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Abstract 
Strandberg and Iglewicz (2012) propose a test that detects deviations from randomness, 

without an a priori distributional assumption. This nonparametric test is designed to 

detect deviations of neighboring observations from randomness, especially when the 

dataset consists of time series observations. The proposed test is especially effective for 

larger datasets. In our simulation study, this test is compared to a number of variance 

ratio and traditional statistical tests. The proposed test is shown to be a competitive 

alternative for a diverse choice of distributions and data models. In addition, this test is 

able to successfully detect changes in variance, which can be informative in short term 

investing and option trading. In our empirical application, we review and compare several 

transformations while evaluating common US stock market indices. We consider two 

commonly used transformations and a proposed new transformation from Strandberg and 

Iglewicz (2012). This new transformation performs surprising well for stock market 

index data and is the only transformation to show consistence results among the 

considered tests. 

 

Key Words: Nonparametric, Randomness, Stock Market Indices, Time Series, 

Variance Ratio  

 

1. Introduction 

 
A new test, proposed by Strandberg and Iglewicz (2012), is considered for studying 

departures from randomness of a series of independently and identically distributed 

(i.i.d.) random variables.  There are many existing tests used to determine if a time series 

consists of a random sample. Often these tests have restrictive distributional assumptions, 

size distortions, or low power. The interest here lies in developing an alternative test with 

minimal assumptions and a simple test statistic to determine whether a series consists of a 

random sample. A test with minimal assumptions is an important consideration since data 

distributions are often unknown. Therefore, developing a test that does not require a 

normality assumption or a priori knowledge of the distribution generating these data is 

highly desirable.   

 

The proposed test is shown to work well for varied symmetric and skewed distributions 

with reliance on an upper and lower percentile and straightforward conditional binomial 

probability, without an a priori distributional assumption.  The test is then empirically 

compared with two popular existing tests and shown to be nicely competitive.  In our 

comparison varied sample sizes and distributional models are considered. The proposed 

test is also evaluated in an applied application using stock market index data. 

These data are not normally distributed; rather they are nonstationary with 

typically an increasing long term trend. These data are atypical because such data 
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often consists of structural breakdowns where a relatively large number of 

adjacent time series observations follow a regular pattern followed by highly 

irregular periods with changes in mean and variance (Chu, Stinchcombe and 

White 1996, Bandyopadhyay, Biswas, and Mukherjee 2008). Even after making a 

practical transformation the distributions of these stock market index datasets are 

often noticeably skewed. In addition, a new data transformation, also proposed by 

Strandberg and Iglewicz (2012), is considered. This transformation is a modified measure 

of percent change (MMPC), similar to a stock return. In our stock index data analysis 

study, the proposed transformation was the only considered transformation that led to 

consistently rejecting the null hypothesis with high power for all considered tests and 

stock market indices.   

 

2. Description of Tests 

 
Our motivating application is daily closing values from stock market index data, which 

consist of large number of observations. Large sample datasets are becoming more 

common in other statistical areas, such as regression and linear and nonlinear models. 

There are many tests that can be used to determine whether a series, such as daily 

changes in index data, consists of a random sample. These tests include both classical 

statistics methods and methods popular in the economic and finance literature, such as 

variance ratio tests. In this paper we compare the proposed test with the traditional 

Durbin and Watson (1950) test and the most referenced of the variance ratio tests found 

in the literature, Lo and MacKinlay (1988).   

 

2.1 Strandberg and Iglewicz (2012) 
The test by Strandberg and Iglewicz (2012) is based on a straightforward conditional 

binomial probability and test statistic that converges in distribution to the standard normal 

distribution. It tests for randomness of a time series based on a model that assumes i.i.d. 

random observations. Consider a time series, Y1, Y2, ..., YN consisting of N observations, 

under the null hypothesis  

tttY            (1) 

where εt is i.i.d.(0,
2 ), 

2][  tVar  and  t  for all t.  Note that no additional 

distributional assumptions are made on εt in (1). Let Y = {Y1, Y2, Y3 , …., YN}.  Notice 

that while we are dealing with a series, Y is a set. Consider the subsets Y* ={Yt : Yt R} 

and Y** ={Yt : Yt   R}, where R is the simple interval [Y{0.025}, Y{0.975}] and Y{p} is the 

p
th
 sample percentile. Note that Y** is the complement of Y*.  Other regions for R may 

be useful, but here we only consider the interval [Y{0.025}, Y{0.975}]. Concentrating on 

observations outside upper and lower percentiles allows this test to focus on tail 

observations, which are of special interest in stock market investigations, rather than on 

the entire dataset. While this choice of percentile works well in terms of providing the 

appropriate significance level, note that it is not directly related to the common 

significance level of α = 0.05. Assume that the null hypothesis, that these observations 

constitute a random sample, is true.  Let N(Y**) be the number of elements of Y** and 

P(YtY**) = π.  We can estimate π by ̂ = N(Y**)/N (Strandberg and Iglewicz 2012).   

 

Next subdivide the N observations into M consecutive intervals each having an equal 

number of K observations, such that  KNM / intervals, where    is the floor 

(largest integer) function and K is an integer that is small relative to N.  If N/K – M ≠ 0, 
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then using M intervals leaves out K(N/K – M) = b observations. We then recommend 

ignoring the first b observations in the time series.  These b observations are considered 

an incomplete group of size less than K.  Since N is large relative to K, having b ≠ 0 

should not be a problem. For our motivating example, we consider complete weeks 

consisting of K = 5 days; then N/K is an integer.  For simplicity assume b = 0.  For i = 1, 

2, …, K, j = 1, ..., M, denote Yi
(j)

 = YK(j-1) + i as the i
th
 observation in the j

th
 interval.  For j 

= 1, ..., M, let Wj = 



K

i

j

iYI
1

)(( Y**), where  I is the indicator function.  Under the 

null hypothesis that Y1, ..., YN are i.i.d., we have W1, ..., WM i.i.d. Binomial (K,  ).  It 

follows that  

K

K

jj

K
WWP

)1(1

)1(
)0|1(

1












, j = 1, ..., M.    (2) 

We denote the conditional probability in (2) by D.  This suggests we consider all intervals 

such that Wj > 0. Let L =  



M

j

jWI
1

0 and L1 =  



M

j

jWI
1

1 . Thus in L out of the M 

intervals, we have Wj greater than 0, or at least one observation within the j
th
 interval 

belongs to the set Y**. Similarly there are L1 out of the M intervals, where exactly one 

observation belongs to the set Y**.   

 

Notice that the j
th
 interval with Wj = 1 must also satisfy Wj > 0. Thus we can rewrite L1 as 

L1=  



L

j

jj WWI
1

0|1 . Under the null hypothesis, it follows that  0|1  jj WWI  is 

a Bernoulli random variable with success probability D =  0|1  jj WWP . 

Consequently, L1 follows Binominal (L, D). For large L, by central limit theorem, we 

know 
 
 

 1,0
1

1 N
LDD

DLL d



where “ d

” means converge in distribution. For 

moderate L, the binomial approximation can be improved by using a correction factor 

with modified test statistic   

   
LDD

LcHDLL
Z

)1(

1




        (3) 

where 














D
L

L
if

D
L

L
if

H
1

1

1

1
 and 

L

c
 is the useful correction factor needed to prevent the 

test from being too conservative (Strandberg and Iglewicz 2012). In this study we use c = 

0.50 and K = 5 to mimic stock market data with full 5 day trading weeks.   

  

2.2 Lo and MacKinlay (1988) 
As an alternative, we considered the popular variance ratio test of Lo and MacKinlay 

(1988). Under the null hypothesis, the relation between observations is a random walk, 

ttt YY   1          (4) 

where Yt is the value of a return at time t,   is an unknown arbitrary drift parameter and 

εt is a disturbance term with Var(εt) = 
2

 . A random walk assumes the conditional mean 
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and variance are linear in time, a condition that may not always be reasonable when 

considering stock market data.   
 

Although, Lo and MacKinlay developed two variance ratio tests, M1 and M2, our 

simulation investigation, using the vrtest package of R (Kim 2010), showed that the 

simpler test, M1, performs slightly better than M2. As a result, our simulation results will 

only be reporting for M1. Under the null hypothesis M1 assumes εt are i.i.d. N(0, σε
2
). The 

test statistic for M1 is 

)(1 kM  
2

1

)(

1)(

k

kVR




         (5) 

where 
kN

kk
k

3

)1)(12(2
)(


 , 

)1(ˆ

)(ˆ
)(

2

2



 k
kVR  , 





 
N

kt

ktt kYYmk 212 )ˆ()(ˆ   

with )1)(1( 1 kNkNkm  for k ≥ 1, and  




 
N

t

tt YYN
1

1

1̂ , such that when 

VR(k) = 1 observations are serially uncorrelated; likewise when VR(k) ≠ 1some 

autocorrelations between observations exist (Lo and MacKinlay 1988, Charles and Darné  

2009). Note that VR(k) is a variance ratio that compares the variance of the k-period 

return with k times the variance of the one-period return. In this study the common value 

of k = 2 is used. Under the null hypothesis, M1 follows asymptotically the standard 

normal distribution.  However the sampling distribution of this variance ratio test statistic 

is known to be skewed (Chen and Deo 2006, Charles and Darné 2009).   

 

2.3 Durbin and Watson (1950) 
A well known traditional test of randomness was introduced by Durbin and Watson 

(1950). They test for non-randomness in the residuals of an ordinary least squares 

regression equation with the test statistic, 












N

t

t

N

t

tt

e

ee

d

1

2

2

2

1)(

 ,        (6) 

where et is the t
th
 residual and N is the number of observations.  This test assumes i.i.d. 

N(0, σ
2
) errors.  The test statistic, d, is asymptotically normal with mean of 2 and 

variance of 4/N (Harvey 1990).  When data are positively (negatively) serially correlated, 

d will have a value that tends to zero (four).  Although this test was designed for residuals 

of least squares regression, it can be used to test time series data such as Y1, Y2, Y3, ..., YN,  

by substituting Yt = et in (6), assuming the assumption of i.i.d. N(0, σ
2
) is valid.  In some 

applications, the restricted conditions of normality and serial correlation are limiting. 

When data are heavily skewed, this test does not meet the size requirement (Ali and 

Sharma 1993).  

 

3. Stock Market Example 

 
In this section we evaluate randomness of daily closing values of stock market indices 

using the Dow Jones Industrial Average (DJIA), the Standards & Poor's 500 (S&P 500), 

and the National Association of Securities Dealers Automated Quotation System 

(Nasdaq). We only consider data for full 5 day weeks, with data ending on December 18, 

2009.  These data were also analyzed by Strandberg and Iglewicz (2012, 2013).  We 

Business and Economic Statistics Section – JSM 2012

910



 

 

 

consider three different transformations, which include two common transformations and 

a newly proposed transformation by Strandberg and Iglewicz (2012). Consider the 

following transformations: lag 1 closing daily stock market index differences, Yt – Yt-1; 

daily percentage change defined as 













1
)(

)(
100

1 iY

iY

t

t  where Yt(i) is the daily closing price 

for index i on day t (Cizeau, Potters and Bouchaud 2001, Bandyopadhyay, Biswas and 

Mukherjee 2008, Mukherjee and Bandyopadhyay 2011), i = 1, 2, 3, for DJIA, S&P 500, 

and Nasdaq, respectively; the modified measure of percent change, MMPC, 


















1
)(

100
)(

)1:2(

i

t

qtqt
MA

iY
where MA is a delayed moving average of q observations such that 

q

Y

MA

qt

qtj

t

qtqt









1

2

)1:2(
, were, as suggested by Strandberg and Iglewicz (2012) , q = 10. It 

is reasonable to test whether these transformed observations constitute a random sample. 

Results are included in Table 1. To assist in the readability of Table 1, after each test 

statistics * is added if significance is at the 10% level, ** if significance is at the 5% level 

and *** if significance is at the 1% level.  Extremely high test statistic values contain 

only *** with blanks for associated numbers. 

 

Table 1:  Test Statistics for Stock Market Indices Application Results 

 

DJIA  SI DW M1 

 Yt - Yt -1   -34.47*** 2.11***   -7.44*** 

100((Yt/ Yt -1) -1)    -16.79*** 1.99 0.70     * 

100((Yt /MA)-1)    -36.64*** 0.07*** *** 

 

S&P 500       

Yt - Yt -1    -28.01*** 2.11*** g-6.32*** 

100((Yt/ Yt -1) -1)    -11.93*** 1.94** 3.00*** 

100((Yt /MA)-1)   -30.85*** 0.08*** *** 

 

Nasdaq       

Yt - Yt -1   -18.71*** 1.98 1.03*** 

100((Yt/ Yt -1) -1)   -14.59*** 1.87*** 5.68*** 

100((Yt /MA)-1)   -26.34*** 0.06*** 89.22*** 
 
The test statistics show *** if significant at the 1% level, ** if significant at the 5% level 
and * if significant at the 10% level.  Test statistics greater than 100 or less than -100 are 
not shown since they are highly significant at the 1% level:  SI = Strandberg and Iglewicz 
(2012) with c = 0.5, DW = Durbin and Watson (1950), M1 = Lo and MacKinlay (1988) with 
k = 2 

 

In Table 1 notice that there are some very high absolute test statistics resulting in p-

values below 0.0001. Therefore exact p-values are not included in Table 1 because we do 

not claim that level of accuracy. In this table test statistics differ between transformations 
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and indices, with the exception of Strandberg and Iglewicz, SI, which is significant at the 

1% level for all indices and transformations. It is possible that stock market index data 

are mostly moderately stable with periods of time where values are instable. These 

unstable periods of time may result in far more outlier values or values outside the 

interval [Y{0.025}, Y{0.975}]. In cases like this, SI shows high power to reject the null 

hypothesis of random data.  

 

Furthermore, Z values for SI are all negative, while Z values for M1 are often positive. 

The negative Z values from SI indicate that more than expected multiple unusual 

transformed values tend to occur within weeks containing at least one unusual 

transformed value.  The positive Z values for M1 indicate that the variance of two time 

periods is higher than expected. Results from the Durbin and Watson test, DW, generally 

indicate that transformed indices values are positivity correlated – this occurs when d in 

(6) < 2.00.    

 

Among transformations, only the MMPC results in consistently rejecting the null 

hypothesis at the 1% significant level for all tests, while the other two transformations 

show inconsistent rejection levels among tests and indices. It is interesting to observe that 

for DW and M1 results can differ depending on the transformation used yet test results 

based on the MMPC transformation are all significant at the 1% level. Differences 

between the first two transformations include not only changes in significant levels, but 

also changes in interpretations - since for M1 test statistics changes in value from negative 

to positive and for DW test statistics change from d < 2.00 to d > 2.00, where d is defined 

as in (6).   

 

In summary, the only test that shows consistent results for each considered 

transformation is SI, while M1 and DW show inconsistent results among transformations. 

In addition, the only transformation that shows consistent results among individual tests 

for each considered dataset is the MMPC transformation while all other transformations 

had inconsistent results among the considered indices. In summary, when dealing with 

financial data, the test used and choice of transformation can play a key role in resulting 

conclusions. 

 

4. Simulation Results 

 
In this Section we investigate each test over a diverse group of distributions and data 

models. We will view these tests as competitive, even though M1 is based on a random 

walk model, thus not sensitive to changes in variance, while the other considered tests are 

based on a random sample null hypothesis. Since in practice most practitioners will not 

know the true distribution of their data, methods that perform well for a variety of 

distributions are preferred.  

 

We will consider random samples of N = 300, and 10,000 observations and will use the 

g- and -h distributional family (Tukey 1977, Martinez and Iglewicz 1984, Hoaglin 1985) 

to obtain or approximate the standard normal, Z, distribution, the Student’s t distribution 

with 3 degrees of freedom, t3, and the chi-square distribution with 4 degrees of freedom, 
2

4 . The
2

4  observations are standardized before performing each test. These 

distributions are considered null cases since they are known distributions expected to 

preserve the test size.  
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We also consider some alternative data models. We considered a model where 30% of 

observations follow f1(y), then 40% follow f2(y), and the remaining 30% follow f3(y).  A 

model with constant mean and changing variance is created by letting, f1(y) be N(0, 

0.75
2
), f2(y) be N(0, 1), and f3(y) be N(0, 1.25

2
), while a model with constant variance and 

changing mean is created by letting f1(y) be N(-2, 1), f2(y) be N(0, 1), and f3(y) be N(2, 1). 

In addition, four correlated cases, C1, C2, C3 and C4 are considered.  For these cases, 

motivated by stock market weekly data, observations are simulated from complete 

trading weeks where weeks with market closures or holidays are not included. Each 

correlated model is designed such that 90% of these weeks have observations that are 

i.i.d. N(0,1) and a correlation structure exists for the remaining 10% of these weeks. 

Consider a typical member of the 10% correlated weeks. Let Y
M

 be the Monday value 

coming from N(0, 2
2
). The other generated values are Y

j
, j = T, W, Th, F.  For C1, Y

T
 = 

ρY
M

 + ε where ε is N(0,1) and the remaining three days are from i.i.d. N(0, 1). For C2, Y
F
 

= ρY
M

 + ε and the remaining three days are from i.i.d. N(0, 1). For C3, Y
j
 = ρY

M
 + ε, 

where j is randomly chosen from T, W, Th, F and the remaining three days are from i.i.d. 

N(0, 1).  In C4 the correlation structure is present over two weeks, such that Y
M

 in the 

first week, Y1
M

, has a value from N(0, 2
2
). Two days are correlated observations, such 

that Y
j
 = ρY

M
 + ε, where j is randomly chosen twice with replacement from T1, W1, Th1, 

F1, M2, T2, W2, Th2, F2, the remaining days are generated from i.i.d. N(0, 1). In all four 

correlated cases ρ = 0.90.  More null and alternative cases are discussed in Strandberg 

and Iglewicz (2012, 2013). 

 

Table 2 summarizes the simulation results. For each case 10,000 replications are 

simulated and the rejection rate is the percentage of tests out of 10,000 where p-value < 

0.05.  For the null cases, since the significance level is set at 5.00%, we expect rejection 

rates to be close to 5.00%. With 10,000 replications, the standard error of a 0.05 

proportion of rejections, under the null hypothesis, is    1000095.005.0  

0022.0 therefore rejection rates in the range of  

  1000022.096.105.0   %43.5%,57.4 are expected. All considered null cases 

are within this range and therefore are reasonably close to the desired 5.00% rejection 

rate except for SI when N is small.  When N is small SI is slightly conservative. 

 

For the alternative cases, as expected, greater power is generally seen as N increases; 

however power can differ considerably across alternatives. When N is small all 

considered tests, excluding SI, have high power to detect changes in mean, while all tests 

have low power for other cases. As N becomes large, the SI is the only test with high 

power for all alternative cases. Only one test, SI, is able to show considerable power 

against changing variances especially when N is large, while rejection rates for M1 show 

low power.  This is not surprising, as the null hypothesis for M1 consists of a random 

walk, thus tolerating changes in variance. If detecting changes in variance is a concern, 

the SI test should be used.  

 

The SI test is able to show high power for all the correlated cases with large N, while M1 

and DW have modest to low power for C2, C3 and C4. When N is large all tests show 

high power for C1 and modest power as N decreases. In summary, when N is large, SI is 

the only considered test with high power for all correlated cases. This test works well 

irrespective of the correlation structure following a highly volatile day, without a priori 

knowledge of future dependencies, while tests with set autocorrelation structures may not 

always be able to retain power in such situations.  
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Table 2:  Simulation Rejection Rates Comparisons 

 

SI  DW M1 

N = 300 

   Z 4.21% 5.12% 5.18% 

t3 4.06% 4.94% 4.85% 

X
2
4  Standardized 4.22% 4.78% 4.90% 

Changing Variance 15.83% 6.87% 6.53% 

Changing Mean 13.81% 100.00% 100.00% 

C1 17.43% 22.81% 18.40% 

C2 16.84% 6.28% 6.34% 

C3 17.21% 7.50% 6.79% 

C4 8.18% 7.01% 6.11% 

 

N = 10,000 

   Z 5.29% 4.86% 5.21% 

t3 4.96% 4.93% 5.07% 

X
2
4  Standardized 4.91% 4.92% 4.96% 

Changing Variance 95.32% 6.89% 7.43% 

Changing Mean 99.24% 100.00% 100.00% 

C1 99.83% 100.00% 100.00% 

C2 99.85% 6.73% 7.10% 

C3 99.74% 37.63% 36.15% 

C4 65.96% 26.80% 25.40% 
 

SI = Strandberg and Iglewicz (2012) test with c = 0.5, DW = Durbin and Watson (1950) 

test, M1 = the Lo and MacKinlay (1988) with k = 2 

5. Conclusion 
 

In this paper we summarize and compare three tests for detecting randomness in time 

series data, including comparisons using stock market index data. One of our considered 

tests, SI is unique because it is based on a simple test statistic that surprisingly works well 

for varied null and alternative data choices with minimal distributional assumptions. 

Since this proposed new method is not based on autocorrelations or related measures, it is 

shown to have high power, for larger sample sizes, to detect correlated structures not only 

between consecutive observations but also over longer lags. Of the studied tests, only the 

SI test has power to detect changes in variance and all four correlated cases when N is 

large. Through simulations, it is also shown that SI meets the size requirements for a 

variety of null cases.   

 

For our stock market index data analysis we review and compare three transformations 

and demonstrate that the choice of transformation can have a noticeable effect on test 

results. Only the MMPC transformation results in consistent rejection of the null 

hypothesis with high power for all tests and indices.  While the SI test is the only test that 

is able to strongly reject the null hypothesis for all three studied indices and considered 
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transformations. We note with interest that for the other considered tests, results can 

differ depending on the transformation used. The only test that does not show evidence of 

this concern is SI.   

 

When deciding among tests, consideration must not only be given to meeting size 

requirements for the null hypothesis, but also the possible alternative hypotheses choices 

as power can differ considerably across alternatives. In our simulation study we 

considered a number of alternative cases to show the advantages and disadvantages of 

each of the studied tests. In summary, we believe that these comparisons and results will 

be helpful, especially when dealing with financial data and tests of randomness. 
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