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Big Data 
and Big Ideas

Big data: “any data set in which all associations 
are statistically significant.” [Schield definition]

Leaving aside local experiments (A-B tests), it  
might seem that intro statistics – statistical 
significance – has little value with ‘big data’.

In big data, 

1. Coincidence is a bigger problem,

2. Confounding is often the #1 problem.
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Coincidence?

.
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The “Birthday” Problem:
Chance of same birthday

Richard von Mises (1883-1953) 

In a group of 28 people, 
a birthday match (same month and 
day) is expected.”. 
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The “Birthday” Problem
Math Answer

N!/[k!(N-k)!] combos of N things taken k at a time.

For k = 2, #combos = C = N(N-1)/2 ~ (N^2)/2

N ~ sqrt(2C).  If C = 365, N ~ Sqrt(730) = 27. 

Q. Are students convinced?   No!!!

If the chance of an event is p and p =1/n, 
then this event is “expected” in n trials.

Show students there are > 365 pairs w 28 people.
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Consider a table

Source: www.statlit.org/Excel/2012Schield-Bday.xls.
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Get Birthdays (Mn/Dy):
Color cell with row-column match
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Four Quadrants:
49 possible connections each

Source: www.statlit.org/Excel/2012Schield-Bday.xls.
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Top-to-Bottom & Left-to-Right:
49 connections each

.
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Same-Edge (four):
21 connections each

.
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Connections and Chance

Pairs GROUP Details

196 Quadrants 1-4 49 pairs each

49 Left-to-Right

49 Top-to-Bottom

84 Within each side 21 pairs each

378 TOTAL

A preselected birthday match has one chance in 365.

In a group of 28, we have 378 pairs: (N-1)(N/2). 

A somewhere match is expected – > 50% of the time.

Conjecture:

The longer 

the run,

the more unlikely 

the outcome.

Empirical test

Coincidence: Flipping a fair coin
Getting a “run” of heads
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Flip coins in rows.    1=Heads
Red = Run of heads.  

Green: Length of longest run in that row Source: www.statlit.org/Excel/2012Schield-Runs.xls

Run of 4 heads: 1 chance in 2^4 = 1/16
Run of 19 heads: 1 in 2^19 = 1/524,288
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Consider a run of 10 heads?
What is the chance of that?

Question is ambiguous!   Doesn’t state context!

1. Chance of 10 heads on the next 10 flips? 
p = 1/2;   k = 10.
P = p^k = (1/2)^10 = one chance in 1,024

2. Chance of at least one run of 10 heads 
somewhere when flipping 1,024 sets* of 10 
coins each?   At least 50%

* or (conjecture) when flipping 1,033 coins: 1/p + k-1.
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Coincidence increases 
as data size increases

.. Sets of 10 fair coins with 10 heads

0%
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Number of sets of 10 coins each

Chance of no set 
     with 10 heads

Chance of at least 
   one set  with 10 heads

Law of Very-Large Numbers (Qualitative):  
The unlikely is almost certain given enough tries

Law of Expected Values:

Consider N tries with events
having one chance in N.
* One event ‘expected’ in N tries
* Chance of at least one > 50%
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Law of Coincidence
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Second Big Idea:
Confounding

Big data will force statistical education to deal 
with causation in observational studies.

1. Most big data are observational.

2. Most big data users want to use associations 
as evidence for causation.

3. Confounding is the #1 problem.

4. ‘Confound’, ‘predict’ and explain’, will need 
clarification.
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Confounding:
Two definitions

Confounder (math): 

Any factor associated with the predictor (independent) 
and with the outcome (dependent) in an association.

Confounder (Epidemiological):

Any factor associated with the predictor (independent) 
and with the outcome (dependent) in an association:

• that is not caused by the predictor, and

• that has a causal influence on the outcome.

Associated/observational

Causal/experimental
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Prediction:
Two definitions

Prediction (math): 

Modelled result assuming none of the factor 
levels are set by a researcher.

Prediction (Business):

Modelled results based on factor levels 
that could be set by a researcher. 

Associated/observational

Causal/Experimental
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Explain:
Two definitions

Explain (math): 

How much of the outcome variation is associated 
with or attributable to a given factor.* 

Explains (Business):

How much of the outcome variation is a result of
or caused by a factor.* 

* ‘Due to’ and ‘because of’ are “in-between”

Associated/observational

Causal/Experimental
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Common Confusions

Among adult men:

1. Weight and height are positively correlated.

2. Those who are heavier are generally taller 
than those who are thinner.

3. As weight increases, height increases.

4. For every extra 5#, height increases by 1 inch

5.  If you gain weight, you will grow taller.
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Ambiguity in “Explains”

For every 5# increase in weight in adult men, 
height increases by 1 inch.  

Does the five pound increase in weight 
“explain” the one inch increase in height?

• Yes, if explain means “is associated with”: 
we shift focus from light-weight men to 
heavy-weight men at a given time.

• No, if explains means “causes”: we increase 
the weight of individual men over time.
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Multivariate Analysis
Predict vs. “Explain”

Predict/observe: accuracy  as factors 

Step 1 2 3

Constant $80,000 $78,000 $58,000

Baths $39,000 $36,000 $15,000 per bath

Acres $7,500 $7,500 per acre

Area $33 per sq. foot

R‐sq 44% 60% 68%

#3: Each extra bath explains a $15K  in value.

Predict/causal: If a bathroom is added, the 
house value is expected to  by $15K.
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Modeling:
What to Take into Account

Consider modeling the outcome in this causal diagram:

Predictor  Confounder  Outcome

Kaplan: Model Outcome on Predictor
Schield: Model Outcome on Predictor and Confounder

1.Who is right?

Schield in predicting; Kaplan in causal explaining.

2.  Can both be right? YES!!!
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Causation & 
Simpson’s Paradox

Simpson’s paradox is not a paradox in prediction. 

Simpson’s paradox is only a paradox in forming a 
causal explanation or conclusion.

In a prediction the signs and sizes of the coefficients 
are all but irrelevant.  R-sq is what counts.

In a causal explanation, the size and sign of the 
coefficients matter.  R-sq is all but irrelevant.
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Conclusion

Many – if not most – big-data users want causal 
explanations and causal predictions.

Math-stats can help us explain why coincidence 
increases as the size of the data increases.

Mathematics doesn’t study causation.  There is no 
mathematical operator or operation for causes.  

Statistics education must say more about causation 
than simply saying “Association is not Causation.”
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Recommendations
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Big Data 
and Big Ideas

Big data: “any data set in which all associations 
are statistically significant.” [Schield definition]

Leaving aside local experiments (A-B tests), it  
might seem that intro statistics – statistical 
significance – has little value with ‘big data’.

In big data, 

1. Coincidence is a bigger problem,

2. Confounding is often the #1 problem.
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Coincidence?

.
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The “Birthday” Problem:
Chance of same birthday

Richard von Mises (1883-1953) 

In a group of 28 people, 
a birthday match (same month and 
day) is expected.”. 



2014 Schield ASA TCC 5

The “Birthday” Problem
Math Answer

N!/[k!(N-k)!] combos of N things taken k at a time.

For k = 2, #combos = C = N(N-1)/2 ~ (N^2)/2

N ~ sqrt(2C).  If C = 365, N ~ Sqrt(730) = 27. 

Q. Are students convinced?   No!!!

If the chance of an event is p and p =1/n, 
then this event is “expected” in n trials.

Show students there are > 365 pairs w 28 people.
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Consider a table

Source: www.statlit.org/Excel/2012Schield-Bday.xls.
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Get Birthdays (Mn/Dy):
Color cell with row-column match
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Four Quadrants:
49 possible connections each

Source: www.statlit.org/Excel/2012Schield-Bday.xls.
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Top-to-Bottom & Left-to-Right:
49 connections each

.
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Same-Edge (four):
21 connections each

.
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Connections and Chance

Pairs GROUP Details

196 Quadrants 1-4 49 pairs each

49 Left-to-Right

49 Top-to-Bottom

84 Within each side 21 pairs each

378 TOTAL

A preselected birthday match has one chance in 365.

In a group of 28, we have 378 pairs: (N-1)(N/2). 

A somewhere match is expected – > 50% of the time.



Conjecture:

The longer 

the run,

the more unlikely 

the outcome.

Empirical test

Coincidence: Flipping a fair coin
Getting a “run” of heads



Flip coins in rows.    1=Heads
Red = Run of heads.  

Green: Length of longest run in that row



Source: www.statlit.org/Excel/2012Schield-Runs.xls

Run of 4 heads: 1 chance in 2^4 = 1/16
Run of 19 heads: 1 in 2^19 = 1/524,288
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Consider a run of 10 heads?
What is the chance of that?

Question is ambiguous!   Doesn’t state context!

1. Chance of 10 heads on the next 10 flips? 
p = 1/2;   k = 10.
P = p^k = (1/2)^10 = one chance in 1,024

2. Chance of at least one run of 10 heads 
somewhere when flipping 1,024 sets* of 10 
coins each?   At least 50%

* or (conjecture) when flipping 1,033 coins: 1/p + k-1.



16

Coincidence increases 
as data size increases

.. Sets of 10 fair coins with 10 heads
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Law of Very-Large Numbers (Qualitative):  
The unlikely is almost certain given enough tries

Law of Expected Values:

Consider N tries with events
having one chance in N.
* One event ‘expected’ in N tries
* Chance of at least one > 50%

17

Law of Coincidence
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Second Big Idea:
Confounding

Big data will force statistical education to deal 
with causation in observational studies.

1. Most big data are observational.

2. Most big data users want to use associations 
as evidence for causation.

3. Confounding is the #1 problem.

4. ‘Confound’, ‘predict’ and explain’, will need 
clarification.
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Confounding:
Two definitions

Confounder (math): 

Any factor associated with the predictor (independent) 
and with the outcome (dependent) in an association.

Confounder (Epidemiological):

Any factor associated with the predictor (independent) 
and with the outcome (dependent) in an association:

• that is not caused by the predictor, and

• that has a causal influence on the outcome.

Associated/observational

Causal/experimental
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Prediction:
Two definitions

Prediction (math): 

Modelled result assuming none of the factor 
levels are set by a researcher.

Prediction (Business):

Modelled results based on factor levels 
that could be set by a researcher. 

Associated/observational

Causal/Experimental
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Explain:
Two definitions

Explain (math): 

How much of the outcome variation is associated 
with or attributable to a given factor.* 

Explains (Business):

How much of the outcome variation is a result of
or caused by a factor.* 

* ‘Due to’ and ‘because of’ are “in-between”

Associated/observational

Causal/Experimental
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Common Confusions

Among adult men:

1. Weight and height are positively correlated.

2. Those who are heavier are generally taller 
than those who are thinner.

3. As weight increases, height increases.

4. For every extra 5#, height increases by 1 inch

5.  If you gain weight, you will grow taller.
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Ambiguity in “Explains”

For every 5# increase in weight in adult men, 
height increases by 1 inch.  

Does the five pound increase in weight 
“explain” the one inch increase in height?

• Yes, if explain means “is associated with”: 
we shift focus from light-weight men to 
heavy-weight men at a given time.

• No, if explains means “causes”: we increase 
the weight of individual men over time.
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Multivariate Analysis
Predict vs. “Explain”

Predict/observe: accuracy  as factors 

Step 1 2 3

Constant $80,000 $78,000 $58,000

Baths $39,000 $36,000 $15,000 per bath

Acres $7,500 $7,500 per acre

Area $33 per sq. foot

R‐sq 44% 60% 68%

#3: Each extra bath explains a $15K  in value.

Predict/causal: If a bathroom is added, the 
house value is expected to  by $15K.
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Modeling:
What to Take into Account

Consider modeling the outcome in this causal diagram:

Predictor  Confounder  Outcome

Kaplan: Model Outcome on Predictor
Schield: Model Outcome on Predictor and Confounder

1.Who is right?

Schield in predicting; Kaplan in causal explaining.

2.  Can both be right? YES!!!
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Causation & 
Simpson’s Paradox

Simpson’s paradox is not a paradox in prediction. 

Simpson’s paradox is only a paradox in forming a 
causal explanation or conclusion.

In a prediction the signs and sizes of the coefficients 
are all but irrelevant.  R-sq is what counts.

In a causal explanation, the size and sign of the 
coefficients matter.  R-sq is all but irrelevant.
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Conclusion

Many – if not most – big-data users want causal 
explanations and causal predictions.

Math-stats can help us explain why coincidence 
increases as the size of the data increases.

Mathematics doesn’t study causation.  There is no 
mathematical operator or operation for causes.  

Statistics education must say more about causation 
than simply saying “Association is not Causation.”
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