ECOTS Two Big Ideas for Teaching Big Data: Coincidence and Confounding 2014

Welcome to this ECOTS invited webinar: Two big ideas for teaching big-data.

2014 5chmid 0TS 1

.. . . TWO BIG IDEASFOR
make the originally-scheduled webinar work despite the TEACHING BIG DATA

technical difficulties. This is a redo without any audience.

Thanks to Jean and Michelle for heroic efforts in trying to

Coincidence & Confounding
In that aborted session we started with 54 participants and
by

pe.aked at 67 before stopping since no one could hear my T
voice. We did get responses to three survey questions. Augsburg College, USA

Electronic Conference on Teaching Statistics
Question 1: “When teaching introductory statistics, who M;E'ZC(;:TZS(:M_ ‘
chooses your textbook?” Possible answers with percentages: www.StatL it org/pdf/2014-Schield-eCOTS-Slides pdf
The teacher [54%)]; Teachers together [42%]; Someone else

[29%]. Obviously these choices weren’t exclusive.

Question 2: “What fraction of a one-semester introductory statistics course should focus on coincidence
and confounding?” 0-5% [31%]; 5-15% [44%]; 15-30% [19%]; 35-50% [nil]; more than 50% [6%].

| didn’t expect that a fourth of those responding would recommend spending at least 15% of the course

(almost a fifth of the course) on coincidence and confounding. I'd probably answer in the 0 to 5%

category. | just don’t have time to put another topic — or two topics -- into my overloaded intro statistics

course. But the allocation certainly depends on our priorities. y
Big Data

I am here to talk about making coincidence and confounding a and Big Ideas

priority for your intro statistics course and for big data.

Slide 3: For me “big-data” is any data set in which all the
associations are statistically significant. This means that
statistical significance doesn’t have much value with big-data.

In big data, N
But, in big data coincidence and confounding are typically the 1. Coincidence is a much bigger problem.
big statistical problems. . Confounding is often the #1 problem.

Slide 4: | have a true confession. I've been teaching statistics
a long time. | always note that “association is not causation.”

My examples always involved confounding: the Berkley sex True Confession
discrimination case; ice-cream and burglaries in the summer. — -
I have been teaching introductory statistics for over

But my course never involved confounding. It was all about B eados. T have a confession.
randomness: sampling error, margin of error and confidence = | e
intervals. In a sense, | was guilty of bait and switch.

(onfession Timeess
lintroduced my students to one kind of problem and then | \PIRNRE

switched to solving a different kind of problem. | want to
show you how | start my course now using coincidence. But
first another poll

Question 3: How many intro statistics textbooks use coincidence or chance to support the claim that
“association is not causation”? Answers: None [6%]; One or two [41%]; Three to six [24%]; More than
six [29%]. My answer was “None”, but only 6% agreed with me. Either I’'m not well-read, or I've written
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the question wrong or “something”. Send an e-mail to Schield@Augsburg.edu with the names of

textbooks. I'd certainly appreciate getting the education.

Slide 6: Here are some humorous examples of coincidence. For me, coincidence is an unlikely
combination of events that is memorable. When you watched the royal wedding, did you notice the
many similarities shown in these pictures? Now, | got these pictures off the web, so the may be photo-
shopped for all | know. Still, coincidences are memorable; we all have stories of amazing coincidences.

Slide 7: How are we going to demonstrate a coincidence in
our classroom —on demand — every time? That seems
impossible!  I'm saying it isn’t impossible. I'm going to

introduce three examples of coincidence that | use to start my

intro statistics course. In each example the underlying
probabilities are known. The three spreadsheets involve Run
of heads, Grains of Rice and the Birthday Problem. Let’s start
with a simple case of coincidence: a run of heads in flipping
fair coins.

E Demonstrating Coincidence

Seems impossible!

Slide 8: We all know about a run of heads. Students don’t expect long runs; they think long runs are a
sign of non-randomness. Auditors use the absence of long runs as a sign of fraud.

Slide 9. Examine this Excel worksheet that | created for my
students. It's free. Let your students to use it. Have fun!

| used the RandBetween() function to generate random
outcomes. Each cell in a row is either 1 or 0: heads or tails.
Cells with heads are conditionally formatted in red. Arunisa
group of red cells that are touch.

Do you see the number in green at the left end of each row?
That is the length of the longest run in that row. Inrow 4,
the longest run is length four. In row 6, the longest run is
length five. Now that you understand how the spreadsheet
was designed, let’s take a look at the full spreadsheet.
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Flip coins in rows. 1=Heads (Red fill)
Adjacent Red cells is a Run of heads.

=RANDBETWEEN(0,1)
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+ Fair coin: find longest run of head

Green: Length of longest run in that row
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Slide 10: The number in the upper left hand corner is the E %
: Run of 4 heads: 1 chance in 24 = 1/16 1

IOngeSt run on the entire worksheet. In the first row, the | Run of 19 heads: 1 in 2419 = 1/524,288
longest run is length 4: one chance in 16. Inthe second row, | T — coe—rs

|51 A BCDEFGH I JKLMIOPGRS TUNWARY,

1 RUN_ Biggest run in row or in column  Schield (2011) V1 Run of Heads (1)
2 19 12345678901234567890123456789012345670890123456789012346678901234

the longest run is length 12: one chance in 2212. : : . . : : .
+ & ClooMe o oo <o oMo oo QD) o o ool ol oo oo« oo o

. . . 12 ool o ool oM o oNe olo oo oo oSNNI o o < I 0 o o
In the third row, the longest run is length 19: one chance in : W.Uaémma-m_w-wNMG”
over 500,000. We pressed F9; we got a run of 19 heads. We i ¢ N BT oHo oMol oo foco: ellocoooc ol
. . . W BE 0 0 ¢ [ O moeome o0
just had a 500,000 year flood this year. The students enjoy © 7 oee oMo o oMo os oo ose oo ol oMo NN e ol 5o ol

7 oMo Mo oMo e o oo o N N N o o o ¢ ol ol 000

pressing F9. As noted on this slide, this spreadsheet is
available at www.StatLit.org/Excel/2012Schield-Runs.xls

Now open the Runs spreadsheet: Enable Editing. Refresh by pressing the F9 key. Students love playing
with this spreadsheet. They are dimly aware that these long runs are amazing coincidences — and yet
they are happening every time. Hold that thought.

B Microsoft Excel - 2o12Schield-Runs.xls

‘B Fle Edit View Insert Format Iools Data  window Help  Adohs PDF

NEHRSRIVEISRB- #9068z 43 W -@fitelim <5 -|[B]z o | EE=E]S % o W5 Es
A2 - £ =MAKASAFI)
A [BICIDEFGH] 1[I K LMINIG PR STTU Y AR A A A AR AR BA AR AR AR AE IS B BE B E BB BB E BB BB BB B BIE B B L SIS CLICICE TR T e

Fair coin: find longest run of heads in a row 1 signifies a head (0 a tail). A run of heads is highlighted in red
13|Longest run! One chance in 8,192 To refresh, press the F9 key Schield (2012) V]

6 00l offo o SN o o o N o o o O - O o [ N O - = o o N O - - o o [ -
6 [ oo o000 oflloo 0 olo Bl o ofllo o o ol o o o NN o NN NN - N - O - - - - o - o[- o 0

7 o0 olo o o o N IS N N N o - - - - [ o o [ o [ o o I oo o oo o o oo ol
7 ool N oo Mo o o I o o o ol o o o o o - - - I - - o o o [ - - o - -
3 ool N I - o - o o o o o o oo 0.0 BN B o o o o s o o o [ o 0 o o [ oo
1| 4 oo o o[l o o o N o N o o oo - oo oo oo o oo oo o o oo N O e o [ o o o o o - o
1o 1 o o -l oo R e A - - o - ol
15| ¢ Mol oo BN o oo oMo ol o s ol 0o oo oMo ool - o -l o N
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Slide 11. Suppose we point to a run of 10 heads and ask

students “What is the chance of that?” At this point my Sensidera ran of 10 hends?
What is the chhance of that?

students are confused. They know these long runs are
extremely unlikely. But they also realize these long runs are
happening most of the time.

Students don’t realize the question is ambiguous. It doesn’t
state the context. If we are asking the chance of 10 heads on
the next 10 flips (or at a pre-specified starting point), the
answer is one chance in 1,024.

But if we are asking the chance of a set of 10 heads somewhere when you flip 1024 sets with 10 heads
each, you can expect at least one. And it can be shown that the chance of getting at least one set of 10
heads is at least 50%: it’s “more likely than not”. See Schield (2012) for details. My students can
remember this.
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r 13 ‘
Slide 12 shows that as the sample size increases, the chance Coincidence increases
data size i
of no set of 10 heads decreases and the chance of at least one QRS0 ¥ Fo horeatss
set of 10 heads increases. As statisticians, we are usually S g
interested in the point where the lines intersect at 50%. Chance oo et (105310307
My students can’t deal with that level of math. But, they can Mmsn%‘(:
remember what is expected when N = 1/p. .
And with N = 1/p, getting at least one set of 10 heads is more i - m m | wm m

Humbrer of sets of 140 coins each

likely than not. See Schield (2012).

Slide 13: A second example of coincidence was proposed by
Michael Blastland in his great book, the Tiger That Isn’t. If you
haven’t read this book, | strongly recommend it. Michael
noted that people see patterns in a random distribution of
rice grains on the floor.

e Vol a0t

#2 Grains of Rice
Blastland: The Tiger That Isn’t

With nce scattered in two
dimengions, people can often
see memorable shapes.

‘After this webinar, check out
ig Excel scattered-rice demo
ith 1 chance in 100 per cell;

| simulated this random distribution of rice grains in an Excel
spreadsheet: www.StatLit.org/Excel/2012Schield-Rice.xls

Let your students play with this spreadsheet. Each cell has
one chance in 10 of coming up with a number between zero
and 9. If the random number is a nine that is considered to be
a grain of rice and that cell is conditionally formatted in red. Here we have two red cells touching.
What is the chance of that? One chance in 100. Here we have three red cells touching. What is the
chance of that? One chance in a thousand. Here we have four red cells touching; one chance in
100,000. That’s incredible. Students love pressing F9. They find these unlikely coincidences every time.

it.org/Excel/201 28chield-Ric

i

TEI B o2t ot Fame Dok Do Wedew bk Akere 4 2 " =3
DEH3 G704 L0 SR E- A e calina i <0 B s u EEE s % a3 EE YA
222 - £ =RANDEE TWEENT 5) / / ]
A BCDEFGHI JKLMMNOPOQRS T UVWVWZX Y Z AAABACADAEAFAGAH Al AJAKALAMAWNAD AP AQAR AS AT AL AVAWN
1 Rice-10 shest Find the largest group of Red cells that are tgfuching each other.
2 0 Low 9 High a. touching on sides in a row b. on top or bottom In a colygn & g of tips or points in a
3 26657 784365 47 84065 8 1 6 7 7 6 7 _j8 6 0 4 s+ 3 7 6 0 5 1 3
4 6 6106737 23 805 2 7 6 6 8 6 § s [ 6§ 00 2/8/2[7(1|6[8]a]7 |0
5 (2 685?“031002?16? 2 4465“ 5 3 8 5 8 3 4 6 6 4 4 07 0
8|4 7377406565461 4808 4 5§ 33 28 08 16 8 g/o|7|0/8[3 (6|87
TRl 637|004/ 1|86 & 0|7 B3 800 1 2 3 8 4 5 4 " 4 1|6 2 5 4 41 3 2077
34386256?6“23451?0 5 1566?3321“330 B/ 8 5 3 4|2/ 71,05
9|6 401378851 301110 7 7/8 3/0/4/6|(5 /3|5 3|8 4|0 2 siElls 5 4 8 2 5
0|8 1 7 6 0 B 6 5 2 8B 3 1 0 7 04 8 160?“5?31?418840 ?BEOBS 3113
110 1 201441885486 20°5 14830 4E0s5 3 o EEN O 1 37Tz 575 732
12(4 28 4 fls 20176 1[El1 2 21 N8 17676171274 6[F- 6 74860 0Fe 3
121 7160566 2 27 4716 0 1|8 4 7 2 5 61 2 5|6 7 2 4N ?385144153
14(1 6 6 402 4 s sEN1 00 3 2 83 22766 30155608 8 8020658%84s87 5H
15 s El4 58 61 6 85 4 0EF1 5307&“5“4055012150?61221?248
16]3 2 4104387 505 2 1185 2\8 /4 8 11 3 256 6 67 7621571245177 30[Es
17|8 4 0 0 65 234 2 15 430 3 2 0 4 106 2001237784 117 40 2?2416
18|17 6 7 3JEQ1 B1ﬂ3512?3ﬂ7254 0 55753“32345 4 0 4 5 5 0 4 6 B 1 68 3
19|7 16 3 oOFJ7J4 0 4 4 6 0 0 3 8 0 4 3 45 8187 36401 1235788703877 073
20|14 78 307 8 Eﬂ15265?2438ﬂ7?042 ﬂ450460568712550?5E102
21|33 517 368282 3 66 3640103742807 781526120458 2487 22481
2|15 21376881837 077331 05HE7777613143212¢1 oFHN2033378600
2214 2715187 1E7 8 2 1026{]36451%25418051%16053444386
24(7 2 5 sjfle 2 s 07 2 7 s 507 1 4 2 0 3 0 0 8 58854?815 721175150588
25|33 6 B7 46 230321 26807 6367 713 4602021 304“32#55106754#2
26(3 7831 1604 3 0o l7 s El2El6 B4 2 4 5177 2046165557264 2808276 63
27|8 31 6o 0650 4 7 3 206888070668 284350535 3804822454503 2JH
2844?21548?215305232523361?13126515?“506533802226
29|2 2 2 4 s EISEeEl6 6 5 1 25 2 EFle 8 22 6 7 4 6 8 4 407 8057104 7EH0S5 1654 3 4
30/e 323131 3E 56 7IENEN" 104 6 8 5 25 46227 43 7H7 257 sE"" 881 3 2 63
31(6 3133653 7057 3355 s5EIs 43 230648311667 37351703 s sl 1 2
322 1 1Jfs 788606 36 170137 467 34056 3766216583777 08628%517
33 1 2 345 6 7 8 091011121314 # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49
Conditional Format: Equal to 9. Fill Red, TextColor White, Home tab: Cells/Format/Col-Width=2
oA e ml Lng-1800 3, 2in10-1800  Ini-27Ts J iml0-50e4 f Inko0-1560 f Instructiors [ 14 1 »

2014-Schield-ECOTS1d.doc

Page 4



ECOTS Two Big Ideas for Teaching Big Data: Coincidence and Confounding 2014

Slide 14: My third example of coincidence is the birthday e ¥
problem created by Richard von Mises in 1938. We know that
with 23 people we can get a match at least half the time. But
getting 23 involves more math than my students can follow.

Chance of a matching birthday

Richard von Mises (1938)
In a group of 28 people,
a birthday match is expected.
The trick is to show it, &7
—not just to prove § .

I’'m interested in using the expected value. The smallest
group with more than 365 combinations involves 28 people.
With 28 people a match of birthdays (month and day) is
expected. But my students aren’t generally convinced; they
cannot see 365+ combinations.

Try this Excel den
o/Excel/2012S8chield-Bday.:

My students do understand that the chance of this event is one in 365. They understand that in 365
random pairs we can “expect” one match. All we need to do is to show students that there are more
than 365 matches or pairs with 28 people. To show them, | created a spreadsheet which you can access
on the web at www.StatLit.org/Excel/2012Schield-Bday.xls

Wew Qsert Formot  Toos [ote  Window el AdoheFOF
AR E i e -alins i

-n - [Br]n EEmE s %

J K L M N

Ao g
DSEHR @R P8 4Ga-d W me oAl
JIE - & =RANDBETWEEN(I 20)

B (o D E E G H I

2 Schield (2012) RICHARD VON MISES' BIRTHDAY PROBLEM V3a
3 Press F9 for a new group of 28 people
4 Quadrant4 Month 2 3 10 3 5 1 Quadrant 1
5 Day 23 1 7 19 9
6 Month Day Month Day
7 5 21 12 17
510 8 1 29
9 9 1 4 27
10 & 3 8 26
11 11 6 5 18
e 3 27 4 4
13 2 12 4 25
14
15 Quadrant3 Month 6 9 8 7 6 2 8 Quadrant 2
16| Day 3 27 30 29 8 7

There are seven people on each of the four sides of a table. Each person is identified with a random
birthday: a random month and a random day. [All months are assumed to have 30 days. You can
improve the spreadsheet if you want.]

In this spreadsheet there is a number in the central grid highlighted with a red fill: the number 4. Note
that there are four quadrants: #1 in the upper right; #2 in the lower right, #3 in the lower left and #4 in
the upper right. In this case, quadrant four has a match between the Oct 8 birthday in the same row on
the left and the Oct 8 birthday in the same column at the top.

How many combinations are there in quadrant four between the 7 people on the top and the 7 on the
left side? 49! There are 49 unique pairs for each of the four quadrants. That’s almost 200 combinations
for all four quadrants. Students can see this quickly.
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The second kind of combination involves matches on opposite sides. Either a left-right match or else a
top-bottom match. Again there are 49 unique combinations for each of the two opposite-side matches.
With almost 100 new combinations, we are now up to nearly 300 combinations in total.

There third kind of combination involves matches on the same side. It’s a little harder to see 21
combinations (6+5+4+3+2+1) for each of the four same-side matches. With around 80 new
combinations, we now have about 380 unique pairs in total. The exact total is 378 pairs. Once students
actually SEE more than 365 pairs with only 28 people, they are really convinced. Something with one
chance in 365 is expected!

Slide 15: Suppose you show your students these three examples: run of heads, grains of rice and
birthday problem. Does that mean your students will understand that some associations are not
causation: that some associations could be spurious — just coincidence? My students don’t. They just
have three specific examples. They need a memorable principle to integrate these specifics together.

Slide 15: | introduce what | call the Law of Very Large Numbers. This law is not the same as the Law of
Large Numbers. [This Law of Very Large Numbers parallels the Law of Truly Large Numbers introduced
by Persi Diaconis and Frederick Mosteller.]

In its qualitative form, this Law of Very Large Numbers says that “The unlikely is almost certain given
enough tries.” In its quantitative form, this law says “If you have an event with one chance in N and if
you make N tries, then that event is expected AND it happens more than 50% of the time.” My
students can understand this. It is almost intuitive: they can remember it and they can use it.

[The first part of this Law of Very Large Numbers is just a special case for the mean of the Binomial
distribution: E(k) = n*p. When n =1/p, then E(k) = (1/p)*p which always equals one.

The second part of this law is extremely important. For a binomial distribution, P(X=k) = {n!/[k!(n-k)!]}
[p"K][(1-p)*(n-k)]. P(X=0) = (n!/n!) [p*0][(1-p)*n] = (1-p)*n. When n =1/p or p = 1/n, then P(X=0) =
(1-1/n)”n. For n =2, P(X=0) = (1/2)72 or 0.25. For n = 10, P(X=0) = .9710 = 0.3487. For n = 100, P(X=0) =
0.997100 = 0.366. Euler's constant = e = Lim (1+1/n)*n as n —c. Note that 1/e = 0.367879. Schield
(2012) argued that P(X=0) approaches 1/e from below as n increases. Thus, the complement, [1-P(X=0)],
must approach 1-1/e from above. Since 1-1/e = 0.632, P(X>0) is always greater than 0.5 when n=1/p.]

Slide 16: What are the desired coincidence outcomes? _
Students should see four things. (1) Coincidence may be more | == -

common than they realized. (2) Coincidence depends on Coincidence Outcomes
context — before or after the fact. Did we set the target T
) . o Students must “see” that coincidence
before we did the shooting or after? (3) Coincidence may be » may be more common than expected
totally spurious — just random chance. * depends on the context
* may be totally spurious
(4) Coincidence may still be a sign of causation. The pump -+ may be a sign of causation

handle reminds us of an important event in the history of
statistics and statistical education. There is a pump in London
on Broad Street (now Broadwick Street). This is near where in L
1854 Dr. John Snow said the grouping of cholera deaths around a pump was notJust coincidence — but
was really a sign of causation. Snow’s methodical analysis marked the beginning of epidemiology.
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Slide 18: Now turn to our second big idea: confounding. To
review: As sample size increases, margin of error decreases,
and coincidence increases (it becomes more likely) but
confounding remains unchanged. Suppose we noted that
men were more likely to die of lung cancer than women.
Getting more data might not change this comparison as long
as the new data is the same kind as the prior. Getting more
data wouldn’t offset the influence of a relevant confounder:
being a life-long smoker. If we never asked “Are you a life-
long smoker?” and took it into account, we might mistakenly

Two Big Ideas for Teaching Big Data: Coincidence and Confounding

2014

Second Big Idea:
Confounding

As sample size increases,

* Margin of error decreases,

* Coincidence increases (becomes more likely)
* Confounding remains unchanged.

Big data doesn’t minimize confounding.
It anything, Big Data gives unjustified support
for confounder-spurious associations.

conclude that gender was largely responsible for this difference in lung cancer death rates.

Big data doesn’t minimize confounding. If anything, big data gives unjustified support for associations
that may be spurious: chance spurious or confounder-spurious. [A bank analytics manager, Ryan Dunlop,
noted that big data ‘fishing expeditions’ were often unproductive. A specific question was much more

likely to generate useful results.]

Slide 19: The most interesting form of confounding is
Simpson’s Paradox. Simpson’s Paradox is a sign reversal of a
predictor after taking into account a relevant but extraneous
factor. Here is my claim: In observational studies Simpson’s
Paradox reversal is incidental when modeling or forecasting.
But such a reversal dominates when searching for causes.

[Here is my argument. Including a confounder (a related
factor) in a model can do two different things: (#1) improve
the quality and predictions of a model; (#2) change the sign
and size of other predictors. In modeling or forecasting, #1
(improving quality) dominates. In a causal analysis, #2
(changing the sign and size of predictors) dominates.]

To show this, | am using some data published by the National
Assessment of Educational Progress (NAEP). This data is for
US fourth graders taking a national math test in 2001.

Slide 20: The average score of the Utah students (228) was
higher than that of the Oklahoma students (224). The datais
broken out by student family income. The average score of
students from high income families (239) was much higher
than that from low-income families (214).

Slide 21: | generated detail data that matched these summary
statistics. This data is at www.StatLit.org/Excel/2014-Schield-
ECOTS-Data.xls. When we regress these NAEP math scores by
state, we get the regression statistics shown on the left.

Adding more factors typically improves the quality of the

2014-Schield-ECOTS1d.doc Page 7
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Second Big Idea:
Confounding

CLAIM
Simpson’s paradox (sign reversal or confounding)
+is incidental when modelling or forecasting,
°dqminates when searching for causes.

Modeling NAEP data

Based on 2001 NAEP Math 4 Scores

Low$ {0) | HighS$ {1} | Total
Utah{0) ] 209 234 2284
okla{1)| 218 244 2241
Total 214 —— 239 226

$ indicates student has low or high family income

Source: www StatLit org/pdff2004TerwilligerSchield AEE A pdf
Data at www StatLit org/Excel/2014-Schield-eCOTS-Data zls

Forecast with Confoundexzx;
Reversal is Incidental

Data based on 2001 NAEP 4% Grade Math Scores.
Compare Utah (0) and Oklahoma (1)

e R+ 35
+25.0*Incoma

Regression Statistics

R Square 0.2 - Increase » R Square 0.42
Standard Error 16.23 Standard Error 12.48
pvalue (Intercept 0.00 Decreass Pvalue (Intercept) 0.00

p-value [STATE) 0.2 p-value [STATE) 0.0

Obsenations 300 pvalue [INCOME) 0.00
hng more factors typically improves the quality of the mnﬁ
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model. When we regress math scores by state and family income we get the regression statistics shown
on the right. Compare the results. R-squared increased dramatically so the model fits better. Standard
Error and p-value decrease, so predictions will be more accurate. The reversal in the sign of the
coefficient for the STATE variable is incidental.

Slide 22: Now consider the same data analysis from a causal | h " 2

perspective. Which state has the better educational system? L w“h. co“ﬁ’“'.'de"
Reversal is Essential

If we analyze just by State, Utah’s schools seem better than

Based on 2001 NAEP 4th Grade Math Scores

Oklahoma’s. But if we include student family income, Low5 (0] [High (1) Total | %Hight

, ) Utah [0) 2] | 24 [ 2m4| 7a%
Oklahoma’s schools seem better than Utah’s. Utah looked Okla(1) ng¥ | ¥ oml| 2%
better originally because it had a much higher percentage of Cansal Questian:

‘Which State has the better education system?
[Score=2283-a5%5tate | [Score =208.7+6.5%5tate + 25.0%Income |

students from high-income families than did Oklahoma. This
sign reversal for STATE is Simpson’s Paradox. The significance 1
of a sign reversal depends on what kind of analysis you do. k T Oltahoma (e ‘

Diata at www. StatLit orgExre 201 4- Schield-eCOTS-Data, xls

Slide 23: | claim we should teach more on confounding. But,

| want to acknowledge there are two big reasons NOT to B ching Confounding:

teach confounding in an introductory course. Two Big Reasons Not To...

#1: The first is disrespect. A colleague noted that students [ erespect (2) Brercqit e
might have less respect for our discipline if they knew how
easily statistics and statistical significance could be changed

after taking into account an extraneous factor. \ )35 An open mind
is the prerequisite
#2: We don’t want to model bad practice. Regression to gaining

involves assumptions. Multivariate regression involves more ) knowledge.

assumptions; that means a second course on modeling. We
can’t ignore this, but we don’t have time for it.

24

Teaching Confounding:

Slide 24: These objections must be overcome before we can Reasons To...
teach confounding in the intro course. But there are reasons P ornfield conditions! set & minimumioniiD
FOR teaching confounding that offset these two objections. QR nder that oan negate or reverse g

association. Schield (1999). These conditions can
offset excessive skepticism/cynicism.

#1: The Cornfield conditions can limit excessive skepticism. B fhex the predictor and confounder are biray

They set a minimum on the size of confounder that can there are graphical techniques? that allow students

L . A to work problems without sotbware and without a
negate or reverse an association. A butterfly flapping its second course in regression. Schield (2006)
wings in the Pacific can’t reverse all the associations in the This material has been taught for over 10 years. I
world — unless it is a very BIG butterfly. These are the k

conditions that Jerome Cornfield successfully used to reject Fisher’s claim that the association between
smoking and lung cancer might be confounded by genetics. See Schield (1999).

#2: When the predictor and confounder are binary, the regression assumptions are readily satisfied.
The model is fully saturated. When the predictor and confounder are binary, a simple graphical
technique is available so software is not needed. [I have taught this graphical technique for over 10
years in my Statistical Literacy course for students in non-quantitative majors.] My English, art and
music majors can work problems involving confounding. See Schield (2006).

I’'m going to show you examples of both of these along with references that you can pursue.
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Slide 25: Here's a way my students apply a Cornfield =
condition. Consider the patient death rate at two hospitals: oo Comficld’s Condtuy
City (5.5%) and Rural (3.5%). If you don’t want to die Rural

Death Rates

hospital looks better. Rural probably has cookies and milk in ciy oo
5.5%- Overall
the afternoon; City probably has more weird diseases. w, s 45% 230% mare §

3.8%
Rural

But patient condition is certainly a confounder. The patient
death rate is higher for those in poor health (6.3%) than for
those in good health (1.9%). The patient health difference
(4.4 percentage points) is bigger than the hospital difference
(2 percentage points). Cornfield proved a necessary condition: that to negate or reverse an association,
a confounder must be bigger than the association. See Schield (1999). My students can tell that patient
condition could negate and even reverse this association between hospital and death rate.

. By Patient
By Hospital Condition

1.9%
Cornfield’s condition: To reverse an
association, the confounder must be

bigger than the association. i

Slide 26 shows a new graphical technique — standardizing —

2

that controls for the influence of a binary confounder. #2: Standardizing with binary
A ) Lo i X predictor and confounder
Howard Wainer did statistical education a great service when
.. . . . .re . -by- Standardizing Can R A Diffi
he publicized this technique (Larry Lesser had identified it fE Ser iy step || Stavdrdizig Con Reverem A DY S
: : : : new graphical - =
earlier). This technique takes a while to understand. See B oriizing - mﬁ. - ig
Schield (2006) and the references shown for more detail. The P;"“S”;f:ld £~ 3 =~ " city Hospital
*See Schiel 7™ =
audio presentation takes you through step-by-step. (2006). N aprans
L isten to audio; T
L. view the slides. il = = - = -
My students can see how an association of rates or Paresrtage vin ars i "Peee* Candian

&diu : www. statlit. orglAudio/20095tat Lt Text-Overview-Ch3. mp3

percentages can be reversed by taklng into account a ides . www.statlit.orgipdfi2 000 Stat Lit Text Handout Thi3 pdf

confounder. This reversal is something they have never seen
in any math course. And they can work problems.

Slide 27: My conclusion. Many — if not most — big-data users '
want causal explanations. In Business, this is what we call 4
Business Intelligence. Modeling a time series, a change or a Conclusion

difference is a first step in seeing what caused those results.

Many — if not most — big-data users want causal
explanations (C.1., business intelligence). Modeling and

Given this need, statistical educators must focus more on prediction are just a means to this end.
coincidence and confounding. Our students deserve a To be relevant for these users of Big Data,

. ) .o 1. We must focus more on Coincidence & Confounding,
broader education than what we’ve been giving them. I . ic infiiences on many statistics LI

students deserve a broader education.

We need to say more than “Association is not Causation”. [As 2. We must say more about causes than “Association is

. not Causation.” We must introduce confounding, the
Danny Kaplan says, we should let go of our “abstinence e e
curriculum.”] We must introduce confounding along with the

Cornfield conditions and standardization.

Most of the students taking introductory statistics major in the social sciences or professions: business
sociology, social work, education and economics. Students in these disciplines deal primarily with
observational data. Confounding is one of the biggest problems they have. Most of the textbooks in
introductory statistics are silent on confounding (or mention it just briefly).
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[By using the absence of overlapping 95% confidence intervals as a sufficient condition for statistical
significance, my students can see how statistical significance can be influenced by a confounder. This
confounder influence on statistical significance is something every student should know. | don’t know
of any introductory statistics text that mentions this.]

| see the absence of confounding in our introductory textbooks [and the silence on how taking into
account an extraneous factor can influence statistical significance] as professional negligence.

With big data, we need to deal with causation, confounding and coincidence. Now we have the tools to
show how statistics is a foundational discipline in dealing with Big Data.

Thank you very much. | appreciate any comments or questions on this presentation. If you are
interested in testing teaching materials based on these ideas, please let me know.

These slides are hosted at www.StatLit.org/pdf/2014-Schield-ECOTS-Slides.pdf
This paper is hosted at www.StatLit.org/pdf/2014-Schield-ECOTS.pdf
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Slide 29: Here are my key references:

For more on statistical literacy, visit my website: References

www.StatLit.org

1. Bchield (1999). Simpson's Paradox and Cornfield's
Conditions, ASA Proceedings Statistical Education
wwrw. Statlit org/pdf/ 19998 chieldAS A pdf.

2. &chield (2006) Presenting Confounding Graphically

Using Standardization STATE magazine.

wwr . statlit. org/pdff20063chiel d3STATS pdf

. Bchield (20123 Coincidence in Euns and Clusters

wrww. statlit. org/pdff20128chield-MA S pdf

erwilliger and Schield (2004). Frequency of S1mp5

30

Slide 30: Here are some recommended readings.
Judea Pearl has two excellent articles on Simpson’s
Paradox. His 2014 paper is an absolute gem.

Statistics and Causality: Separated [at Birth] to 1. Peatl, Tudea (2000). Simpsom’s Paradox: An
Reunite [Today]. Anatomy. hitp://bayes.cz.ucla. eduw/R264.pdf
2. Pearl, Tudea (2014). Understanding Simpson’s
Paradox. The American Statistician, 2/2014, V68, N1
hitp://ftp. cs.ucla.edu/pub/stat ser/rd14-reprint.pdf
. Pearl, J. (2014). Statistics and Causality: Separated to
Reunite. Commentary. Health Service Research.
hitp://ftp.cs.ucla.edu/pub/stat ser/1373-reprint.pdf
- Gelman blog (2014). On Simpson’s Paradox.
drewgelman com/2014/02/09/keli-li
simpsons-paradox/

Suggested Readings

Hopefully, causality will be the hallmark of statistical
education in the 21 century.

Gelman’s blog is an interesting case study on how
people talking on Simpson’s Paradox can be talking at
different levels: one at the modeling/prediction level;
the other at the causal level.
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