Panel: TEACHING BIG DATA

Comments

by Milo Schield

Augsburg College, USA Electronic Conference on Teaching Statistics (E-COTS)

May 20, 2014.

www.StatLit.org/pdf/2014-Schield-eCOTS2-Slides.pdf

Milo Schield: Position and Background

I think that making programming a dominant part of an undergraduate statistics major or minor is misguided.

I'm not opposed to programming. I am chair of an MIS major within Business. I spent 10 years in actuarial at a national insurance company using APL and SAS. I spent 5 years working with data streams from satellites.

Inserting more programming means that something else must be omitted. We need to reflect on what is missing.

Do Others Disciplines Feature Programming?

Other quantitative disciplines (Actuarial Science, Management Science, Physics) don't list programming as a dominant part of their major or minor.

In Colombia's MS in Actuarial Science*, none of the eight required courses involve programming. Only two of the 32 electives involve programming (S-Plus).

Actuaries are more likely than statisticians to have to program and work with large amounts of data.

*Source: http://ce.columbia.edu/actuarial-science/courses

Statistical Practioners: Big Data & Computing

2014 ASA Conference on Statistical Practice. Fraction of talks that involve big data or computing:

MINORITY: 5-20%

Posters: PS1 (2/16), PS2 (1/17), and PS3 (1/18)

Concurrent Sessions: 7/43

MAJORITY: 60-100%

Tutorials: 2/3 Short Courses: 6/9

Practical Computing Exhibits: 3/3

www.amstat.org/meetings/csp/2014/onlineprogram/index.cfm

Computing Trumps Causation and Confounding Search ASA website – www.amstat.org – May, 2014: Matches Search Word or Phrase

Matches	Search Word or Phrase
34,500	Data
8,050	Computer/computing
2,710	programming
2,320	Causal/causality
1,080	"Observational studies"
940	"big data"
352	"directed graphs", "directed acyclic graphs"
220	"Structural equation modeling" or SEM
182	Coincidence
175	Confound/confounder/confounding

Programming Trumps Causation and Confounding

2014 Draft Guidelines for Statistical Science*

Required Undergrad topics: Statistics, **Programming**, **Data**, Mathematics and Communications.

Data is mentioned 55 times [Programming: 8 times] Computer/computing is mentioned 15 times.

Causal inference is one of 7 topics under Modeling. *Confounding* is one of 8 topics under DOE. Not enough distinction between major and minor.

* Draft dated May 11, 2014 via ISOSTAT. www.amstat.org/education/curriculumguidelines.cfm

What are We Ignoring???

Judea Pearl sponsors ASA Causality in Statistical Education Award. A \$10,000 award in 2014.

Why is this award necessary? Because we don't want to talk about causation in observational studies.

Most students taking intro stats or a statistics minor are in majors that use observational data to identify causes.

Randomization, Programming and Big Data are important topics that allow statistical educators to ignore the three 'elephants': Causality, Confounding and Context.

Recent Papers/Talks on Causality & Confounding

PAPERS:

Pearl, J. (2014). Statistics and Causality: Separated to Reunite. Commentary. Health Service Research.Tintle et al. (2013). Challenging the state of the art in post-introductory statistics. ISI

TALKS/POSTERS:

Deveaux, R. and D. Kaplan (2014). Statistics for the 21st Century: Are we Teaching the Right Course? ECOTS Schield, M and D. Kaplan (2011). Modeling in Context: Teaching Confounding & Adjustment ... USCOTS