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Abstract 
In recent years, many articles have promoted uses for “Benford’s Law,” claimed to 

identify a nearly ubiquitous distribution pattern for the frequencies of first digits of 

numbers in many data sets. Detecting fraud in financial and scientific data is a suggested 

application. Like the Normal and Chi-square distributions, Benford’s appears to offer an 

appealingly clear-cut, mathematically tractable, and widely applicable tool. However, 

similar to those other models, writers may “assume” the model meets all the assumptions 

needed for hypothesis testing, without properly examining whether those conditions hold.   

This paper examines a diverse set of real-world data sets to demonstrate that while 

Benford’s-like patterns are indeed common, Benford's per se is not a unique and 

universal template for all cases of interest to fraud investigators. This reminds us of how, 

in general, distributional assumptions can sometimes be overlooked or fail to be critically 

questioned.     

 

Key Words: Benford’s Law, Statistical Assumptions, Distributional Assumptions, 

Audits, Statistical Literacy 

 

 

1. Introduction to the Assumptions Issue and the Case 

 
When testing hypotheses in applied settings, it is quite common to take advantage of 

familiar techniques that presume underlying distributions for the data, such as the normal, 

binomial, chi-square, or Poisson, which are mathematically well-specified and 

established in the literature.  If the model’s assumptions apply, the strategy has clear 

advantages.   Its calculation methods for estimates, significance and power are well 

known, and are therefore easy to look up if necessary, and may in fact be implemented in 

software.  There is also the advantage that compared to using less familiar techniques, 

one’s findings based on accepted methods will seem easier to explain and justify to 

clients and/or journal editors and reviewers. 

 

A disadvantage of ‘tried and true’ models is that, drawn by their benefits and familiarity, 

researchers may forget to ensure (or even enquire) whether the required conditions are 

met.  In that case, the resulting graphs, output data, and conclusions may be misleading.   

How often, for example, are t tests applied for small samples, without checking or 

acknowledging if the population is highly skewed?  Or linear regression applied when the 

variance for the error term can be shown to be highly non-constant?      

 

Occasionally, new entrants may be added to this list of testing methods, becoming 

accepted enough in their domains that, if caution is forgotten, writers and readers may 
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tend to feel a comfort level without bothering too much about underlying assumptions.  

This may be happening now with hypothesis testing based on so-called “Benford’s Law,” 

promoted by many as a way to detect evidence of fraud and error in certain datasets.  

Watching this method’s emergence, and how it is being applied (assisted by modern 

advances in computer power to analyze large datasets), can provide a useful case study; it 

is a cautionary tale for ways distributional assumptions sometimes start getting 

overlooked or—perhaps more serious for this technique—not critically questioned. 

 

2. Some Background and Literature on Benford’s Law, and its Proposed 

Application 

 

2.1 The Curious Phenomenon 
The phenomenon now known as Benford’s Law (BL) was actually first discovered by 

astronomer Simon Newcomb over a century ago, who presented it in the American 

Journal of Mathematics as a note on “the frequency of use of the different digits in 

natural numbers” (Newcomb, 1881).  It was rediscovered by physicist Frank Benford, 

who published it as the “law of anomalous numbers” (Benford, 1938).  Both observed 

that in many numeric datasets, the distribution of their first digit proportions (i.e., of the 

proportions of numbers in each dataset beginning with 1’s versus 2’s versus 3’s, and so 

on) is not uniform, as might be expected, but rather seems to follow a generalizable 

pattern.    

 

In their times Newcomb and Benford would both have used tables of logarithms (in book 

format) as a tool to help with calculations involving multiplication and powers.  Both, 

independently, happened to notice that pages near the front of these books were more 

worn than pages near the end.  This suggested that for some reason there were more 

numbers to be looked up near the front (e.g., starting with the digits 1, 2, or 3) than 

numbers to be looked up near the back (starting with 7, 8, or 9).   

   

Without too much effort, datasets can be easily found that appear to support this 

observation.  Table 1 is based on 2012 data for housing unit counts estimated by county 

in Washington State.
1
 The first-digit proportions expected by BL are shown in the second 

column.  In this sample (n = 326, blanks and 0’s excluded), we see that the actual first-

digit proportions in the fourth column are quite close to the expected proportions.   

 

                                                 
1
  Raw data sources used for this paper are listed in Table 2, following the References section. 

 Table 1: BL-expected Versus Actual Distributions of First Digit Proportions for Numbers of    

Housing Units in Counties of Washington State 

 
 First Digit BL-Expected 

Proportions 

Actual Frequencies for 

the First Digits 

Actual Proportions 

for the First Digits 

 1 

2 

3 

4 

5 

6 

7 

8 

9 

0.301030 

0.176091 

0.124939 

0.096910 

0.079181 

0.066947 

0.057992 

0.051153 

0.045757 

97 

59 

38 

34 

28 

15 

22 

18 

15 

0.297546 

0.180982 

0.116564 

0.104294 

0.085890 

0.046012 

0.067485 

0.055215 

0.046012 
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To give a sense of how these proportions look in the original raw data, Figure 1 displays 

a small subset of the housing units sample.   Observe how many more numbers start with 

1’s than with 9’s.  

 

 

 
Figure 1: Numbers of Housing Units in Counties of Washington State, 2012.  (Subset 

from the full sample.) 

  

The expected proportions, displayed in Table 1, can be derived from this formula:  

 

(1) Prob(D1 = d1) = Logbase(1 + 1/d1), for all d1 = 1, 2, …. (base-1) 

  

where D1 refers to the first significant digit of a number in the dataset, and base refers the 

base of the number system in use.   For our base 10 number system, the possible first 

significant digits range from 1 to (10-1) = 9.   Hence, the expected proportion of numbers 

in the dataset that will start with 2, for example, will be Logbase10(1+½) = 0.17609.   

 

Benford’s Law is said to be base invariant and scale invariant.  The former means that if 

the raw data are converted to another number system, Formula 1 still applies, and 

essentially the same distribution shape is expected.    Scale invariance means that if units 

are converted from, say, from meters to miles, or from dollars (US) to dollars (Canadian), 

then the same basic patterns should apply as well.   A non-technical account on why these 

properties might apply is found in Fewster (2009). 

 

(A first reality check, however, is in order:  The above-mentioned “equivalences” are 

perfect only at an abstract level, and can break down especially for smaller samples.  The 

problem is analogous to the impact of revising class limits when constructing frequency 

distribution tables or histograms:   The distributions’ apparent shapes may change 

depending on where specific data values happen to fall in relation to the revised class 

boundaries.  In the same way, in a relatively small dataset, a batch of conversions from, 

for example, numbers close to 100 U.S. dollars to “equivalent” numbers close to 96 

Canadian dollars could alter the observed ratio of first-digit 1’s to first-digit 9’s.) 

 

Benford’s Law can also be extended to other digits as well as the first.  Benford himself 

calculated second-digit proportions for the numbers in a dataset.  (For example, “73972” 

and “131” both share the same second digit 3.)  Berger and Hill (2011a, p. 3) describe 

how to calculate not just the expected proportions of digits within a set of numbers, for 

any digit position, but also calculate joint distributions for any combinations of digit 

positions.  All these patterns will skew to the right, but Figure 2 illustrates that the 

distributions for different digit positions really become quite uniform by the third digit.   
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Figure 2: BL-Expected Distributions of Proportions for Specific First, Second, Third, 

and Fourth Digits of Numbers in a Dataset 

 

As for why Benford’s Law seems to work, there has certainly been much conjecture.  A 

classic reference is T.P. Hill’s paper in Statistical Science “A Statistical Derivation of the 

Significant-Digit Law” (1995) His previously cited paper with A. Berger in Probability 

Surveys (Berger & Hill, 2011a) investigates relationships between invariant properties of 

BL-type patterns and the properties of numbers generally, as well as various 

mathematical sequences.  Common explanations play on the idea that numbers generated 

by multiplications and combinations (such as expense amounts—tending to have been 

based on prices times quantities) are likely to exhibit roughly logarithmic distributions 

(Durtschi, Hillison, & Pacini, 2004); and, in turn, numbers with a logarithmic distribution 

will tend towards having BL-first-digit distributions.  Some alternative explanations are 

provided by Scott and Fasli (2001), Rodriguez (2009), and Gauvrit and Delahaye (2009). 

 

In short, the evidence suggests that Benford’s Law is not something merely 

unfathomable.  Yet even Berger and Hill (2011b) acknowledge that the law has not been 

precisely derived as yet, nor do we fully understand why some Benford-suitable
2 datasets 

actually conform to it, and others do not.    This disclaimer is highly relevant for those 

who propose to apply Benford’s law.  If a dataset of interest ‘fails’ to conform to the law 

in a test, we cannot know whether, due to confounders, this may possibly have been 

expected for this particular type of case. 

 

2.2 The Proposed Application of Benford’s Law 
A frequent writer on Benford’s Law, M. J. Nigrini, captures the confidence that many 

now place on this phenomenon to become the basis for fraud- and error-seeking 

hypothesis testing. “Benford's law,” he writes, “is used to determine the normal level of 

number duplication in data sets" (Nigrini, 1999). (Emphasis added.)  The implication is 

                                                 
2
  The concept of  “Benford-Suitability” will be discussed in Section 2.3  
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that if somebody’s set of accounting records, or of election vote counts, or data from an 

experimental trial do not conform sufficiently, then perhaps “non-normal” tampering or 

error of some sort has occurred.   

 

This is a very serious application, given the impact that conclusions on these matters 

could have on people’s reputations, or even jobs.  We have seen in Section 2.1 some 

evidence that Benford’s describes a real, and mathematically tractable distribution of 

some sort.  But much the same can be said of the normal and Poisson distributions; yet it 

does not follow that these are always the appropriate models to be applied.     

 

In the literature, discussions of possible Benford-testing applications often include 

analytical looks at pre-existing data, and conclusions can range from the cautious to the 

almost sensational.  The latter include catchy newspaper stories like “…Scholar uses 

math to foil financial fraud” (Berton, 1995), which might have been excluded from 

serious discussion—except  surprising numbers of reference chains (purporting to point 

to real-world use of BL by auditors) seem to lead back to such accounts.    

 

On the more cautious side is Buyse et al.’s paper on detecting fraud in clinical trials 

(1999).  These authors see BL tests as just part of a suite of approaches that can be used, 

with various tests having particular strengths depending on the nature of the fraud.    

 

Most of the application-oriented papers try for a balance.  On the one hand, they often 

start with a provocative title like “Root Out Financial Deception” (Albrecht & Albrecht, 

2002), or “Breaking the (Benford’s) Law: Statistical Fraud Detection in Campaign 

Finance” (Cho & Gaines, 2007); and they seem to accept—cautiously—that the BL 

model can be valid for testing.   But on the other hand, they are cognizant of various 

confounders and risks of Type I and Type II error, and recognize that the method should 

not be interpreted mechanically, but one should consider models for how the fraud 

occurred (Deckert, Myagkov, & Ordeshook, 2011). 

 

2.3 Benford Suitability 
No one claims that Benford distributions are exhibited by numbers in all numeric 

datasets. The formula and tables in Section 2.1 only apply for datasets of certain types.  

An often-cited list of features to look for, or avoid, if seeking a BL-conforming dataset, is 

provided by Durtschi et al. (2004).  This list can be condensed to the following.  A 

dataset could be called Benford-suitable if:      

 

a. The dataset is large.    

b. Its values span several orders of magnitude. 

c. The values in the dataset have a positively skewed distribution.  

d. The dataset is not comprised of numbers that are assigned, or firm-specific, or directly 

influenced by human intentions. 

 

Guideline (a) really pertains to sampling; it is not a rule about what makes a dataset 

“inherently” BL-suitable.  If a sample it is too small, there may be insufficient power to 

meaningfully detect or confirm conformance with the law.  For a small sample of size 20, 

for instance, even a couple more numbers starting with digit 1 than expected, would 

change the apparent proportions, but one could not reach valid conclusions. 

 

Guideline (b), requiring a large span of data values, can also be related to sampling.   

Even if the first digits for a company’s cash receipts are inherently BL distributed, if the 

JSM 2013 - Business and Economic Statistics Section

2793



numbers in certain day’s sample only range from $20 to $500, then occurrences of first 

digit 1 would be underrepresented in the sample:  1’s could only be observed in the 100’s 

range, while, for example, first digit 3 gets two ‘opportunities’ to be observed--in the 30’s 

and the 300’s.  If a printer glitch or other confounding factor had deleted receipt amounts 

outside a certain range, then the “real underlying” BL pattern may be missed. 

 

On the other hand, guideline (b) can sometimes be a variant of guideline (d) (discussed 

below).  This could occur if the orders-of-magnitude limitations reflect man-made 

constraints, such as minimum purchase amounts or transaction limits for debit-card 

purchases  

 

Guideline (c), which looks for positively skewed distributions of numbers, may follow 

from how (per Section 2.1) BL distributions may be generated.   Numbers derived by a 

process of combinations or multiplications can tend towards logarithmic-shaped 

distributions, having extended right tails.  These distributions, in turn, are more likely 

than others to exhibit the BL-first-digit patterns  

 

Guideline (d) complements (c):  If numbers are not generated by a potentially suitable 

process, but are merely assigned, based on human intentions and considerations, then 

they are not likely to exhibit the BL patterns.  Examples include:  phone numbers, 

assigned in arbitrarily number sequences; or “bonus points” on purchases, accumulated at  

pre-set amounts; or withdrawal amounts at ATMs (automated teller machines), at 

quantities deemed “convenient” and  below the customer’s  withdrawal limits.    

 

3. Assumptions—and Reality Checks 
 

Section 2.2 discusses many authors’ proposals for using Benford’s Law as a basis for 

hypothesis testing--specifically as a tool to uncover error and fraud in numeric datasets.  

We have described the phenomenon that “Benford’s Law” refers to, and some if its 

basics.  We can now start the case study, per se, for this paper.  What assumptions are 

being made by those who would use BL for such hypothesis tests?   And do those 

assumptions stand up to analysis?      

 

3.1 Assumption 1:  That individual, Benford-suitable datasets generally, also, 

conform to Benford’s Law (by appropriate measurements of conformance).  
Proposed BL applications take individual data sets from Benford-suitable domains such 

as financial records, medical trial results, and so on, and compare their first-digit 

distributions to those expected by Benford’s Law.  So long as the data are Benford-

suitable, it is presumed that—barring fraud or data-entry mistakes or occasional Type I 

testing errors—the dataset should also be Benford conforming (according to  appropriate 

measurement instruments).  Otherwise, if it is common for datasets to be Benford-

suitable, but to not conform beyond that, then nothing would follow from a BL-based 

test.   

 

The actual evidence, however, does not support that Benford-suitable datasets necessarily 

also exhibit BL-expected, first digit distributions, upon measurement.   This is illustrated 

in Figure 3, showing four distributions taken from a larger set of 40 cases collected by the 

author.  While some of the cases conform nicely to Benford’s, others do not.  Neither 

result appears unusual.  
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Figure 3: Distributions of First Digits for Four Benford-Suitable Datasets   

 

3.2 Assumption 2:  That “representative samples” from the population of 

Benford-suitable datasets are well-defined.  
BL-based hypothesis tests are not randomly controlled.  Generally, datasets of interest 

(such as financial reports) pre-exist.  The test model (per Assumption 1) seems to be:  

Compare the dataset at hand with datasets we might expect to have obtained if it we had 

taken true, representative samples from the population of Benford-suitable datasets.  But 

these “representative samples” are not well defined. 

 

First, the population of all Benford-suitable datasets is infinite.  It includes every set of 

Benford-suitable numbers in any context, past, present, or future, that might ever be 

generated.  What could serve as the sampling frame?  Also:  Does the population being 

sampled consist of numbers as actually recorded (as implied in suitability guideline (a)) 

or to magnitudes as generated (as implied in guideline (c))—regardless of whether 

anyone records them?     

 

It is also not clear if there is only one population to be sampled from, or many.  (For more 

on this, see Section 3.3.) Benford’s original paper includes 20 samples of apparently 

suitable datasets. But it is an odd combination of sets, ranging from values for areas of 

rivers and for costs of concrete, to mathematical series like “n
1
…n

8
, n!”.  Some of his 

“samples” are not from one source domain at all, but from numbers drawn indirectly 

from diverse and unrelated sources, such as numbers happening to appear in Readers 

Digest or newspaper articles—on presumably many topics.  Do such sets belong in the 

same population as the one whose sampling distribution might ground the testing on 

someone’s financial records?  Moreover, if a column of source data includes some 

numbers that are totals or averages of other numbers in the same column (as does 

happen), is the result the same sample as the source data without those aggregates (but 
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needing cleaning), or it a brand new sample, and would every variant that includes extra 

subtotals be additional samples?     

 

3.3 Assumption 3:  That the “Convergence” of Benford-suitable datasets 

solves the problems arising from Assumptions 1 and 2.   

 

3.3.1 The “convergence” phenomenon  
Some authors have realized that, as noted above, it is simply not the case that all Benford-

suitable datasets are automatically likely to be closely Benford-conforming, upon 

measurement.    But these authors are not worried.  Discussing what Berger and Hill 

(2011a) later call ‘almost sure convergence,” Hill writes (1998):  “If distributions are 

selected at random (in any “unbiased” way) and random samples are taken from each of 

those distributions, then the significant-digit frequencies of the combined sample will 

converge to Benford’s distribution, even though the individual distributions selected may 

not closely follow the law”. Berger and Hill later make the analogy with the Central 

Limit Theorem, in the sense that while individual samples’ means may differ from the 

true population mean, nonetheless, collectively all the samples’ means center around the 

true mean.  This seems to also address objections to Benford’s mixtures-type examples 

(e.g., drawing numbers arbitrarily from newspaper articles); in fact, such mixtures now 

become the paradigm for the mixing and matching of samples to get the convergence 

effect.  

 

The evidence is certainly highly supportive of Hill’s convergence model. It is not even 

necessary to pre-mix the individual samples in any way, as in Benford’s collection of 

numbers.  To the contrary, Figure 4 is based on data from 40 samples collected by the 

author (listed in Table 2, at the end) which were intentionally as unmixed, cleaned, and 

independent as possible.  (For example, one sample was 24 years of daily stock trading 

volumes; another was counts of telephone lines in use, by country; another was U.S. Civil 

War casualties, by battle; and so on.) Several of the dataset topics utilized were first 

suggested by Aldous and Phan (2010).    

 

 
 

Figure 4: “Convergence” of Datasets’ First-Digit Proportions to BL-Expected Values 
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Lined up over each digit in the X axis, in Figure 4, is a vertical boxplot.  This answers, in 

the form of a distribution, the question:  What proportions of numbers, in each of the 40, 

respective datasets, begin with the corresponding digit on the X axis?    For example, for 

the proportions of datasets beginning with 1, the median value is about 0.30; the first 

quartile is a bit above 0.25, and we see that one dataset  has only 0.1 of its numbers 

beginning with 1; and so on.  Notice that the median proportions of first-digit occurrences 

for each digit on the X axis are impressively very close to the BL-expected proportions.   

 
For explanations of this convergence, I defer to the extensive treatment by 

mathematicians Berger and Hill (2011a).  Certainly, it does seem confirmed that the 

phenomenon occurs.  

 

3.3.2 Convergence does not support Assumption 3   
Although the analogy of the Central Limit Theorem (CLT) may help to explain Figure 4, 

it cannot justify hypothesis testing based on Benford’s Law.  CLT says that the means of 

samples taken from a population will, collectively, tend to be centered on the true mean 

for the population.  Similarly, it would appear, BL-convergence says that first-digit 

distributions of sampled datasets {implied: taken from a population} will, collectively, 

tend to be centered on the true first-digit distributions {for the population}. This does 

seem parallel.  However, what population is meant?  The only (implied) population from 

which all the collected, BL-suitable datasets are drawn is the amorphous and infinite 

population discussed in Section 3.2:  Namely, the population of all possible BL-suitable 

datasets.  How can that population be the standard for testing patterns expected in 

specific datasets collected from very specific domains?  

 

To use in hypothesis tests the converged population that is centered on the BL-expected 

values commits the aggregation fallacy.  This fallacy arises when comparing measures 

that are at different levels of aggregation.  Figure 5 shows a simple example.   

 

 
 

Figure 5: Potential for Aggregation Fallacy if Company Types are Ignored  
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The figure supposes there are five types of companies.  To simplify, assume that (a) all 

the companies’ financial datasets contain identical numbers of numeric entries, and (b) 

there are exactly 100 companies of each type.   The figure shows that, for some reason, 

companies of Type A tend to have only 19% of the numbers in their financial records 

starting with the digit 1; whereas for companies of Type E, over  40%  of numbers in 

their records start with the digit 1; and so on.  Yet, if all 500 companies’ records are 

aggregated, the overall proportion of numbers starting with the digit 1 is 30%.   

 

In this case, if one audits the records of a “Type A” company, but ignores the apparent 

impact of the variable “Type” on the first-digit proportions, then (if using, say, a binomial 

test) the A company’s 19% proportion of first-digit-1’s is significantly different from the 

aggregate population proportion of 30%.  Can we conclude from this test that something 

is wrong or unusual with that A company’s data?  Clearly, in this example, that would be 

a mistaken conclusion.   

 

Convergence, in other words cannot be used to bypass Assumption 1.  Assumption 3 

seems at first to smooth out unexplained differences among specific, BL-suitable 

datasets.  But in the final regard, if we wish to test a specific dataset from a specific 

domain, we still need to know if this sample belongs, for some reason, to a sub-group that 

may be non-BL-conforming. 

 

3.4 Assumption 4:  Only the Center is Important for Modeling the Sampling 

Distribution 
Despite the concerns expressed in Section 3.3, it is conceivable that in the population of 

BL-suitable datasets, there are no valid, systematic subdivisions of a sort that could lead 

to the Aggregation Fallacy.  If that is that the case (which is an unknown), then 

Convergence would really tell us the expected center of Benford-conforming 

distributions, and thus provide part of a model for hypothesis testing:  namely, the center.  

But what would be the error term? 

 

In the applied BL literature, attempts to actually measure the error term for the null model 

for BL-based hypothesis testing, are hard to find.  Some authors working with 

simulations, such as Bhattacharya, Kumar, & Smarandache (2005) have tried to consider 

the error.  But even those such as Scott and Fasli (2001) who have tried to compile 

empirical data, are focused on using it to confirm or disconfirm BL itself.  They are not 

asking the question:  If one does use BL for testing, then what would be the appropriate 

magnitude for the standard error?    

 

The error term for a test is generally estimated by a model for the “sampling distribution” 

of the measure of interest, with empirical inputs required. If we are testing for the mean, 

for example, and have some estimate for the population variance (σ
2
), then we might 

estimate the standard error as σ/√n.  This gives an idea of how far sample means drawn 

from that population might tend to vary from the true population mean, without anything 

being unusual.      

 

If the conformance model is really correct with regard to the BL-population center, it 

does not tell us the population variance.   (The following comments apply whether 

testing, separately, the conformance of each possible first digit (or other-digit) to its BL-

expected proportions, or for testing overall conformance of a dataset to the expected 

distribution of proportions for all nine first-digits (or second digits, etc.).  Similar issues 

arise for these variations.)   
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In the absence of a theoretical model for the error, I suggest that the 40 BL-suitable 

datasets collected by the author can be used to approximate the sampling distribution for 

the population, with respect to various measures of BL-conformance.  For reasons stated 

above, mixtures are intentionally avoided in the sample.  If “the population” is the set of 

all possible, distinct BL-suitable datasets in existence, and sampling bias was hopefully 

minimal when selecting 40 of those cases, then the amount of error in the sampling 

distribution, compared to the “known” center of the distribution, can be estimated by 

inspection.  Applied to one possible conformance measure (“d*”), the result is seen in 

Figure 6.    

 

 
 

Figure 6: Sampling Distribution for a Measure of BL-Non-Conformance.    

 

The BL-non-conformance measure d*, proposed by Cho and Gaines (2007), is relatively  

simple to calculate and less sensitive to sample size than the more commonly used chi-

square (χ
2
) measure.  Other proposed methods have included Mean Absolute Deviation 

(from Benford’s) (Nigrini and Miller, 2009), or a measure similar to d* proposed by 

Jermain (2011).   For any sample dataset, its d* is calculated as 

 

(2)        
√∑        

 
   

 

        
   , 

where for each possible first digit i (from 1 to 9), pi and bi are the BL-expected versus the 

actually observed  proportions of numbers, respectively, in the dataset beginning with 

that first digit.  The denominator represents the maximum possible value for the 

numerator, if all numbers in the dataset begin with 9, and none begin with other numbers.   

d* can therefore range from 0.0, if a dataset totally conforms to BL-expectations, up to 

1.0, if the dataset is as non-conforming as possible.  

 

If Figure 6 fairly approximates the sampling distribution, it shows that on a scale from 

total BL-conformance (d* = 0.00) to total non-conformance (d* = 1.00), no samples 

conform totally; and values up to a quarter of the way along the scale (i.e., up to            

d* = 0.25) are not rare.  Conventionally, we could use the 95
th
 percentile (d* ≈ 0.26) as a 

cut-off value, and suggest that only samples with d* ≥ 0.26 should be viewed as 

particularly unusual, with respect to conformance.    (Note that even for Benford’s cases, 

with its pre-mixtures, his 95
th

 percentile is not reached until d* ≈ 0.19.)   
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If this amount of sampling error is accounted for, then many reported findings based on 

Benford’s Law do not actually turn out to be beyond the model’s error range, after all.  

Those who suggest using χ
2
 as the conformance test instead, may not realise that this test 

itself assumes an error model:  It assumes that actual counts will vary from the expected 

counts according to a Poisson distribution.   The data in Figure 6 do not support using this 

(tighter) model of the error.   

 

Similar considerations apply for tests suggested on a digit by digit basis (we will let pass 

the added risks due to multiple testing).  Each boxplot in Figure 4 approximates the 

sampling distributions for the respective proportions of first digits starting 1, 2, etc. in a 

dataset.    Once again, we see considerably more variance in these sampling distributions 

than generally acknowledged.  Most proposed tests for single digit conformance to BL-

expectations are based on the z-test.  This in turn presumes an error distribution (i.e. the 

pattern of how sample proportions differ from expected ones) that will follow the 

binomial distribution.   Again:  the data in Figure 4 do not support that assumption.  

  

4. Discussion and Conclusions 

 
In short, the attraction is acknowledged for basing hypothesis tests on familiar and 

visually simple models that appear to be backed by mathematics.  However, an important 

caution is often overlooked:  Reviewing the assumptions that underlie the model, and 

confirming that they apply for the test at hand.    This reminder is never out of place, for 

even the most familiar models, because we often take them for granted.   By examining 

how an “up and coming” test model such as Benford’s is being promoted and used, it is 

hoped to further emphasize the importance of checking one’s assumptions.  

 

Mathematically, the phenomenon called Benford’s Law appears well established; but the 

assumptions needed to apply it for rooting out fraud are hard to meet.  That may explain 

the large gap between claims of how the law can be used for such fraud detection or how 

many others are using it, compared to actual, confirmable cases of people relying on it, in 

contexts (like audits) where direct follow-up and inspection, and possibly consequences 

for uncovered fraud, are feasible.    

 

It is true that audit software such as ACL (ACL Services, 2012) now offer Benford-

analysis capabilities for first- (or other-) digit proportions (expected versus actual 

proportions), and presumably many people are trying them.  But hands-on practitioners’ 

support often seems measured:  Albrecht (2008) writes that the application of Benford's 

distribution is "only one of many computer-based fraud detection techniques that should 

be used" (p.3) In fact, he reveals, only three of "thousands" of Albrecht’s trainees have 

ever actually reported uncovering a fraud specifically with Benford's.    

 

Similarly, Buyse et al. (1998) present a number of computer-assisted techniques for 

detecting fraud, but caution that none is a magic bullet; and rather recommend scanning 

the data prudently with various techniques, in case side effects show up for how the 

fraudulent data were produced.   If, for example, a company requires extra signing 

authority for payments made above $10,000, a fraudulent manager may restrict writing  

fake checks to amounts in the eight or nine thousand dollar ranges. This may show up as 

“extra” 8’s and 9’s as first digits, according to BL—but clearly this could have been 

discovered without Benford’s.   
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Readers are encouraged—just for fun—to try out a sample of Benford-suitable data, to 

see how well it conforms to BL.  Feedback is welcome. Table 2 (following the 

References) shows the data sets used by the author.   If some of the sites no longer work, 

or if a reader would like to see how the data were cleaned, and so on, please contact the 

author.  

 

Acknowledgements 

 
My sincere thanks to correspondents in my search to see how others were using 

Benford’s law.  I appreciated the insights of real-world forensic auditor David Malamed, 

and email responses to my queries from Leonard Mlodinow (author of The Drunkard’s 

Walk), Ted Hill, Sukanto Bhattacharya, and Suzanne Sarason of Washington’s 

Department of Financial Institutions. Also, thank you to all who attended my paper at the 

JSM conference and provided your feedback and encouragement.  

 

References 
 

ACL Services 2009. About Benford analysis.  ACL (Website). Retrieved from 

http://docs.acl.com/acl/920/index.jsp?topic=/com.acl.user_guide.help/data_analysis/c

_about_benford_analysis.html 

Albrecht, C.C. 2008. Fraud and forensic accounting in a digital environment.  Brigham 

Young University. Retrieved from http://www.theifp.org/research-grants/IFP-

Whitepaper-4.pdf   

Albrecht, C.C. & Albrecht, W.S. 2002. Root out financial deception: Detect and 

eliminate fraud or suffer the consequences. Journal of Accountancy, 193(4), 30-34. 

Aldous, D. & Phan, T. 2010. When can one test an explanation? Compare and contrast 

Benford’s Law and the Fuzzy CLT. The American Statistician, 64(3), 221-227. 

Benford, F. 1938. The law of anomalous numbers. Proceedings of the American 

Philosophical Society, 78(4), 551-572. 

Berger, A. & Hill, T.P. 2011a. A basic theory of Benford’s Law. Probability Surveys, 8, 

1-126. 

Berger, A. & Hill, T.P. (2011b). Benford’s Law strikes back: No simple explanation in 

sight for mathematical gem. Mathematical Intelligencer, 33, 85-91. 

Berton, L. 1995. He's got their number: Scholar uses math to foil financial fraud. Wall 

Street Journal, July 10.    

Bhattacharya, S., Kumar, K., & Smarandache, F. 2005. Conditional probability of 

actually detecting a financial fraud. A neutrosophic extension to Benford's law.  

International Journal of Applied Mathematics, 17(1), 7-14. 

Buyse, M., George, S.L., Evans, S., Geller, N.L., Ranstam, J., Scherrer, B., Lesaffre, E., 

Murray, G., Edler, L., Hutton, J. Colton, T., Lachenbruch, P., & Verma, B.L. 1998. 

The role of biostatistics in the prevention, detection and treatment of fraud in clinical 

trials. Statistics in Medicine, 18, 3435-3451. 

Cho, W.K.T. & Gaines, B.J. 2007. Breaking the (Benford’s) law:  Statistical fraud 

detection in campaign finance. The American Statistician, 61(3), 218-223.  

Deckert, J, Myagkov, M., & Ordeshook, PC 2011.  Benford’s Law and the detection of 

election fraud. Political Analysis, 19, 245-268.  

Durtschi, C., Hillison, W., & Pacini, C. 2004. The effective use of Benford's Law to 

assist in detecting fraud in accounting data. Journal of Forensic Accounting, 5, 17-

34. 

Fewster, R.M. 2009. A simple explanation of Benford’s Law. The American Statistician, 

63(1), 26-32. 

JSM 2013 - Business and Economic Statistics Section

2801



Gauvrit, N. & Delahaye, J.-P. 2009. Loi de Benford générale. Mathematics and Social 

Sciences, 47(186), 5-15. 

Hill, T.P. 1998. The first digit phenomenon. American Scientist, 86(4), 358-363. 

Hill, T.P. 1995. A statistical derivation of the significant-digit law. Statistical Science 

10(4), 354-363. 

Jamain, A. 2001.  Benford’s Law. Unpublished Dissertation Report, Department of 

Mathematics, Imperial College, London. 

Newcomb, S. 1881. Note on the frequency of use of the different digits in natural 

numbers. American Journal of Mathematics, 4(1), 39-40. 

Nigrini, M.J. (1999). I’ve got your number. Journal of Accountancy, 187(5), 79-83. 

Nigrini, M.J. & Miller, S.J. 2009. Data diagnostics using second-order tests of Benford’s 

Law. Auditing: A Journal of Practice and Theory, 28(2), 305-324. 

Rodriguez, R.J. 2009. First significant digit patterns from mixtures of uniform 

distributions. The American Statistician, 58(1), 64-71.  

Scott, P. D., & Fasli, M. 2001. Benford’s law: An empirical investigation and a novel 

explanation. Unpublished Manuscript.  Retrieved from 

http://cswww.essex.ac.uk/technical-reports/2001/CSM-349.pdf 

 

 

(Table 2 is on next page) 

 

  

JSM 2013 - Business and Economic Statistics Section

2802



Table 2: Data Sources for the Author’s Collected Datasets  

 

 

Topics by ….. Starting URL (as of Spring, 2013)

Boiling Points (of a list of solvents) http://wulfenite.fandm.edu/Data%20/Table_27.html

Cellphones in Use Country http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use

City Appointee Remuneration Appointee http://s3.amazonaws.com/zanran_storage/www.toronto.ca/ContentPages/2549852523.pdf#page=4

CO2 Emissions from Energy 

Consumption
Country http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8

Coal Consumption Country http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=1&pid=1&aid=2

Diploid Number of Chromosomes Species http://en.wikipedia.org/wiki/List_of_organisms_by_chromosome_count

Distances from NY City U.S. Cities http://www.mapsofworld.com/usa/distance-chart/new-york-ny.html

Electricity Consumption Country http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=2

Energy Consumption U.S. state http://www.census.gov/prod/2007pubs/08abstract/energy.pdf

Farm Cash Income U.S. state http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics.aspx

Farm Cash Recipts Product Categories http://www.census.gov/compendia/statab/cats/agriculture/farm_income_and_balance_sheet.html

Foreign Exchange Rates Country (versus US) http://www.census.gov/compendia/statab/cats/international_statistics.html

High Wind Damage Weather  Events, Texas http://cees.tamiu.edu/covertheborder/RISK/weather_events.xls

Housing Dept. Invoice--Expense Account # http://s3.amazonaws.com/zanran_storage/www.yorkcity.org/ContentPages/54602561.pdf#page=177

Housing Dept. Invoice--Revenue Account # http://s3.amazonaws.com/zanran_storage/www.yorkcity.org/ContentPages/54602561.pdf#page=175

Housing Units in Washington State Jurisdiction http://www.ofm.wa.gov/pop/april1/default.asp#housing

Import/Export Data U.S. customs district http://www.census.gov/prod/2003pubs/02statab/foreign.pdf

Inland Waterways Lengths Countries in Europe http://s3.amazonaws.com/zanran_storage/ec.europa.eu/ContentPages/79450974.pdf#page=48

Liverpool Expense Amounts {many 2011 records} http://s3.amazonaws.com/zanran_storage/liverpool.gov.uk/ContentPages/2525899565.pdf#page=146

Meteor Crater Diameters Name of crater (N. Amer.) http://www.unb.ca/passc/ImpactDatabase/  {Accessed by author on 8 April 2005}

NHL Players' Salaries Player http://www.zanran.com/q/player_salaries_baseball?filters%5Btype_html%5D=1&filters%5Btype_xls%5D=1

Oil Reserves Country http://s3.amazonaws.com/zanran_storage/my.liuc.it/ContentPages/2534461474.pdf#page=9

Packaged Food Sales (by food category;  Japan) http://s3.amazonaws.com/zanran_storage/publications.gc.ca/ContentPages/2556442580.pdf#page=4

Paper Production Country http://www.bir.org/assets/Documents/industry/MagnaghiReport2010.pdf

People Living with HIV Countries http://www.unicef.org/sowc2012/pdfs/Table-4-HIV-AIDS_FINAL_102611.xls

Racehorse Prices Lot number (at auction) http://www.magicmillions.com.au/

Rejected Postal Ballots (EU Election 

2004)
Local electoral riding UK

http://www.electoralcommission.org.uk/search?query=Postal+voting+and+proxies+by+local+authority%2Fconstitency*+at+the

+European+Parliamentary+elections+2004&daat=on&isadvanced=false    

shRNA Screening Experiment 

(Replication 2, Before)
(from library screen ) http://www.biomedcentral.com/content/supplementary/1752-0509-2-49-s1.xls

Stock Trading Volumes Day (for over 24 years) http://finance.yahoo.com/q/hp?s=RDS-B&a=11&b=30&c=1987&d=5&e=18&f=2012&g=d&z=66&y=133

Sunspots Numbers {estimated counts} ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/INTERNATIONAL/yearly/YEARLY

Telephone lines in Use Country http://en.wikipedia.org/wiki/List_of_countries_by_number_of_telephone_lines_in_use

Theater Counts  movies screened http://www.the-numbers.com/features/TCountAll.php

Timber Production County in California www.dof.ca.gov/html/fs_data/STAT-ABS/documents/G27.xls

Top Canadian Companies' Assets Company (Canadian)
http://www.theglobeandmail.com/report-on-business/rob-magazine/top-1000/2012-rankings-of-canadas-350-biggest-private-

companies/article4372009/

Top Canadian Companies' Profits Company (Canadian)
http://www.theglobeandmail.com/report-on-business/rob-magazine/top-1000/2012-rankings-of-canadas-350-biggest-private-

companies/article4372009/

US Civil War Casualties Battle name http:/americancivilwar.com/cwstats.html

US Foreign Grants&Credits Country http://www.census.gov/compendia/statab/cats/international_statistics.html

Votes for Conservatives 2008 Electoral riding in Canada http://en.wikipedia.org/wiki/Results_by_riding_for_the_Canadian_federal_election,_2008

Water Polo Association Income Income Category http://s3.amazonaws.com/zanran_storage/collegiatewaterpolo.net/ContentPages/44108531.pdf#page=13

Worker Injuries in Kansas NAIC Category http://s3.amazonaws.com/zanran_storage/www.dol.ks.gov/ContentPages/497957832.pdf#page=96
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