Single World Intervention Graphs
(SWIGs)

James Robins and Thomas Richardson



-Potential outcomes are extensively used within Statistics for reasoning about
causation.

-Directed acyclic graphs (DAGs) are another formalism used to represent causal
systems also extensively used in Computer Science, Bioinformatics, Sociology

and Epidemiclogy.

-Given the utility of both approaches — as demonstrated by many applications

— it is natural to to wish to unify them
-idea of splitting nodes.the key
-Counterfactuals Y (x) rather than Yz

-Only treatment variables must have well defined counterfactuals. Well-defined

vs Vague



Most important

-Finally graphical and counterfactual people can speak the same language and

understand one another

Also

- Improves reasoning about counterfactuals on graphs as unlike other systems
twin networks (Balke Pearl) and counterfactual graphs (Shpitser Pearl )

no determinism on graphs so d-connection implies dependence (for some dis-

tribution ion the model)
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Sticky Note
D-separation:
Is V_2 d-separated from V_0 unconditionally?

Answer: No 
2 paths down which prob can try to flow . 
D-sep only if all pathways blocked
Prob flow Blocked by Colliders. Otherwise Open 
So one path blocked.

If V_0 V_1 arrow missing yes

Pathways blocked by colliders Intuitive : If two variables independent what difference if they both cause the same variable.
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Conditional D-separation: 
Are V_2 and V_1 D-separated given V_0
Two paths : Prob is blocked by a conditioned on non-collider so 1 path blocked
                    Prob flows through a conditioned on collider (or a descendant of a collider): second path  blocked by unconditioned on collider

Are V_2 and V_1 D-separated given V_0,V_3
No collider now open so probability flows .

Conditioning on a common effect of independent causes renders them dependent:
Sprinkler on at 3 and 4. Rain random. So ind unconditionaly 
But if I know the grass is wet and then knowing the sprinkler is not on increases the prob that it is raining so dep conditionally
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statistical dag: equivalent definitions: Each variable is independent of all variables in its past given its parents
Each variable is independent of its nondescendants given its parents.

In this DAG V2 is independent of V1 given (within each level of) VO.

s Example
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statistical dag: equivalent definitions: Each variable is independent of all variables in its past given its parents
                                                             Each variable is independent of its nondescendants given its parents.
In this DAG V2 is independent of V1 given (within each level of) V0. 

robins
V2 is independent of V1 ie OR=1
with each level of V0 if the the probabilty V2 takes any value is not predicted by V1.

robins
Given V0, V1 is not an independent predictor of (risk factor for) V2
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Epi. 207a — Notes on d-separation —Fall 2001

Unconditional Independence: First let’s consider whether a variable A is d-separated (indepen-
dent) of a variable B on a DAG unconditionally. They are independent if there is no unblocked (active)
path between them down which probability can flow. To determine this, define a path as follows. Take
your graph, mentally erase (for the moment only) all arrowheads. So the graph now just has edges (arcs)
between nodes (variables). A path between A and B is any sequence of nodes all connected by arcs to
get you from A to B. The path is blocked if (now with arrows returned) there is a collider on the path.
[A variable C is a collider on a path if the arcs on the path that meet at C both have arrows pointing at
C'] If a path is not blocked, we say it is unblocked, active, or open, all of which are synonymous.

Then (A]] B) if and only if every path from A to B is blocked. If even one path is unblocked, we
write (A JIB).

We say two variables (A;, A2) are d-separated from two other variables (By, Bs), i.e., (41, A2) [ (B1, B2))q
if and only if all paths between any variable A; and any variable B, are blocked. That is, you simply
test d-separation between each variable in the second group and each variable in the first group. If there
are two variables in the first group and two in the last group, you have to do four separate checks of
d-separation.

Conditional independence: We say two variables A and B are d-separated given (or by) a set of
variables Z = (Z1, ..., Z) if all paths between A and B are blocked where, when we can condition on Z,
a path between A and B is blocked if (i) there is any variable Z,, € Z on the path that is not a collider
or (ii) there is a collider on the path such that neither the collider itself nor any of its descendants are in
Z. Generalizing this idea to d-separation of (Aj, As) from (B, Bs) given Z is just as above. That is, we
check that each variable in the first set is d-separated from each variable in the second set conditional on
Z.

Statistical interpretation of d-separation: As we have seen, a DAG represents a statistical
model. That is, it represents a set of distributions whose density can be factorized as the product of the
probability of each variable given its parents. Suppose we wish to know whether, for all distributions
in the model (i.e., all distributions represented by our DAG), whether A[[B | Z. The answer to this
question is A[[ B | Z for all distributions represented by the model if and only if A is d-separated from
B by variables Z, ie., (A][B | 2).

Suppose now that A is not d-separated from B given Z on the graph. Then there exists at least one
distribution, represented by the DAG, for which A and B are dependent given Z. [Note that there may
be other distributions in the model (represented by the DAG) for which A and B are independent given
Z.] For example, if Z is the empty set and our DAG is simply A — B, then clearly A is not d-separated



from B; yet distributions in which A is independent of B are represented by our DAG since our DAG is
complete (all arrows are present), and thus the DAG represents all distributions for (4, B).

The G-computation algorithm formula: Given a DAG G with variables (4, B,C,D,...,Z),
suppose the DAG is complete and the ordering of the DAG is alphabetical, that is, the arrow between
two variables has its head pointing at the variable later in the alphabet. Suppose we want to figure out the
density of all the uncontrolled variables in a hypothetical study where we intervene and set variables C, O,
and X to c,0, z. The joint density of all the other variables in this hypothetical study is derived as follows.
Write the joint density of all the observed variables on the graph using the usual DAG factorization, i.e.,
the product over the 26 variables of f (variable | parent). [ Note Z has 25 parents while A has no parents.|
Next remove from this product the terms corresponding to the densities of the set (manipulated) variables
given their parents. That is, f (¢ | parents C), f (o | parents O), f (x | parents X). Finally, be sure that
in the remaining terms, the value you have for the variables O, C, and X are the values you set these
variables to. Finally, to get the marginal distribution of any single variable, say, Y in the study where
you have intervened and set C', O, and X to particular values C', O, X of interest, you take the previous
joint density and sum out (integrate out) all the remaining 22 variables [i.e., all variables but Y and the
variables O, C, and X that you have set ]. Note the G-computation algorithm formula is defined in terms
of the distribution of the observed variables that you actually see in your study and can in principle be
consistently estimated (by counting) in a sufficiently large study. The formula has the distribution you
would see if you intervene and set C', O, and X to particular values of interest if the original DAG is
a causal DAG — i.e., there are no other unmeasured confounders in the world that you need to worry
about. Of course, in an observational study, you don’t know whether this is true. In a randomized study
(where there was physical randomization), you should know whether this was true because you know

which variables were used to assign the treatments C, O, and X.
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Figure 1: (a) A causal DAG representing two unconfounded variables; (b)
A causal DAG representing the presence of confounding.
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Sticky Note
Intuition:
CAUSAL DAG- NO CONFOUDING FOR ANY VARIABLE if ALL VARIABLE V OBSERVED

1.ALL COMMON CAUSES OV VARIABLES ON THE GRAPH MUST BE ON THE GRAPH EVEN IF NOT OBSERVED (H)
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Figure 2: The graphs resulting from splitting node X in the graph in Figure
1(a), and intervening to set a particular value. (a) setting X to 0; (b) setting
X to 1.
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.Construction of SWIG:
Topological order left to right by convention
Split any treatment node. Here X
Red half: Labbelled by the nonrandom fixed value treatment is set to 
Left half: Random
Left Half Inherits all arrows into X; no arrows out.
Red half: Inherits all arrows out of X; no arrows in. 
Variables down stream labelled as counterfactuals by the treatments that have directly affected them (ie that are ancestors on the SWIG)

Assumption on SWIG representing causal graph
The node variables factor according to the graph:
The distribution of the nodes (counterfactuals) are linked to the distribution of the factuals by modularity
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Figure 3: A template yepresenting the two graphs in Figure 2.

Figure 4: The template resulting from intervening on X in the graph in
Figure 1(Db).
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Figure 5: Adjusting for confounding. (a) The original causal graph. (b) The
template G(z), which shows that Y (x)1LX | L. (¢) The DAG Gx obtained
by removing edges from X advocated in Pearl (1995, 2000, 2009) to check
his ‘backdoor condition’.
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Figure 6: Further examples of adjusting for confounding. (a-i) A graph G;
(a-ii) the template G(z); (b-i) A graph G’; (b-ii) the template G'(z). H is
an unobserved variable in G and G’. Both SCoTg imply Y (z)LX | L.
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(1) Split Nodes: For every A € A split the node into a random and fixed
component, labelled A and a respectively, as follows:

Splitting: Schematic Illustrating the Splitting of Node A



Labelling: Schematic showing the nodes V(ay) in G(a) for which a € al}
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A is not an ancestor in the SWIT
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Figure 7: (i) A DAG G with treatment (Z), mediator (M) and response (Y)
in the absence of confounding. minimal templates: (ii) G(z); (iii) G(m); (iv)

G(m,z).
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Sticky Note
Why red node must be on the graph.
If not graph (ii) in this Figure would be the same as that graph in the next Figure.

One could not distinction the original SWIG as whether Z was a direct cause of Y .

Would not know that in next Figure (i) 
the law of Y(z) given M(z) does not depend on Z.
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Sticky Note
Modularity:
P[Y(z)|M(z)=m]=P[Y|M=m,Z=z] 
since M,Z are parents of Y in G
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Figure 8: (i) The DAG G from Figure 7 under the additional assumption that
there is no dlrect effect of treatment (Z) on the response (Y). Templates:

(ii) G(z); (iii) G(m); (iv) G(z,m).
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Note in (ii) Y(z) still labelled by z not m as M was not intervened on and z is an ancestor of Y(z)
In (iii) Y(m) is only labelled by m, since z and m intervened on, but only m is ancestor of Y . 
No direct effect of Z not through M

Modularity:
In (ii)
P[Y(z)|M(z)=m]=P[Y|M=m] since Z is not a parent of Y on G.
In (iii) P{Y(m)]=P[Y|M=m



R @ <
» P-p—

Figure 9: Non-minimal SCoTs: (a) A template G'(m) formed from the
minimal SCoT G(m) in Figure (111) by adding m to Z; A template (b)
G'(z,m) is formed from G(z,m) in Figure 8(iv) by adding z to Y (m).



Figure 10: (i) (i) A complete DAG G; (ii) the template G(ag, a1).
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Figure 11: (i) (i) A DAG G describing a sequentially randomized trial; (ii)
the template G(ag, ay).



1

QYD B T G
(i) (ii)

Figure 12: (i) A DAG G in which initial treatment is confounded, while the
second treatment is sequentially randomized; (ii) the SCoT G(ag,a1). L is
known to have no direct effect on Y, except indirectly via the effect on Ay
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Sticky Note
Construction of SWIG:
Topological order left to right by convention
Split any treatment node. Here A0,A1
Red half: Labbelled by the nonrandom fixed value treatment is set to 
Left half: Random
Left Half Inherits all arrows into X; no arrows out.
Red half: Inherits all arrows out of X; no arrows in. 
Variables down stream labelled as counterfactuals by the treatments that have directly affected them (ie that are ancestors on the SWIG)

Assumption on SWIG representing causal graph
The node variables factor according to the graph:
The distribution of the nodes (counterfactuals) are linked to the distribution of the factuals by modularity on term in  Swig factorization
    ⋅Replace counterfactuals by their associated factuals:  
    ⋅Then add the "treatment" parents of the left hand side counterfactual to the RHS:
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Figure 22: (i) the dynamic SWIG G(g) derived from the template in Figure
13(ii) under a dynamic regime g for which treatment at the second time
A7 (g) depends on past treatment and covariate history (A7 (g) and L(g)).
P(Y (g)) is not identified since A3 (g) is a function of L(g) and hence L(g) €
Qo(g), but there is a d-connecting path from A; to L(ai) in G(aj,as), as
shown in (ii). Thus the d-separation relation (50) in Theorem 27 does not
hold. Since g here does not depend on A; or As(g) we may also apply
Theorem 28 to G(g) directly: Since there is a path d-connecting A; and

Y (g) (given @) condition (iii) fails to hold for k = 1.

67
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In the dynamic regime 
A1 is not independent of Y(g) 
in the SWIG corresponding to the regime
Assign A1 from some distribution
Then Assign A2 as a function (possibly random)
of A1+ and L(g)
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Figure 13: Simplification of the backdoor criterion. (a) The original causal
graph G. (b) The template G(x), which shows that Y (x)1LX | L, but does
not imply Y (z)1lLX | {Li,L2}. (c) The DAG Gx obtained by removing
edges from X advocated in Pearl (2000, 2009).
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Figure 15: (a) A DAG G in which Robins’ condition (38) is claimed not to
hold; see Ex. 11.3.3, Fig. 11.12 in Pearl (2009, p.353); H is unobserved ; (b)
the template G(xo, x1).
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From the SWIG we see that 

    Y(x₀,x₁)∐X₁(x₀)|Z(x₀),X₀ and  Y(x₀,x₁ ind X_0 so the distribution of  Y(x₀,x_1) identified by the g-formula
Thus 
    Y(x₀,x₁)∐X₁(x₀)|Z(x₀),X₀=x₀
Thus 
    Y(x₀,x₁)∐X₁|Z,X₀=x₀
Pearl claimed this last was not true and concluded that a necessary and sufficient condition i had given for identification of the g-formula was wrong
    
How did he come to this incorrect conclusion
Yet as one can see using SWIGs 
He correctly concluded that Y(x₀,x₁)~∐X₁|Z,X₀ was false but he then claimed  the context specific independence was false as well
He used his method the so-called twin network method.
It is so hard and complicated to use correctly that he has made errors here and elsewhere although he was a coauthor of the method.

The reason I believe is that the method has deterministic relations and it has a great deal of trouble dealing with context specific independence
SWIGs immunize against such errors
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Figure 28: Failure of the simple twin network method of Pearl (2000, 2009)

in Pearl’s Example 11.3.3. (i) The original DAG; (ii) The twin network
after intervention on Xy and X;. The twin network fails to reveal that
Y (xo,x1)1LX7 | Z, X0 = x9. This ‘extra’ independence holds in spite of
d-connection because (by consistency) when Xo = o, then 7 = Z(xg) =
Z(xo,x1). (Note that Y (zo,z1) U X7 | Z, Xo # x0.)
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