2

4

TWO BIG IDEAS IN TEACHING BIG DATA

1

Coincidence & Confounding

by Milo Schield Twin-Cities Chapter Meeting March 19, 2014. Augsburg College www.StatLit.org/pdf/2014-Schield-ASA-TCC-6up.pdf

Big Data and Big Ideas

Big data: "any data set in which *all* associations are statistically significant." [Schield definition] Leaving aside local experiments (A-B tests), it might seem that intro statistics – statistical significance – has little value with 'big data'. In big data,

- 1. Coincidence is a bigger problem,
- 2. Confounding is often the #1 problem.

The "Birthday" Problem: Chance of same birthday

The "Birthday" Problem Math Answer

5

N!/[k!(N-k)!] combos of N things taken k at a time. For k = 2, #combos = C = N(N-1)/2 ~ (N^2)/2 N ~ sqrt(2C). If C = 365, N ~ Sqrt(730) = 27.

Q. Are students convinced? No!!!

If the chance of an event is p and p = 1/n, then this event is "expected" in n trials.

Show students there are > 365 pairs w 28 people.

					201	4 Schield ASA	°CC			9	
		Гор	-to-	Bo	tton	n &	Lef	t-to	-Righ	t:	
			49	CO	nne	ctio	ons	ea	ch		
Schield	1 (201	1)	RICH	ARD	ON MI	SES' E	IRTH	DAY P	ROBLEM	28 P	eopl
		Month	11	8	10	10	8	10	3		
		Day	19	3	28	17	27	29	5		
Month	Day					S				Month	Day
5	23									1	12
1	1									11	17
9	6		1							12	3
10	13									7	29
7	14									2	17
8	30		1				-			4	2
1	8		() 		n - 5		1		8	8	17
					N						
		Month	12	3	10	9	12	9	5		
		Dav	24	6	17	19	1	20	29		

Consider a run of 10 heads? What is the chance of that?

15

Question is ambiguous! Doesn't state context!

- 1. Chance of 10 heads on **the next 10 flips**? p = 1/2; k = 10.
 - $P = p^k = (1/2)^{10} = one chance in 1,024$
- Chance of at least one run of 10 heads somewhere when flipping 1,024 sets* of 10 coins each? At least 50%
- * or (conjecture) when flipping 1,033 coins: 1/p + k-1.

Second Big Idea: Confounding

Big data will force statistical education to deal with causation in observational studies.

- 1. Most big data are observational.
- 2. Most big data users want to use associations as evidence for causation.
- 3. Confounding is the #1 problem.
- 4. 'Confound', 'predict' and explain', will need clarification.

18

20

22

24

Confounding: Two definitions

19

21

23

Confounder (math): **Associated/observational** Any factor associated with the predictor (independent) and with the outcome (dependent) in an association.

Confounder (Epidemiological): **Causal/experimental** Any factor associated with the predictor (independent) and with the outcome (dependent) in an association:

- that is not caused by the predictor, and
- that has *a causal influence* on the outcome.

Prediction: Two definitions

Prediction (math): Associated/observational Modelled result assuming none of the factor levels are set by a researcher.

Prediction (Business): **Causal/Experimental** Modelled results based on factor levels that could be set by a researcher.

Explain: Two definitions

Explain (math): **Associated/observational** How much of the outcome variation is *associated with* or *attributable to* a given factor.*

Explains (Business): **Causal/Experimental** How much of the outcome variation is *a result of* or *caused by* a factor.*

* 'Due to' and 'because of' are "in-between"

Common Confusions

Among adult men:

- 1. Weight and height are positively correlated.
- 2. Those who are heavier are generally taller than those who are thinner.
- 3. As weight increases, height increases.
- 4. For every extra 5#, height increases by 1 inch
- 5. If you gain weight, you will grow taller.

Ambiguity in "Explains"

For every 5# increase in weight in adult men, height increases by 1 inch.

Does the five pound increase in weight "explain" the one inch increase in height?

- Yes, if explain means "is associated with": we shift focus from light-weight men to heavy-weight men at a given time.
- No, if explains means "causes": we increase the weight of individual men over time.

Multivariate Analysis Predict vs. "Explain"

Step	1	2	3	
Constant	\$80,000	\$78,000	\$58,000]
Baths	\$39,000	\$36,000	\$15,000	per bath
Acres		\$7,500	\$7,500	per acre
Area			\$33	per sq. foot
R-sq	44%	60%	68%	

Predict/observe: accuracy \uparrow as factors \uparrow

#3: Each extra bath *explains* a \$15K \uparrow in value.

Predict/causal: If a bathroom is added, the house value is expected to \uparrow by \$15K.

26

28

Predictor \rightarrow Confounder \rightarrow Outcome

Kaplan: Model Outcome on Predictor Schield: Model Outcome on Predictor and Confounder

1.Who is right?

- 2. Can both be right? YES!!!
 - Schield in predicting; Kaplan in causal explaining.

Causation & Simpson's Paradox

Simpson's paradox is not a paradox in prediction. Simpson's paradox is only a paradox in forming a causal explanation or conclusion.

In a prediction the signs and sizes of the coefficients are all but irrelevant. R-sq is what counts.

In a causal explanation, the size and sign of the coefficients matter. R-sq is all but irrelevant.

Conclusion

27

Many – if not most – big-data users want causal explanations and causal predictions.

Math-stats can help us explain why coincidence increases as the size of the data increases.

Mathematics doesn't study causation. There is no mathematical operator or operation for causes.

Statistics education must say more about causation than simply saying "Association is not Causation."

Recommendations

- 1. Schield (2011) Coincidence in Runs and Clusters www.statlit.org/pdf/2012Schield-MAA.pdf
- 2. Pearl (2000). Simpson's Paradox: An Anatomy. http://bayes.cs.ucla.edu/R264.pdf
- 3. Pearl (2009), Causal inference in statistics. http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
- 4. Gelman blog (2014). On Simpson's Paradox. http://andrewgelman.com/2014/02/09/keli-liuxiao-li-meng-simpsons-paradox/

TWO BIG IDEAS IN TEACHING BIG DATA

Coincidence & Confounding

by Milo Schield Twin-Cities Chapter Meeting March 19, 2014. Augsburg College www.StatLit.org/pdf/2014-Schield-ASA-TCC-6up.pdf

Big Data and Big Ideas

Big data: "any data set in which *all* associations are statistically significant." [Schield definition] Leaving aside local experiments (A-B tests), it might seem that intro statistics – statistical significance – has little value with 'big data'. In big data,

- 1. Coincidence is a bigger problem,
- 2. Confounding is often the #1 problem.

Coincidence?

•

The "Birthday" Problem: Chance of same birthday

Richard von Mises (1883-1953) In a group of 28 people, a birthday match (same month and day) is *expected*.²

The "Birthday" Problem Math Answer

N!/[k!(N-k)!] combos of N things taken k at a time. For k = 2, #combos = C = N(N-1)/2 ~ (N^2)/2 N ~ sqrt(2C). If C = 365, N ~ Sqrt(730) = 27.

Q. Are students convinced? No!!! If the chance of an event is p and p = 1/n, then this event is "expected" in n trials. **Show students** there are > 365 pairs w 28 people.

Consider a table

Source: www.statlit.org/Excel/2012Schield-Bday.xls.

Get Birthdays (Mn/Dy): Color cell with row-column match

Schield	(2012)		RICH	ARD VC	ON MIS	ES' BI	RTHDA	Y PRC	BLEM			V2b
				Press	F9 for a	new gr	oup of 2	28 peop	ole			
		Month	9	10	9	4	7	4	11			
		Day	24	3	26	26	18	28	6			
Month	Day		0		8	0	÷	3	<u></u>		Month	Day
4	9	③								\odot	2	15
8	10	•								9	7	18
2	20	8				8				8	5	19
6	30	0				ř.				\odot	8	15
2	22	•						5		☺	5	9
6	17	8								8	7	25
1	<mark>1</mark> 5	0								\odot	4	11
			\odot		8	0		8	0			
		Month	4	1	6	12	11	6	3			
		Day	7	27	26	4	11	18	9			

Four Quadrants: 49 possible connections each

Schield (2011)			RICH	RICHARD VON MISES' BIRTHDAY PROBLEM							28 People	
		Month	10	11	11	9	4	7	6			
		Day	16	18	8	9	13	25	24			
Month	Day									Month	Day	
8	20							1		7	25	
10	29				-					8	16	
4	11									11	6	
3	3									11	29	
1	3									8	3	
3	30									3	24	
10	28				-					1	15	
		Month	5	2	6	2	1	7	5			
8		Day	28	8	6	12	14	1	25			

Source: www.statlit.org/Excel/2012Schield-Bday.xls.

Top-to-Bottom & Left-to-Right: 49 connections each

Schield (2011)			RICH	ARD V	ON MI	SES' E	BIRTH	DAY P	ROBLEM	28 P	eople
		Month	11	8	10	10	8	10	3	_	
		Day	19	3	28	17	27	29	5		
Month	Day					S				Month	Day
5	23									1	12
1	1				12					11	17
9	6									12	3
10	13									7	29
7	14									2	17
8	30									4	2
1	8									8	17
					N						
		Month	12	3	10	9	12	9	5		
		Day	24	6	17	19	1	20	29		

Same-Edge (four): 21 connections each

Schield	d <mark>(</mark> 201	1)	RICH	ARD V	ON MI	SES' E	BIRTH	DAY P	ROBL	EM	28 P	eople
		Month	3	2	2	3	9	3	5		-	
		Day	4	5	9	29	20	5	20			
Month	Day										Month	Day
6	22									E	4	1
10	8										7	10
5	5										3	26
11	23										3	10
3	27									E	4	1
10	2										9	8
2	21	-									5	7
		Month	8	1	10	12	9	5	5			
		Day	18	6	11	9	3	26	19			

Connections and Chance

Pairs	GROUP	Details
196	Quadrants 1-4	49 pairs each
49	Left-to-Right	
49	Top-to-Bottom	
84	Within each side	21 pairs each
378	TOTAL	

A *preselected* birthday match has one chance in 365. In a group of 28, we have 378 pairs: (N-1)(N/2). A *somewhere* match is expected - > 50% of the time.

Coincidence: Flipping a fair coin Getting a "run" of heads

Conjecture: The longer the run, the more unlikely the outcome.

Empirical test

Flip coins in rows. 1=Heads Red = Run of heads.

Run of 4 heads: 1 chance in 2^4 = 1/16 Run of 19 heads: 1 in 2^19 = 1/524,288

Source: www.statlit.org/Excel/2012Schield-Runs.xls

Consider a run of 10 heads? What is the chance of that?

Question is ambiguous! Doesn't state context!

- 1. Chance of 10 heads on the next 10 flips? p = 1/2; k = 10. $P = p^k = (1/2)^{10} =$ one chance in 1,024
- 2. Chance of at least one run of 10 heads
 somewhere when flipping 1,024 sets* of 10 coins each? At least 50%
- * or (conjecture) when flipping 1,033 coins: 1/p + k-1.

Coincidence increases as data size increases

Law of Coincidence

Law of Very-Large Numbers (Qualitative): The unlikely is almost certain given enough tries

Law of Expected Values:

Consider N tries with events having one chance in N.

- * One event 'expected' in N tries
- * Chance of at least one > 50%

Second Big Idea: Confounding

Big data will force statistical education to deal with causation in observational studies.

- 1. Most big data are observational.
- 2. Most big data users want to use associations as evidence for causation.
- 3. Confounding is the #1 problem.
- 4. 'Confound', 'predict' and explain', will need clarification.

Confounding: Two definitions

Confounder (math): Associated/observational Any factor associated with the predictor (independent) and with the outcome (dependent) in an association.

Confounder (Epidemiological): **Causal/experimental** Any factor associated with the predictor (independent) and with the outcome (dependent) in an association:

- that is *not caused* by the predictor, and
- that has *a causal influence* on the outcome.

Prediction: Two definitions

Prediction (math): Associated/observationalModelled result assuming none of the factor levels are set by a researcher.

Prediction (Business): Causal/ExperimentalModelled results based on factor levelsthat could be set by a researcher.

Explain: Two definitions

Explain (math):Associated/observationalHow much of the outcome variation is associatedwith or attributable to a given factor.*

Explains (Business): Causal/Experimental How much of the outcome variation is *a result of* or *caused by* a factor.*

* 'Due to' and 'because of' are "in-between"

Common Confusions

Among adult men:

- 1. Weight and height are positively correlated.
- 2. Those who are heavier are generally taller than those who are thinner.
- 3. As weight increases, height increases.
- 4. For every extra 5#, height increases by 1 inch
- 5. If you gain weight, you will grow taller.

Ambiguity in "Explains"

For every 5# increase in weight in adult men, height increases by 1 inch.

Does the five pound increase in weight "explain" the one inch increase in height?

- Yes, if explain means "is associated with": we shift focus from light-weight men to heavy-weight men at a given time.
- No, if explains means "causes": we increase the weight of individual men over time.

Multivariate Analysis Predict vs. "Explain"

Step	1	2	3	
Constant	\$80,000	\$78,000	\$58,000	
Baths	\$39,000	\$36,000	\$15,000	per bath
Acres		\$7,500	\$7 <i>,</i> 500	per acre
Area			\$33	per sq. foot
R-sq	44%	60%	68%	

Predict/observe: accuracy ↑ as factors ↑

#3: Each extra bath *explains* a \$15K \uparrow in value. Predict/causal: If a bathroom is added, the house value is expected to \uparrow by \$15K.

Modeling: What to Take into Account

Consider modeling the outcome in this causal diagram:

Predictor \rightarrow Confounder \rightarrow Outcome

Kaplan: Model Outcome on Predictor Schield: Model Outcome on Predictor and Confounder

1.Who is right?

2. Can both be right? YES!!!

Schield in predicting; Kaplan in causal explaining.

Causation & Simpson's Paradox

Simpson's paradox is not a paradox in prediction.Simpson's paradox is only a paradox in forming a causal explanation or conclusion.

In a prediction the signs and sizes of the coefficients are all but irrelevant. R-sq is what counts.In a causal explanation, the size and sign of the coefficients matter. R-sq is all but irrelevant.

Conclusion

Many – if not most – big-data users want causal explanations and causal predictions.

Math-stats can help us explain why coincidence increases as the size of the data increases.

Mathematics doesn't study causation. There is no mathematical operator or operation for causes.

Statistics education must say more about causation than simply saying "Association is not Causation."

Recommendations

- 1. Schield (2011) Coincidence in Runs and Clusters www.statlit.org/pdf/2012Schield-MAA.pdf
- Pearl (2000). Simpson's Paradox: An Anatomy. http://bayes.cs.ucla.edu/R264.pdf
- 3. Pearl (2009), Causal inference in statistics. http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
- 4. Gelman blog (2014). On Simpson's Paradox. http://andrewgelman.com/2014/02/09/keli-liuxiao-li-meng-simpsons-paradox/