".  Although it sounds like a contradiction in 
terms, something that is random is subject to the "laws" of probability.   
 
2.  It does not mean "inconsequential".   Although random outcomes often 
balance out, they can seriously attenuate certain matters such as the relationship 
between two variables--see, for example, Muchinsky (1996). 
 
3.  It does not mean "hopeless".  There are many tried and true methods for 
understanding random phenomena and coping successfully with them. 
 
4.  Interestingly, and most importantly, it does not (necessarily) mean 
"representative".  A small random sample, for example, may not reflect very well 
the population from which it is drawn.  As a matter of fact, it is not possible for a 
sample to be perfectly representative unless it consists of the entire population 
itself. 
 
In the previous paragraphs I have used expressions such as "random 
phenomenon", "random sample", and "random outcomes".  Those matters will be 
treated in greater detail in the remainder of this book, along with such terms as 
"random assignment", "random error", and many others (see Table of Contents).  
There are a few other statistical terms with the word “random” in them that are 
NOT treated in this book, but the online Pocket Dictionary of Statistics is very 
good for defining most if not all of them.  (The first 34 entries under the letter "R" 
are all concerned with randomness.)  There is also the term, “random access 
memory (RAM)”, which is an important concept associated with computers (I’m 
not very good at computers).   
 
For some interesting answers to the question “How can there be such a concept 
as "random"?  Surely everything has a structure if you look deeply enough. What 
does random actually mean?”, see the webpage 
http://www.fortunecity.com/emachines/e11/86/random.html that is associated 
with Ian Stewart’s (1989) book, Does God play dice?. 
 
A good source for discussions of randomness of various kinds that is very funny, 
yet at the same time very instructive, is the book by Larry Gonick and Woollcott 
Smith entitled The cartoon guide to statistics (1993).  I will refer to that book 
several times throughout this monograph. 
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Section 2:  Which comes first, randomness or probability? 
 
 
On page 161 of her book,  Bennett (1998) discussed the attempts by vonMises 
(1957 and elsewhere) to define probability based upon the concept of 
randomness.  In his theory of randomness, Kendall (1941) defines a “suite” (his 
term for an infinite sequence of a finite number of different symbols) as random if 
it satisfies certain probabilistic requirements.  The first of these sources seems to 
imply that probability depends upon randomness; the second source seems to 
imply that randomness depends upon probability.  What in the world is going on? 
 
What is going on is a confusion as to which comes first--randomness or 
probability.  Different authorities should be free to define randomness and 
probability in any way they choose (recall from Section 1 Kac's claim that most 
people don't define "random" at all), but it seems to me that you must take a 
stand one way or the other regarding which is the more basic concept and 
proceed from there.  In the remainder of this chapter I would like to summarize a 
few of the various positions that have been taken concerning randomness and 
probability, tell you what mine is, and then ask you to decide for yourself who's 
"right" and who's "wrong". 
 
Let's start with Bennett (1998).  She claimed (page 9): "Probability is based on 
the concept of a random event...".  I don't think that is always the case, if "a 
random event" is the tossing of a "fair" coin, the rolling of a perfectly balanced 
die, the drawing of a card from a well-shuffled deck, and the like.  Probability 
applies to situations like those, to be sure--the probability of "heads" is 1/2; the 
probability of a "four" is one-sixth; the probability of an ace is 1/13; etc.  But it 
also is applicable to other situations such as whether it will rain tomorrow or 
whether I'll win my tennis match, which may have nothing at all to do with random 
events.  It would seem, therefore, that probability should either not be defined in 
terms of randomness or if it is it should be clear that only certain kinds of 
probabilities are so defined. 
 
In David Moore's very popular statistics book, Statistics: Concepts and 
controversies (1979), Part III is entitled Drawing Conclusions From Data and 
consists of two chapters, one of which is “Probability: The Study of Randomness” 
(sound familiar?) and the other is “Formal Statistical Reasoning”. In the fifth 
edition (2001) Part III is entitled Chance and consists of four chapters: “Thinking 
About Chance”; “Probability Models”; “Simulation”; and “The House Edge: 
Expected Values”.   
 
I agree with Kendall (1941) that randomness should be defined in terms of 
probability.  I further attest that there are different kinds of randomness and each 
kind of randomness should be defined in terms of some kind of probability.  
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 There are essentially three competing definitions of probability.  The first 
definition, sometimes called the "a priori" or "deductive" definition, applies to 
symmetrical situations, and goes something like this: 
 
The probability of a result A is equal to the ratio of the number of ways A can 
take place to the total number of equally likely results. 
 
For example, we say that the probability of "heads" in a single toss of a "fair" coin 
is equal to 1/2, because there is one way that heads can take place, out of two 
equally likely results ("heads" and "tails"). 
 
There are two problems with that definition.  The first problem has already been 
referred to: it only works for symmetrical situations.  The second problem is that it 
is circular; probability is defined in terms of "equally likely" results, which is itself 
a probabilistic concept.  It has at least one compensating feature, however.  You 
don't have to actually toss the coin in order to talk about its probability of landing 
heads or tails! 
 
The second definition, sometimes called the "relative frequency" or "empirical" 
definition, applies to any repeatable situation, and is: 
 
The probability of a result A is equal to the limiting value of the ratio of the 
number of times A took place to the total number of results. 
 
For example, in order to talk about the probability that a tossed thumbtack will 
land on its head, i.e., with its point up (note that the a priori definition wouldn't 
work here, since landing with its point up and landing on its side are not expected 
to be equally likely), you would toss the thumbtack a large number of times, 
count how many times it landed point up, count the total number of tosses, and 
divide the former by the latter.  This definition also works for coins, whether fair or 
unfair; but there is a crucial change in the tense of the verb--from "can take 
place" to "took place". 
 
There are also two problems with this definition, however: (1) What do we mean 
by "limiting value"?  (How many times is a "large" number of times?); and (2) 
There is a rather strange time element entailed [bad pun]; you have to actually do 
something lots of times in order to get a fix on the probability of a particular 
result, which "from then on" (future tense?) gets associated with it. 
 
The third definition is sometimes called the "subjective" or "personal" definition, 
and is the most controversial definition of the three (it is an integral part of the 
Bayesian approach to probability and statistics): 
 
The probability of a result A is a number between 0 (impossibility) and 1 
(certainty) that reflects a person's strength of conviction that A will take place. 
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For example, if you were interested in the probability that you would choose to 
order steak at a restaurant you had never been to before, you could assign to 
that eventuality a small number such as .01 if you don't like steak and/or can't 
afford it; or you could assign a large number such as .99, if you love steak and 
have lots of money. 
 
The most serious objection to this third definition is that it is too subjective, with 
the probability of certain results having the potential to vary widely from one 
person to another.  Some people argue vociferously that science in general, and 
mathematics in particular, should be objective.  Proponents of the definition reply 
that complete objectivity is not possible in science or in anything else, and some 
point out that the selections of the .05 significance level or the 95% confidence 
interval in traditional statistical inference, for example, are decidedly subjective, 
albeit often reasonable, choices.  Note also that the verb tense for this definition 
is "will take place". 
 
[Interesting aside: Starnes, Yates, and Moore, the authors of The practice of 
statistics, all have first and middle initials D.S.  What is the probability of that?!] 
 
What about randomness?  None of the above definitions of probability explicitly 
refer to random events or random phenomena.  Where do they fit in?  To answer 
that question, let me now turn to a couple of non-coin examples from typical 
everyday research. 
 
Example #1 (classical significance testing):  Do boys do better in mathematics 
than girls do?  In order to get some evidence regarding this question you need to 
give the same math test to a group of boys and a group of girls.  You decide to 
take a random sample of 50 boys and a random sample of 50 girls from a very 
large public school district (say, New York or Los Angeles).  When you go to 
sample the first person do you first think about the probability of a particular 
person being drawn and then worry about whether the draw is random; or do you 
first think about whether the draw is random and then worry about the probability 
of a particular person being drawn?  I think it's the former; don't you?  You want 
to define the probability that a particular person will be drawn and then you want 
to use some sort of randomizing device that will operationalize that probability. 
 
Example #2 (survey research):  What percentage of nurses smoke cigarettes?  
You decide to take a random sample of 1000 nurses from the population of all 
nurses who are members of the American Nurses Association (about two million 
people).  You get access to a list of the R.N. license numbers of all two million of 
the nurses (the so-called "sampling frame").  You want each nurse in the 
population to have an equal chance of being drawn into your sample, so you 
might put each one of those numbers on a piece of paper, put the pieces of 
paper in a huge barrel, mix them up, and draw out 1000 of them.  Although the 
purpose of the mixing is to accomplish randomness of selection, it is the equal 
likelihood that takes precedence. 
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For more on various meanings of probability and their applications I recommend 
that you read my favorite little probability book, Probabilities and life, by Emile 
Borel (1962); Shafer’s (1993) chapter in the Keren and Lewis handbook of 
methodological issues; and Salsburg's (2001) fascinating book,  The lady tasting 
tea.  I couldn’t find one mention of the word “random” or any of its derivatives in 
Borel’s book (but he does talk a lot about chance...see the following section).  
Shafer has a brief, but very nice, section on randomness (he talks about it with 
respect to numbers and an  observer of those numbers).  Salsburg doesn't say 
very much about randomness, but he talks a lot about probability and statistics.  
See if you can figure out whether they would regard probability as dependent 
upon randomness or randomness as dependent upon probability (or neither?).   
 
For two interesting philosophical discussions of randomness, see Keene (1957) 
and Spencer Brown and Keene (1957).  And for several cartoons that explain 
probability about as well as I’ve ever seen it (to paraphrase a popular saying, “A 
cartoon is worth a thousand words”), see Chapter 3 in Gonick and Smith (1993). 
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Section 3:  Are randomness and chance the same thing? 
 
 
As far as I'm concerned, the answer is "yes".  As far as Google is concerned, the 
answer is apparently "no".  It returns about 1.5 billion web pages for "chance" but 
only a little over 26 million pages for "randomness" (about 1.4 billion for 
"random", as already cited in the Preface to this monograph). 
 
Here are some examples.  Consider first the tossing of a fair coin.  The process 
of tossing such a coin usually possesses the property of randomness, because 
the result of any particular coin toss (heads or tails) usually cannot be pre-
determined; it is a matter of chance, or “luck”-- Rescher's (2001) term for 
"randomness"--as to whether it will land face up (heads) or face down (tails) on 
any given toss.  [I say "usually" because there is at least one person, statistician 
Persi Diaconis, who CAN pre-determine the results of the coins he tosses, by 
controlling the manner in which the toss is made--see McNamara (2003); 
Diaconis is an amateur magician.  And see Ford (1983) regarding the 
randomness of a coin toss.] 
 
The rolling of a fair die is a second example.  It also possesses the characteristic 
of randomness for the same reason: The result of any particular roll (1, 2, 3, 4, 5, 
or 6) cannot be pre-determined.  [As far as I know, Diaconis does not claim to be 
able to pre-determine the result of a die roll.  But see Watson & Moritz (2003) 
regarding children’s judgments of the fairness of dice.] 
 
A third example is the drawing of a card from a well-shuffled deck of cards.  The 
card might be a black card or a red card; a spade, a heart, a diamond, or a club; 
an ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, or king.  Chance and chance alone 
(by virtue of the shuffling) determines what the actual result will be.  [Card 
drawing by Diaconis is another exception here; he is VERY GOOD at pre-
determining what card is drawn--see Mackenzie (2002) regarding Diaconis and 
see Gardner (1975a) regarding card shuffling in general.] 
 
At the beginning of this section I said that chance and randomness are the same 
thing.  But in Section 1 I claimed that probability and randomness are not the 
same thing.  Aren't chance and probability the same thing, and by the transitive 
law shouldn't probability and randomness also be the same thing?  My answer is 
"no" (chance and probability are not the same thing; Freedman, Pisani, & Purves, 
1998, however, equate the two), but I'd better explain.  I think of the results of 
events as "having" certain probabilities; I don't think of the results of events as 
"having" chance.  For example, if the result in question is "fair coin lands heads", 
that result has an associated probability of .5; it doesn't have an associated 
chance of .5.  "By chance" it may land heads, but "by chance" it may not.  This 
may seem to you like a semantic distinction without a difference, but such a 
distinction between probability and chance is an important one (at least to me).  



 8 

 
I recently came across a sentence that read "...[a particular statistic] has only a 
5% chance of occurring by chance alone."  I know what was meant by that:  If the 
value for the population parameter that was stipulated in the hypothesis being 
tested was the true value, the probability was less than .05 that the given statistic 
would be as discrepant or more discrepant from the hypothesized value.  But the 
"...chance...chance" wording blew my mind.  The first usage (the 5% chance) is 
concerned with probability; the second usage (by chance alone) is concerned 
with randomness.  I suggest that all of us avoid using expressions such as "there 
is a 5% chance" and concentrate on "there is a 5% probability" instead. 
 
[It doesn't really fit here, but have you noticed that people often confuse 
"probability" and "odds"?  When talking, for example, about the drawing of a 
spade in a single draw from a well-shuffled deck they say "the odds are 1 in 4".  
No, the probability is 1 in 4; the odds are 1 to 3 "in favor" and 3 to 1 "against".] 
 
A fascinating example of the notion of randomness was provided by Peterson 
(1999), who discussed Divakar Viswanath's work regarding Fibonacci Numbers: 
a sequence of positive integers for which each integer is equal to the sum of the 
previous two integers (1, 1, 2, 3, 5, 8, 13, ...).  He (Viswanath) wondered what 
would happen if you introduced an element of randomness in such a sequence 
(e.g., flipping a coin to decide whether to add or to subtract the previous two 
numbers).  In so doing he discovered a new mathematical constant 
(1.13198824...).  A constant resulting from randomness?!  Neat, huh?  (See 
Bennett, 1998, pp. 144-148, for a good discussion of Fibonacci Numbers.) 
 
Beltrami (1999) discussed the equally fascinating example of "Janus-Faced" 
sequences of 0s and 1s (due to Bartlett, 1990) that are said to be random in one 
direction and deterministic in the other! 
 
For an especially readable discussion of the role of chance in scientific 
arguments, see Chapter 2 of Abelson’s (1995) book.  For an equally readable 
discussion of randomness and chance, see Levinson (1963), esp. pp. 184-186.  
Chance is also a favorite topic for courses, newsletters, and serious academic 
journals.  See, for example, information regarding the quantitative literacy course 
developed at Dartmouth College (http://www.dartmouth.edu/~chance/), their 
Chance News, and the highly-regarded journal Chance.  It's all wonderful stuff! 
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Section 4:  Is randomness a characteristic of a process or a 
product? 
 
 
In Section 1 I made reference to randomness as a characteristic of a process.  
That is actually a rather controversial matter, as Bennett (1998) explained in her 
chapter on "Randomness as Uncertainty" (see esp. pp. 165-172).  Those (like 
me) who claim that something is random if it has been determined by a chance 
process appeal to some property of the object used in the process (e.g., the  
balance of a coin and a die) and/or the mixing mechanism for the process (e.g., 
the shuffling of a deck of cards).  Others (like most missing-data experts and 
most measurement theorists--see Sections 11, 17, and 18) treat randomness as 
a characteristic of a product, and claim that it is the product that must be judged 
to be random or non-random.  In the Preface to his book, Beltrami (1999, p. xiii) 
stated that there has been a general shift in the last several decades from 
randomness-as-process to randomness-as-product.  [That may be true (alas) but 
I have at least two other people on my side.  In the first of their two-volume 
handbook on data analysis, Keren & Lewis (1993) say: “Randomness is a 
property of the generating process rather than the outcome.”  (p. 310)] 
 
The consideration that separates the "product" advocates from the "process" 
advocates is whether or not you need any data in order to claim randomness.  
The product folks insist that data are necessary (but perhaps not sufficient), 
whereas the process folks insist that you can argue for or against randomness 
data-free, by appealing to one or more features of an alleged randomizing 
device.  
 
A "middle-ground" approach is to argue that randomness pertains to the basic 
product of the alleged randomness-generating process.  That is, it is those 
processes that must be judged to be random or non-random by virtue of the 
basic products that they generate.  Once a process has been deemed to be 
random, any further data gathered as a result of the use of such a process need 
not be judged to be random or non-random.  
 
Consider the following example:  You would like to estimate the standard 
deviation of the heights of adult males.  You have identified a target population of 
1000 adult males, with associated ID numbers of 000 to 999, and you plan to 
draw a sample of size 50.  You decide to use Minitab's random sampling routine 
(the process).  You give it the proper commands and ask it to print the 50 
sampled ID numbers.  You indicate whether each of those numbers is less than 
or equal to 499 (and call those 0) or greater than 499 (and call those 1).  You 
subject that string of 1s and 0s (the product) to one or more "tests of 
randomness" (see Section 7).  Let's say that the string passes that (those) 
test(s), i.e., it is declared "random" and your sample is likewise declared 
"random".  You then measure the heights of the 50 adult males, record them, 
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calculate their standard deviation, and make whatever inference to the population 
of 1000 adult males is warranted.  The heights of the 50 men in the sample need 
not be subject to any tests of randomness (Siegel & Castellan's [1988] argument 
to the contrary notwithstanding)--neither the randomness of their actual 
magnitudes nor the randomness of the order in which they were drawn--because 
the process has already been judged to be random.  You may wind up with a 
lousy estimate of the standard deviation of the heights of all 1000 adult males in 
the sampled population, but that is a separate matter!  (Do you follow that?  Does 
it make sense?) 
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Section 5:  What is a random-number generator? 
 
 
A random-number generator is a device (usually a computer program of some 
sort) that creates sequences of single digits that are alleged to be "random" (in its 
product sense) and are useful in a variety of applications ranging from drawing a 
single sample from a population to establishing military codes that are very 
difficult to break.  Some authors, e.g., Whitney (1984), insist that they be called 
"pseudo-random-number generators" because, they argue, if a sequence of 
digits can be generated it must have a deterministic, non-random force behind it. 
 
Probability and randomness have often been defined in such a way that the 
result is circular (i.e., probability defined in terms of randomness and 
randomness defined in terms of probability) or is of infinite regress (A is defined 
in terms of B, which is defined in terms of C,...).  The situation for random (and/or 
pseudo-random) number generators is analogous.  How do we know that the 
numbers produced by a random-number generator are random?  Can we test 
them for randomness?  Perhaps (there are several such tests--see Section 7); 
but do we have to carry out a test of randomness for every sequence of numbers 
that is generated by an alleged random-number generator?  (In my opinion, no, 
as discussed in the previous section.)  Can we ever be sure that the numbers 
we're particularly interested in are random?  (Alas, also no, in my opinion.  We 
can never be "sure" of anything that has a stochastic, i.e., non-deterministic, 
component.)  
 
It is important to understand that there is no such thing as "a" random number 
(Craw, 2003), even though there is currently a website that will give you "the 
random number of the day".  Any number (1, 23, 617, whatever) can be one of 
the members of a set of numbers that are claimed to be random, with the 
randomness designation associated with the set and not with a particular 
member of that set.  [Some numbers that are of special interest to 
mathematicians, for example “Omega” (see Gardner, 1979) have been given the 
designation of a “random” number or a “normal” number, but that designation has 
a particular and idiosyncratic meaning.] 
 
There are lots of random-number generators in use today, both free-standing 
devices and routines built in to various statistical packages such as SAS, SPSS, 
and Minitab.  The most common applications for random-number generators are 
in so-called "Monte Carlo" studies and in "bootstrap" inferences (Efron & 
Tibshirani, 1993).  Monte Carlo studies are often undertaken in order to construct 
empirical sampling distributions for various statistics whose theoretical sampling 
distributions are too difficult to derive mathematically.  (Well-defined population 
distributions having various properties are repeatedly sampled a very large 
number of times.)  Bootstrap non-parametric methods are also used in the 
approximation of sampling distributions.  A set of randomly sampled observations 
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of size n is itself randomly sampled a very large number of times, with 
replacement both within sample and between samples, a particular statistic of 
interest is calculated for each sample, and a frequency distribution for that 
statistic is obtained.  The actual value of the statistic for the given sample is 
compared to "all possible values" of the statistic for the given sample size, and 
an appropriate statistical inference is made (a test of a null hypothesis regarding, 
or a confidence interval for, a particular parameter of interest). 
 
For an interesting discussion of the generation of random sequences of numbers 
I recommend the chapter by Pashley (1993).  For further reading on random-
number generators in general and for brief discussions of Monte Carlo and 
bootstrap methods, I recommend Chapter 8 in Bennett's (1998) book [entitled 
"Wanted: Random Numbers"); Chapter 9 in Peterson's (1998) book [he points 
out that many "seeds" for random-number generation lead to repeating cycles]; 
pp. 28-32, 243-245, and 289-291 of Salsburg's (2001) book; and the University of 
Utah’s random-number-generators webpage.  There is also the clever cartoon on 
page 65 of the Gonick and Smith (1993) book that shows a person pressing 
buttons to get random (actually pseudo-random) numbers. 
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Section 6:  Where can you find tables of random numbers? 
 
 
In his delightful essay, "Randomness as a resource",  Hayes (2001)  discussed 
the history and the ubiquity of random numbers and pseudo-random numbers, 
ranging from the results of 26,306 die rolls made by W.F.R. Weldon and his wife 
that were analyzed by Karl Pearson in 1900, to the 4.8 billion random bits 
recently made available to the public by Marsaglia (1995).     
 
One of the most accessible and most frequently used tables is the RAND 
Corporation's table (1955, 2002), A million random digits with 100,000 normal 
deviates ["normal deviates"--how's that for an oxymoron?!].  That table has been 
subjected to all sorts of tests of randomness (see following section), and there 
have even been published Errata concerning it--provided by the statistician I.J. 
Good and available on the web.  Brief excerpts taken from various portions of the 
table have been published in the backs of countless numbers of statistics 
textbooks.  The numbers are alleged to be in random order when read in any 
direction (horizontally, vertically, diagonally, or whatever).  Gardner (1975b) 
made some interesting observations concerning the RAND table, including his 
reference to a claim by Bork (1967) that such a table is strictly a twentieth 
century phenomenon: “A rational nineteenth-century man would have thought it 
the height of folly to produce a book containing only random numbers.” (p. 40 of 
Bork) 
 
Other "classic" random-number tables are those generated by Tippett (1927), by 
Kendall and Babington-Smith (1938), and by Peatman and Schafer (1942).  
Kendall (1941) also propounded a theory of randomness, to which reference has 
already been made (see Section 2).  In her book, Bennett (1998) pointed out that 
Tippett's alleged random numbers were soon (within ten years) found to be 
inadequate for many sampling applications (see Yule, 1938).   
 
With the development of computers having ever-increasing speed and capacity, 
accompanied by the ever-increasing expertise of people to program them, it is far 
more common, however, for researchers to use random-number routines that are 
included in popular statistical packages such as Minitab.  In even the older  
versions of Minitab (which I personally prefer to the newer ones), all you need do 
is give commands such as "Set 1:100 C1" and "Sample 10 C1 C2" and Shazam! 
you get a random sample of 10 numbers in Column 2 out of the 100 numbers 
from 1 to 100 in Column 1.  You need to exercise extreme caution when using 
some computer-generated numbers that are alleged to be random, however.  In 
a devastating but humorous article, Marsaglia (1968) showed that one popular 
(at the time) random-number generator, RANDU, was not very random at all. 
 
You can also get random numbers on the internet.  The website, random.org, for 
example, "offers true random numbers to anyone on the internet" [to quote from 
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its website].  It also provides information regarding how those numbers are 
generated.  And for a very rich source for the generation of random numbers and 
for all sorts of other statistical calculations I recommend the Interactive Stats 
section of the http://www.statpages.net website.  It is REALLY nice. 
 
Reference has already been made to the RAND book of single-digit random 
numbers, which also contains random decimal numbers that range from 
approximately -3.00 to +3.00 and have a normal distribution rather than a 
rectangular distribution.  (See Box & Muller, 1958 and the Taygeta website 
concerning the generation of random normal deviates.) 
 
Believe it or not, you can even get random names (first names--both male and 
female--and last names) on the internet.  The website that provides them (for 
free) is www.kleimo.com.  (They have over 21 million of them.)  It's great fun.  
You can also choose an "obscurity factor" from 1 to 20 (the higher the number, 
the more obscure the name).  I asked for five names that could be either male or 
female and had an obscurity factor of 20.  I got as output the following names: 
 
1.   Minaya  
2.   Penelope Kornreich  
3.   Katy Pattillo  
4.   Jessie Bolten  
5.   Zelma Whitesides  
 
You can't get much more obscure than that!  Try it sometime.  You'll like it. 
 
How about random words?  Yes, you can get those too--on the internet from 
Gammadyne software.  The examples they give of words created by their 
Random Word Generator are:  Asprari, Cropoli, Eclon, Enthyme, Flun, Lycand, 
Mofra, Nespresco, Nokamu, Shrunt, Strelm, and Vermack.  They don't have any 
meanings (necessarily) and some of them are hard to pronounce, but think of all 
the possibilities!  And you can get random "passphrases" that have been found to 
be useful in developing security codes.  (See the Random Passphrase and 
Diceware Passphrase websites.) 
 
And to properly use random words you need random sentences, don’t you?  No 
problem; see Charles Kelly’s “Fun with Randomly-Generated Sentences” 
webpage, http://www.manythings.org/rs/. 
 
Random poems?  Try the plagiarist.com website.  Random mathematical 
quotations?  You can get them at the math.furma.edu website. 
 
There is a website that will give you random facts (although I don't think they're 
generated by a random process) and another website that creates a random 
password (for free) that provides greater security protection than a password 
based upon lucky numbers, birthdates, or whatever.   
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Do you like baseball?  I do (I'm what they call a "baseball nut").  There is a 
website called baseball-reference.com where you can call up a randomly-
selected former major league baseball player and get all of his lifetime statistics. 
 
If that isn't enough for you, you may want to try the random birthday generator 
that is included in John Pezzullo's marvelous collection of statistics stuff on the 
statpages.net website, and convince yourself that the probability of at least two 
out of n people having the same birthday is really quite high for relatively small n 
such as 25 or 30. 
 
Finally, not to be outdone, another enterprising website 
(http://www.noentropy.net) with tongue in cheek provides NON-RANDOM, 
deterministic numbers.  You can request from 1 to 10,000 of such numbers, but 
they're all 1. 
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Section 7:  What are tests of randomness? 
 
 
Most tests of randomness are tests of statistical significance applied to the 
product of a process (not the process itself) that is hypothesized to be random.  
The products are usually sequences of letters or numbers whose random or non-
random pattern is of concern.  Such tests are thought to be necessary by those 
who claim that randomness is strictly a property of a product; they are thought to 
be unnecessary and irrelevant by those who argue that randomness is strictly a 
property of a process. 
 
The simplest of these is the so-called "runs test".  (See Siegel & Castellan, 1988 
and McKenzie et al., 1999.)  Consider one sequence of the results of tossing a 
coin 30 times:  
 
HHHHHHHHHHHHHHHTTTTTTTTTTTTTTT.   
 
That sequence has two runs--an uninterrupted run of 15 Hs and an uninterrupted 
run of 15 Ts.  Intuitively that seems like too few runs for a sequence to be judged 
to be random.  It could have happened "by chance" with a fair coin, but most 
people would doubt it and would reject the hypothesis that the coin was a fair 
coin.  The runs test would also reject that hypothesis. 
 
Next consider another sequence of the results of tossing a different coin 30 
times:   
 
HTHTHTHTHTHTHTHTHTHTHTHTHTHTHT.   
 
That sequence has 30 runs (of one symbol each).  Intuitively that seems like too 
many runs for a random sequence.  The runs test would also judge that coin to 
not be a fair coin. 
 
Now consider the sequence HTHHTTHHHTTTHHHHTTTTHHHHHTTTTT.  That 
has 10 runs--a run of one H, a run of one T, a run of two Hs, a run of two Ts, a 
run of three Hs, a run of three Ts, a run of four Hs, a run of four Ts, a run of five 
Hs, and a run of five Ts.  That sequence "looks" more random, and the runs test 
would not reject the hypothesis that a fair coin produced it.  But note the "non-
random" regularity of that sequence. 
 
Finally, consider the sequence TTHTHTHHHTHTTTHHTHHHTHTTTTHHTH.  
That has 18 runs (count 'em), looks much more random than any of the previous 
sequences, would be judged to be random by the runs test, and has no apparent  
regularity. 
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[Are you bothered by the fact that all four of the sequences were "too good" in 
the sense that each yielded exactly 15 heads and exactly 15 tails?  Hmmm.  
Seems like there's two kinds of randomness or non-randomness going on here--
one involving the relative numbers of heads and tails and the other involving the 
order in which they appear.] 
 
For most tests of randomness all that can really be determined is a sort of 
"relative randomness", i.e., whether a sequence of digits is "more random than 
regular" or "more regular than random" (Griffiths & Tenenbaum, 2001; Pincus & 
Kalman, 1997; Pincus & Singer, 1996). 
 
A particularly interesting approach to testing for randomness that does NOT 
involve a test of statistical significance is due to Chaitin (1966; 1975; 1990; 2001; 
2002), who argued (drawing upon the previous work of Kolmogorov) that a 
sequence of digits is random if the shortest computer program for generating it is 
at least as long as the sequence itself.  (See also Devlin, 2000.)  By that rule the 
first example in this section (with Hs and Ts replaced by 1s and 0s, respectively) 
would be judged to be non-random, because a command "print 15 1s followed by 
15 0s" is shorter than the sequence 111111111111111000000000000000.  That 
particular sequence would also be judged to be non-random by the runs test. 
 
The second example would also be judged to be non-random by Chaitin's 
definition (and by the runs test), because "print 15 pairs of alternating 1s and 0s" 
(or some such command) is shorter than 101010101010101010101010101010. 
 
The third example is the most interesting.  Unlike the runs test decision of 
"random", Chaitin's rule would claim "non-random" because the command "print  
patterns of pairs of alternating 1s and 0s, starting with one of each" (or, again, 
something to that effect--you can tell that I'm not a computer programmer!) can 
be made to be shorter than 101100111000111100001111100000. 
 
The fourth example is easy.  There is apparently no command other than "print 
001010111010001101110100001101" that is shorter than 
001010111010001101110100001101 itself. 
 
I recommend that you "play around" with various sequences of 1s and 0s such 
as the above, "eyeball" each of them to make a judgment concerning which of 
the sequences you personally would regard as random and which you would not, 
and then subject each sequence to one or more of the tests of randomness and 
to Chaitin's rule, and see how the formal tests agree with your personal 
judgments.   
 
Two of the most interesting sequences of digits are the mathematical constants e 
(the base for natural logarithms) and π (the ratio of the circumference of a circle 
to its diameter).  The first of these, e, is equal to 2.71828... (it never cuts off) and 
the second of these, π, is equal to 3.14159...(it doesn't either).  The question has  
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been asked: Are the digits of π random?  [It has also been asked about the digits 
of e.]  Pathria (1961), for example, tested the first 10,000 digits of π for 
randomness; more recently, Bailey and Crandall (2001) subjected the first six 
billion digits of π (yes, it's known to at least that many places--see the article in 
the October, 1989 issue of Focus) to a test of randomness and found that each 
of the digits 0-9 appeared about six hundred million times.  On the basis of that 
test they claimed that  the six-billion-digit sequence for π is random.  [By the way, 
the sequence of digits for π has also been put to music--see the MuSoft Builders 
website.]   
 
There are a few other tests of randomness.  For information regarding how to 
use them I suggest that you go to Chris Wetzel's website (just give Google the 
prompt "Wetzel randomness" and click on the first entry), or check out 
Marsaglia's (1995) series of such tests (called DIEHARD tests).  And if you would 
like to study the results of coin tosses and are too lazy to actually toss the coins 
yourself, Ken White's Coin Flipping Page (on the web) will do it for you! 
 
There is also an interesting literature in psychology regarding the extent to which 
people are accurate in their judgments about randomness.  (See, for example,  
Bar-Hillel & Wagenaar [1991, 1993], Falk [1975, 1981], and Falk & Konold 
[1997].  The first four of those references all bear the title “The perception of 
randomness”.) 
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Section 8:  What is "random sampling" and why is it important? 
 
 
(Simple) random sampling is a type of sampling from a population which is such 
that every sample of the same size has an equal chance of being selected.  The 
word "simple" has been written in parentheses before "random sampling" 
because there are other types of random sampling (e.g., stratified random 
sampling--see Section 15), but whenever "random sampling" is not further 
modified it is assumed to be simple random sampling. 
 
Consider a small population consisting of five persons A, B, C, D, and E.  If you 
would like to draw a random sample of two persons from that population you 
must utilize a process such that the ten combinations A&B, A&C, A&D, A&E, 
B&C, B&D, B&E, C&D, C&E, and D&E are equally likely to be drawn.  For 
example, you could write each of those ten combinations on a separate piece of 
paper, put those pieces of paper in a hat, stir them up, and draw out one piece of 
paper.  The two letters that are written on that piece of paper would identify the 
two people who are to constitute your sample.  
 
There are several reasons why random sampling is important: 
 
(1)  It is fair.  If one of those combinations, say A&E [the TV network?] had a 
greater likelihood of being drawn than the others, any results based upon those 
two persons would be biased in their favor. 
 
(2)  It is objective.  If you and I agree to draw a random sample of two persons 
from that population of five persons, your sample might be different from mine, 
but neither of us would be introducing any subjectivity into the process. 
 
(3)  Random sampling is an assumption that underlies just about every 
procedure for making statistical inferences from samples to populations.  The 
formulas and tables that are commonly used for such inferences are not 
appropriate for non-random samples.  As Bennett (1998) wrote: "The only way 
we can legitimately rate or compare the value of an observed sample statistic, 
such as a mean or a sum, within the hypothesized sampling distribution is to 
select a sample randomly." (p. 110) 
 
Tables of random numbers (see Section 6) are the principal sources for carrying 
out random sampling.  Rather than using letters, pieces of paper, and a hat for 
drawing that sample of two persons from a population of five persons, you could 
"code" them 1, 2, 3, 4, and 5 rather than A, B, C, D, and E; open up a table of 
single-digit random numbers to a "random" page (oh,oh! sounds circular already, 
doesn't it? but let's press on); close your eyes; drop your finger on a "random" 
spot on that page (that's worse?); and read off the digit that your finger landed 
on, along with the one to its immediate right (why the right? that's worst?).  If both 
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of those digits are different and/or are not 1, 2, 3, 4, or 5  you'll have to read a 
little further to the right (even "come around the bend" to the next row of digits?) 
until you encounter two different digits in the 1-5 range.  Strange business, this 
randomness, isn't it? 
 
I like to make the distinction between sampling persons and sampling already-
existing measurements taken on persons.  [Most people don't make this 
distinction, but you may have already figured out that I'm a loner when it comes 
to certain things.]  Consider again this same simple example of persons A, B, C, 
D, and E, and an interest in measuring their heights.  If we draw two persons 
from the five persons and then measure their heights in inches, should we be 
concerned about the randomness of the various identifying combinations A&B, 
A&C, etc., or should we be concerned about the randomness of their heights, say 
67& 72, 67 & 64, etc.?   As you can gather from my remarks in Section 4, I would 
argue that we should only be concerned with the former, because the 
randomness--or non-randomness--occurs before the measurement.  On the 
other hand, if their heights have already been measured, are stored in a file, and 
are sampled, some (for example, Siegel & Castellan, 1988) would be inclined to 
argue that it is the randomness of the heights (more specifically, the order in 
which the heights are drawn) that is of concern.  I wouldn't, although I think it is 
important to make the distinction between sampling persons and sampling 
measurements.  It is the process of selecting the persons that is to be judged to 
be random or non-random (in this case, how we choose the persons from the 
file), not the product of the process (in this case their heights). 
 
There are those who do not actually draw samples at random but "regard" their 
samples as having been randomly drawn, for purposes of inferring from sample 
to population.  Or they say something like: I'm using inferential statistics to 
generalize from the sample of subjects that I have to a population of subjects 
"like these".  I think both of those positions are indefensible. 
 
The statistcal literature is replete with a number of excellent discussions of 
random sampling.  But once again I especially recommend that you see some of 
the cartoons in Gonick and Smith (1993) that provide visual representations of 
the essential aspects of random sampling.  The best of these, in my opinion, 
appear on pages 92 and 138. 
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Section 9:  What is the difference between random sampling and 
random assignment? 
 
 
One of the most bothersome (to me, anyhow) shortcomings in the 
methodological literature is the failure to properly distinguish between random 
sampling and random assignment.  [Edgington (1995 and elsewhere) and 
Ludbrook & Dudley (1998) are notable exceptions.]  The confusion is 
understandable since the two have much in common, but they have different 
purposes. 
 
As indicated in the previous section, the purpose of random sampling is to 
provide the basis for making a statistical inference from a sample to the 
population from which the sample is drawn.  We summarize the sample data by 
calculating some statistic (which we then know) for those data (a mean, a 
variance, a correlation coefficient, whatever) and infer something about the 
corresponding parameter (which we don't and may never know) for the sampled 
population.  In terms of the jargon of the popular Campbell and Stanley (1966) 
book on experimental design, the matter is one of external validity 
(generalizability). 
 
The purpose of random assignment (sometimes called "randomization") is quite 
different .  First of all, it applies only to experimental research in which the 
independent variable will be "manipulated", i.e. some sort of "intervention" is to 
take place.  We randomly assign subjects (participants in human research; 
animals in infra-human research; iron bars in metallurgical research; whatever) to 
"treatments" (the interventions) so that each subject has the same chance of 
being assigned to each treatment.  Why?  We want the subjects in the various 
treatment groups to be comparable at the beginning of the experiment, so that if 
they differ at the end of the experiment we can be reasonably assured that it is 
the treatments that "did it".  That, again in the jargon of Campbell and Stanley, is 
a matter of internal validity (causality).  For a particularly good discussion of 
causality see the article by Holland (1986), the accompanying comments, his 
rejoinder, and his later chapter (1993).  There is also the paper by Freedman 
(2002).  That paper gets a bit technical in spots, but he (Freedman, the senior 
author of the popular Freedman, Pisani, & Purves, 1998 statistics textbook) 
writes extremely well. 
 
Ideally, we would like an experiment to possess both features (generalizability 
and causality), i.e., we would like to employ both random sampling and random 
assignment.  For example, if we were to compare two different methods of 
teaching subtraction (take it from me that there are at least two methods), we 
would draw a random sample from the population of interest (say, all second 
graders in Los Angeles) and randomly assign half of them to be given Method A 
and the other half of them to be given Method B.  If we were able to carry out 
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such an experiment, we would be justified in using the traditional t-test of the 
significance of the difference between two independent sample means, provided 
that we were willing to make the usual assumptions of normality and 
homogeneity of variance.  It is the random sampling that provides the 
justification. 
 
Suppose, however, that we had random assignment but not random sampling, 
i.e., we had a non-random ("convenience") sample of the population to which we 
would like to generalize.  In that case the appropriate analysis would not be the 
traditional t-test (which assumes random sampling), but a randomization test (not 
to be confused with a test of randomness)--sometimes called a permutation test 
(see Edgington, 1995 for the details)--which would provide the basis for the 
generalization not to the population itself (because of the lack of random 
sampling) but from the particular way that the subjects in the sample happen to 
have been allocated to the treatments to all of the possible ways that those same 
people could have been allocated to the treatments.  That would in turn provide a 
basis for claiming causality for those subjects, but any generalization to the full 
population would have to be a non-statistical one (based upon the researcher's 
judgment of the representativeness of the non-random sample).  
 
For non-experimental research you might have random sampling but not random 
assignment (since there are no "treatments" to "assign" subjects to), in which 
case you would have the statistical basis for generalizability to the population, but 
an insufficient basis for assessing causality. 
 
Finally, you might find yourself in a position of not having the luxury of either 
random sampling or random assignment.  That doesn't necessarily mean that 
you should not carry out the study and report its results.  But it does mean that 
you are restricted to the use of descriptive statistics only, with any sort of causal 
or generalizable interpretation being necessarily subjective and inadvisable.  The 
best approach, in my opinion, to approximating causality in such studies is to use 
the technique called "propensity score analysis" (PSA)--see Rosenbaum and 
Rubin (1983) and Pruzek and Helmreich (in preparation).  There is also the 
method advocated by Copas and Li (1997), whose long article bears the 
unfortunate title “Inference for non-random samples” (it is concerned solely with 
observational studies that have non-random assignment).  And for some kinds of 
medical investigations with genetic aspects there is a recent approach that 
incorporates so-called “Mendelian randomization” (see Davey Smith & Ebrahim, 
2003).  
 
Associated with random assignment is the matter of "blocking".  Rather than 
simply randomizing n subjects to two treatments A and B, with n/2 people 
assigned to each treatment, one might first create "blocks" of, say, four people 
each according to some variable, e.g., age, and randomly assign, within blocks, 
two people to Treatment A and two people to Treatment B.  The four oldest 
persons would wind up two/two; the next four oldest persons also two/two; etc., 
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with the total numbers in each of the treatments still n/2.  The process could be 
refined even more by creating within each block what are sometimes called 
"random sandwiches", with the first oldest and the fourth oldest persons 
constituting the bread and the middle two persons constituting the meat.  This is 
similar to the scheme used in a sport such as doubles in tennis, where the 
strongest player and the weakest player are pitted against the two players who 
are intermediate in strength. 
 
[I can't resist pointing out that there are websites where you can purchase "real" 
random sandwiches.  Just give the order and a sandwich consisting of a strange 
combination of ingredients will be delivered to your door!] 
 
Although the objectives of random sampling and random assignment are 
different, you can use the same random-number tables for accomplishing both.  
One such source is the "Research Randomizer" website (www.randomizer.org).  
It will provide you, at no charge, a random sample of any n numbers out of any N 
numbers (where n is less than or equal to N) and/or a random assignment of n 
numbers into subsets of n1 , n2 , ..., nk  where the sum of those subscripted n's is 
equal to n, and k is the number of "treatments".  
 
For a fine article on the importance of randomization in experiments, see Boruch 
(2002).  For an interesting exchange concerning random sampling vs. random 
assignment, see Shaver (1993) and Levin (1993).  (See also Levin, 2002.)  For a 
later “debate” on the necessity for randomization in clinical trials, see the article 
in Research in Nursing & Health by Sidani, Epstein, and Moritz (2003) and the 
commentary regarding that article by Ward, Scharf Donovan, and Serlin (2003). 
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Section 10:  What is the randomized response method in survey 
research? 
 
 
One of the most common problems in survey research is the refusal by many 
people to respond to sensitive questions that deal with emotionally charged 
matters, e.g., sexual behavior and religious beliefs.  Even if they are promised 
anonymity (“nobody will ever be able to associate your response with your 
name”) or confidentiality (“I can but I won’t tell anyone else”), they will refuse to 
answer those questions when posed to them in a face-to-face interview and they 
will leave blank all such questions on a written questionnaire. 
 
Several years ago Stanley Warner (1965) devised an ingenious procedure for 
trying to minimize non-response to sensitive questions, a method he called 
“randomized response”.  It goes something like this: 
 
Let’s say you were interested in estimating the percentage of college students  
who smoke marijuana (a sensitive matter that also has legal ramifications).  Each 
respondent could be asked to use a table of random numbers to select a random 
number from 00 to 99 and if the number selected is, say, 70 or above the student 
would be asked to respond to a sensitive question such as “Do you smoke 
marijuana at least once a week?”  If the number is 69 or below the student would 
be asked to respond to an unrelated question such as “Is the last digit of your 
student ID number odd?”  [This example is described in considerable detail in the 
delightful article by Campbell & Joiner (1973) entitled “How to get the answer 
without being sure you’ve asked the question”.]   Nobody need know who 
answered which question (the responses consist of a simple “yes” or  “no” for 
each student), but by making certain reasonable assumptions (that the 
percentage of students who have answered the sensitive question is 30 and the 
percentage of students who have an odd ID number is 50) and using a standard  
formula for conditional probabilities, the percentages of “yes” answers to the 
sensitive question can be calculated. 
 
There are several variations of this technique that have been devised over the 
years (see, for example, Fox & Tracy, 1986) but all have the same objective of 
estimating the percentage of respondents who hold certain views on various 
sensitive issues or who engage in various sensitive practices. 
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Section 11:  Under what circumstances can data be regarded as 
missing at random? 
 
 
One of the most frustrating problems in data analysis is the absence of one or 
more pieces of data.  Researchers usually go to great lengths in designing their 
studies, choosing the appropriate measuring instruments, drawing their samples, 
and collecting their data, only to discover that some of the observations are 
missing, due to a variety of reasons (an item on a questionnaire left blank, a 
clerk's neglect to enter an important piece of information, a data-recording 
instrument's failure, etc.).  How do you cope with such a problem?  The literature 
suggests that there are essentially two strategies--deletion or imputation.  You 
can delete all or some of the non-missing data for the entities for which any data 
are missing; or you can try to impute (estimate) what the missing data "would 
have been".  If you choose the imputation strategy, the literature further suggests 
that you need to determine whether or not the data are "missing at random".  But 
when are data missing at random? 
 
My personal opinion is "never", but I am apparently in the minority.  One of the 
gurus of missing data, Donald B. Rubin (1976), defined three kinds of 
"missingness"  (see also Little & Rubin, 2002): 
 
1.  Missing at random (MAR).  Data are said to be MAR if the distribution of 
missingness does not depend upon the actual values of the missing data (i.e, 
what they would have been). 
 
2.  Missing completely at random (MCAR).  Data are said to be MCAR if the 
distribution of missingness also does not depend upon the actual values of the 
other data that are not missing. 
 
3.  Missing not at random (MNAR).  Data are said to be MNAR if the distribution 
of missingness does depend upon the actual values of the missing data. 
 
The article by Schafer and Graham (2002) is particularly good for further 
clarifying those three kinds of missingness, along with examples of each.   
Rubin's definitions of random missingness are "product-oriented" rather than 
"process-oriented", i.e., one needs to make certain asumptions and/or analyze 
some actual evidence in order to determine whether or not, or the extent to 
which, data might be missing "at random".  That view, although perhaps correct, 
is contrary to mine.  It also appears (at least to me) to be contrary to most 
people's concept of a random phenomenon, where chance should play an 
essential role.  People don't flip coins, roll dice, or draw cards in order to 
determine whether or not they will respond to a particular item on a 
questionnaire.  Data entry clerks don't employ such devices in order to determine 
whether or not they will enter a participant's response in a data file.  And 
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recording instruments don't choose random times to break down.  Do they??  
And how can you analyze non-missing data to draw conclusions regarding the 
randomness or non-randomness of missing data?   
 
In the spirit of Rubin's product-dependent concept of randomness, Schmitz and 
Franz (2001) even provide a method (the popular bootstrap technique) for testing 
whether or not the data from study dropouts are missing at random!  Amazing. 
 
The actual size of the total sample and the proportion of missingness need to be 
taken into consideration no matter what you decide about the "randomness of the 
missingness".  If the sample is large and the proportion of missingness is small, it 
doesn't really matter what you do.  But if, say, you have at least one missing 
observation for each member of your sample, and it is a different observation for 
each subject, you have a major, major problem.  (In that case so-called "listwise 
deletion", where all of the data for a subject are deleted if the subject has any 
missing data, is not an option, since you would then have an n of 0.) 
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Section 12:   What is a random variable? 
 
 
"Random variable" is a term originating in mathematical statistics, and refers to a 
variable that can take on any value from some given probability distribution.  For 
example, "outcome of a single toss of a fair coin" is a random variable (a so-
called Bernoulli variable) that can take on the value H (1) or T(0) for any 
particular toss of such a coin with equal probability. 
 
The most commonly discussed, but in my opinion the most over-rated, random 
variable is a variable that is distributed according to the normal, bell-shaped, 
Gaussian form.  [I'll probably get into trouble for saying it's over-rated, but I (and 
Micceri, 1989) claim that most variables are NOT normally distributed--income, 
for example, is not normally distributed in any population---and the primary 
reason for the popularity of the normal distribution is that the mathematical 
statisticians know all about it!] 
 
Traub (1994) based his development of classical reliability theory upon the 
concept of a random variable, as had Lord and Novick (1968) in their very 
popular textbook.  I personally prefer Gulliksen's (1950) approach, which did not 
explicitly employ the concept of a random variable. 
 
There is an interesting parallel between a random variable and the concept of an 
"event" in probability theory, as recently pointed out to me by my colleague 
Ronald Serlin (personal communication, March 10, 2003).  Mathematical 
statisticians talk about a random variable Y taking on the value of y and an event 
E taking on the value of result e.  For example, it is well-known that the 
probability of a "1" (= y) for a Bernoulli variable (= Y) is equal to P.  Similarly, the 
probability of a "1" (= e) for a (fair or unfair) coin toss (= E) is equal to its P. 
 
An interesting "take" on the concept of a random variable is that of Van Lehn 
(2002), who claims that a random variable is neither random nor a variable, but is 
best thought of as simply a function on a sample space. 
 
For an entire collection of cartoons that illustrate the concept of a random 
variable better than any section of a traditional statistics textbook, see Chapter 4 
in Gonick and Smith (1993). 
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Section 13:  What is the difference between random effects and 
fixed effects in experimental research? 
 
 
Random effects are effects in an experiment that can be generalized to a 
"population" of treatments from which a subset of treatments has been randomly 
sampled.  For example, if in a particular study you randomly selected three drug 
dosages out of ten drug dosages to actually be tested against one another, and 
you found a statistically significant difference among the three, you would be 
justified in inferring that there was a difference among all ten.  [But you could of 
course be wrong.] 
 
Fixed effects, on the other hand, are effects that pertain only to the treatments 
that are specifically employed in the experiment itself.  For example, if you were  
only interested in the effect of 100 milligrams of a particular drug vs. 200 
milligrams of that drug, the research subjects were randomly assigned to one or 
the other of those two doses, and you found a statistically significant difference 
between those two dosages, you would have no basis for generalizing the 
findings to other dosages such as 50 milligrams or 500 milligrams. 
 
Some variables that are employed as covariates in experimental research are 
necessarily fixed, e.g., sex.  There are just two sexes, so if and when sex is a 
variable in a research design generalizations to "other sexes" wouldn't make any 
sense.  (It is of course possible for sex to be held constant, rather than to be a 
variable, if one were interested solely in an experimental effect for males only or 
for females only.) 
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Section 14:  Can random sampling be either with replacement or 
without replacement? 
 
 
Yes (but see Hoffman, 2002, who claims otherwise).  If the first object is not 
replaced in the population before the second object is drawn, the second object 
admittedly has a different selection probability, but the process is nevertheless 
still random.  The better approach to the problem, however, is to refer to the 
formal definition of random sampling (as given by Wallis & Roberts, 1962, for 
example) and think of the drawing of a random sample as a procedure for 
selecting a combination of n things from a population of N things, with each 
combination being equally likely to be the one actually drawn. 
 
The matter of sampling with replacement or without replacement is rather 
fascinating.  Virtually all of traditional statistical inference is based upon sampling 
with replacement, e.g., all of the well-known parametric significance tests for 
which a normal population distribution is known or assumed.  But most 
procedures for actually drawing samples are based upon sampling without 
replacement.  When using a table of random numbers (see Section 6), if an ID 
number is encountered that is the same as an ID number that has already been 
drawn, the researcher is told to ignore that number and go on to the next.  The 
reason for that is to avoid having a subject being selected more than once; if one 
or more subjects were in the data two or more times, the sample observations 
would not be independent. 
 
The saving grace in all of this is that most sample sizes are much smaller than 
most population sizes, so for all practical purposes it doesn't really matter 
whether the sampling is with or without replacement.  It is extremely unlikely in 
such cases that a given ID number would be sampled more than once. 
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Section 15:  What is stratified random sampling and how does it 
differ from stratified random assignment (blocking)? 
 
 
Stratified random sampling is a two-step process.  The population to be sampled 
is first divided into two or more parts called "strata" (singular: "stratum") and then 
a simple random sample is drawn from each stratum.  For example, if you 
wanted to take a sample of 30 people from a population that consisted of 100 
men and 200 women, and you wanted your sample to have the same proportion 
of men and women as the population had, you would draw a simple random 
sample of 10 men from the male stratum and a simple random sample of 20 
women from the female stratum. 
 
Stratified random assignment, better designated as blocking, pertains to the 
sample and not to the population, but is a similar process.  That is, you first 
divide the sample (no matter how it has been drawn) into two or more strata and 
then you randomly assign to treatments within strata.  For example, if you were 
carrying out an experiment to test the effect of an experimental treatment vs. a 
control treatment for a sample that consisted of 10 males and 20 females, and 
you wanted to be sure that you had the proper proportions of males and females 
in each of the treatments, you would randomly assign 5 of the males to the 
experimental treatment and the other 5 of the males to the control treatment, and 
you would randomly assign 10 of the females to the experimental treatment and 
the other 10 of the females to the control treatment.  This would permit you to 
test the “main effect” of treatment, the “main effect” of sex, and the sex-by-
treatment “interaction effect”. 
 
Blocking also plays a key role in the statistical method for testing causality in 
non-experimental research called propensity score analysis (PSA)--see Section 
9.  What is entailed is the calculation of a propensity (to fall into one intact group 
vs. the other) score, the rank-ordering of those scores, the creation of a small, 
but not too small, number of blocks of those scores, and a comparison of the two 
groups within each of those blocks.  (See Rosenbaum & Rubin, 1983 and Pruzek 
& Helmreich (in press) for more specific details.) 
 
The best way to remember the difference between stratified random sampling 
and stratified random assignment (blocking) is to repeat the mantra "stratify the 
population; block the sample". 
 
For a clever cartoon that illustrates stratified random sampling, see Gonick and 
Smith (1993), page 95. 
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Section 16:  What is the difference between stratified random 
sampling and quota sampling? 
 
 
The principal difference is the presence of a chance element in one (stratified 
random sampling) and the absence of a chance element in the other (quota 
sampling).  For example, if you wanted to conduct a survey and you insisted that 
there be the same number of men and women, and of younger and older adults, 
in your survey, you could stratify the population to be sampled into, say, four 
strata (male, 18-40; female 18-40; male, over 40; female, over 40) and take a 
simple random sample of, say, 50 people from each of those strata.  OR you 
could go out into the highways and byways and sample until you got 50 people 
(any 50 people...your "quota") for each of the four categories.  Which approach 
do you think is better? 
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Section 17:  What is random error? 
 
 
Random error is any error that can be attributed to chance.  The most common 
use of the term is in various theories of measurement where the emphasis is 
upon "random measurement error" due to the unreliability of measuring 
instruments. 
 
The type of error that is associated with having a sample of a population rather 
than the entire population is usually called, logically enough, "sampling error", but 
the modifier "random" is taken to be understood.  Random measurement error is 
often called "non-sampling error", but that term is confusing in educational and 
psychological research, where much of measurement error is actually attributable 
to the sampling of test items from populations of test items. 
 
There is one other kind of error that is unique to educational and psychological 
testing.  We could arrive at a total score on an achievement test, for example, by 
counting the number of wrong responses rather than the number of right 
responses.  But the number of right responses and the number of wrong 
responses are both types of obtained scores, not error scores in the 
measurement-theoretic sense of that word (see next section), and in any event 
are not random. 
 
Speaking of right responses and wrong responses, there is a vast literature in 
educational and psychology on the matter of chance success for certain kinds of 
tests (multiple-choice, true/false, and matching) in which answers are selected 
from various given alternatives, i.e., they are not supplied by the test-taker.  
Some measurement experts claim that scores on such tests should be corrected 
for chance success by subtracting some fraction of the wrong answers from the 
total number of  right answers.  The formulas for so doing assume that (a) some 
examinees do guess (whether you tell them to or not to) and (b) if and when they 
guess they guess randomly.  Both (a) and (b) are questionable assumptions.  I 
personally feel that the whole matter of correction for chance success has been 
highly over-rated.  (For opposite points of view you might want to read Plumlee, 
1952,1954; Mattson, 1965; Zimmerman & Williams, 1965; or the "correction-for-
guessing" sections of most introductory textbooks in educational or psychological 
measurement.)  However, I must admit that I once wrote a long article in which I 
provided formulas for estimating the reliability of a single test item where chance 
success is possible (Knapp, 1977). 
 
There is an equally vast literature regarding the correction for chance agreement 
of various inter-rater and intra-rater reliability coeficients--see Cohen's (1960) 
discussion of his kappa coefficient and any other source that talks about that 
particular statistic.  The formulas for doing that, like the correction for chance 
success formulas, assume that some raters provide some ratings randomly and 
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some portion of the percent agreement between or within raters is chance 
agreement.  I think that is also questionable and there is little or no need for 
Cohen's kappa.  If there is ever any reason to believe that raters rate randomly 
all you need to do is raise the standard as to what constitutes "good" percent 
agreement. 
 
For more on random measurement error, see any or all of the following:  Cureton 
(1931), Cochran (1968), Grubbs (1973), Jaech (1985), Schmidt and Hunter 
(1996), the "Standards" for educational and psychological tests (AERA, APA, & 
NCME (1999), and Dunn (2003). 
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Section 18:  Does classical reliability theory necessarily assume 
random error? 
 
 
The answer is an emphatic "no", as shown by Gulliksen (1950) in his excellent 
textbook on the theory of mental tests and as I have tried to demonstrate in my 
reliability book (Knapp, 2009).  Most other sources, however, insist that the kinds 
of errors that are associated with reliability are random measurement errors.  
(They also claim that non-random measurement errors are “constant” errors and 
are associated with invalidity.) 
 
Gulliksen (1950) explained how all of the theorems of classical reliability theory 
can be derived EITHER by first defining error score as random (mean equal to 
zero, zero correlation between error for one instrument and error for another 
instrument, etc.) and then defining true score as the difference between obtained 
score and error score; OR by first defining true score as the mean of an infinite 
number of obtained scores on parallel forms of the instrument and then defining 
error score as the difference between obtained score and true score. 
 
Defining random measurement error first and then letting true score fall out as 
the difference between obtained score and  error score is by far the more popular 
approach and, as you can see, its definition (alas) is "product-oriented" rather 
than "process-oriented" because it is based upon the assumption of, and/or 
evidence for, zero mean, zero correlations with other measurement errors, and 
the like. 
 
Reference was made above to "an infinite number of obtained scores on parallel 
forms".  The matter of parallel forms has been a controversial one ever since its 
introduction to measurement theory almost a century ago.  It is a reasonable 
(albeit ethereal) notion in certain contexts such as spelling tests, but not in other 
contexts such as the measurement of length.  For a spelling test it is at least 
possible to imagine a perhaps not infinite but very large number of parallel forms 
that could be constructed by randomly sampling words from an unabridged 
dictionary (without replacement within form but with replacement between forms).  
But for a yardstick or other instrument for measuring length it is almost 
impossible to define parallel forms, much less imagine an infinite number of 
them. 
 
Parallel forms can be "randomly parallel" (as alluded to in the previous 
paragraph) or "rigorously parallel" (satisfying a variety of conditions).  If you are 
interested in that distinction please see the textbooks written by Kelley (1927), by 
Gulliksen (1950), by Lord and Novick (1968), and by Nunnally and Bernstein 
(1994) and/or the articles written by Lord (1964) and by Novick (1966).  Kelley 
was a strong advocate of the parallel form approach to reliability.  Another 
measurement expert, Louis Guttman, questioned the entire concept of parallel 
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forms.  He favored the test-retest approach.  Others, e.g., Lee Cronbach, 
contributed to the development of methods for determining  “internal consistency” 
reliability (which Kelley refused to acknowledge as “reliability” at all; he referred 
to them as procedures for assessing the homogeneity of a number of variables--
usually test items--that were alleged to measure the same construct.)  
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Section 19:  What do you do if one or more subjects who are 
randomly selected for a research study refuse to participate 
and/or refuse to be randomly assigned to a particular treatment? 
 
 
In Section 11 I discussed the frustration associated with missing data and 
whether or not the absent data could be considered as being randomly missing.  
What is equally frustrating is to draw a random sample of subjects for a research 
study and have one or more of them refuse to participate at all or, in the case of 
an experiment, refuse to be assigned to a particular treatment.  If that happens, 
what should you do? 
 
You have several choices: 
 
1.  You can augment the cooperating segment of the sample with another 
random sample equal in size to that of the non-cooperating segment.  For 
example, if you had selected a random sample of 50 subjects from a particular 
population and 10 of them refused to participate, you could select a random 
sample of an additional 10 subjects from that same population to replace the 10 
refusals.  This would restore your original sample size (unless some of the new 
10 also refuse to participate!), but the final sample would not be nearly as "clean" 
as the originally drawn sample, as far as any inference to the population is 
concerned, since non-cooperators would not be represented in that sample. 
 
2.  You could go ahead and carry out the study on the basis of the sub-sample of 
cooperating respondents only, but that would  constrain the generalizability to the 
sub-population of cooperators. 
 
3.  You could use a complicated analysis called “intent to treat” analysis (see, for 
example, Green, Benedetti, & Crowley, 2002), wherein the data for the 
“refuseniks” are counted in with the group to which they were assigned, no 
matter what they decided to do (or not do) subsequent to that assignment. 
 
4.  You could (but don't) try to estimate all of the data that those non-cooperating 
subjects would have provided had they been cooperators.  There is a variety of 
techniques for estimating data when you have some non-missing data for 
subjects who do agree to participate in the study but do not provide full data 
(again see Section 11), but if subjects don't provide any data those techniques 
don't work. 
 
If you are comparing “pretest” and “posttest” scores and there is some attrition 
between pretest and posttest, there is one thing you should not do, and that’s to 
display in a table the summary descriptive statistical information (means, 
standard deviations, etc.) for the full sample at pretest time and for the reduced 
sample at posttest time.  It’s a classic case of “apples and oranges”.  If you feel 
the need for such a table you must display three sets of summary data: (1) 
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pretest scores for the “dropouts”; (2) pretest scores for the “non-dropouts”; and 
(3) posttest scores for the non-dropouts.  Summaries (2) and (3) are comparable; 
summary (1) provides a basis for determining whether the dropouts and the non-
dropouts are sufficiently similar for the (2) vs. (3) comparison to be meaningful.
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Section 20:  What is a random walk? 
 
A random walk is a series of steps that have a point of origin and are such that 
the direction each step takes is a matter of chance, i.e., it is a random process.  
The most widely-discussed application is to the drunk who starts at a bar and 
walks (stumbles, really) in one direction or the other, with each direction having a 
known probability (the probabilities are usually assumed to be equal) of being 
followed.  (See the cartoons on page 215 of Gonick & Smith, 1993 and on the 
Physics Random Walk website.)  The typical research questions for such a 
situation are things like "What is the expected location after n steps?" or "What is 
the probability that the drunk is at a certain distance x, from the bar, after n 
steps?" (See, for example, the delightful paper by Monte, 2003 for an analysis of 
the case of x = 0, i.e., the drunk arrives right back at the bar).  But there are 
many more serious applications of random walks to important problems in the 
physical and the social sciences.  (See, for example, the online Training 
Handbook for Anthropometric Surveys.htm for a fascinating illustration of the use 
of a random walk for collecting household survey data.) 
 
Is it too much of a stretch for me to claim that I have taken you on sort of a 
random walk through this monograph?  If so, I hope your final destination has 
been an understanding of the concept of a random phenomenon and not back at 
"the bar" where you started out. 
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