Statistical Literacy:
Coincidence
MILO SCHIELD,
Augsburg College
Director, W. M. Keck Statistical Literacy Project
US Rep, International Statistical Literacy Project
Member, International Statistical Institute
National Numeracy Network Workshop
Oct 11, 2014.
www.StatLitorg/pd/2014-Schield-NNN1-Slides.pdf

The "Birthday" Problem Math Answer

If the chance of an rare event is p and $p=1 / k$, then this event is "expected" in k trials.
In a group of size N , there are $(\mathrm{N}-1)(\mathrm{N} / 2)$ pairs.
Solve for $\mathrm{N}(\mathrm{k}) . \mathrm{k}=(\mathrm{N}-1)(\mathrm{N} / 2)=(\mathrm{N} \wedge 2-\mathrm{N}) / 2$
Quadratic: $\mathrm{N}^{2}-\mathrm{N}-2 \mathrm{k}=0$
Estimate: $\mathrm{N}^{2} \sim 2 / \mathrm{p}$.
Trial and error: $27^{2} \sim 2 * 364$
Q. Are students convinced? No!!!

Connections and Chance		
Pairs	GROUP	Details
196	Quadrants 1-4	49 pairs each
49	Side-to-Side	
49	Top-to-Bottom	
84	Within each side	21 pairs each
378	TOTAL	
A "birthday" match has one chance in 365. In a group of 28, we have 378 pairs: ($\mathrm{N}-1$)($\mathrm{N} / 2$). A match is expected: Match is more likely than not.		

Consider a run of 10 heads? What is the chance of that?

Question is ambiguous! Doesn't state context!

1. Chance of 10 heads on the next $\mathbf{1 0}$ flips?
$\mathrm{p}=1 / 2 ; \mathrm{k}=10$.
$\mathrm{P}=\mathrm{p}^{\wedge} \mathrm{k}=(1 / 2)^{\wedge} 10=$ one chance in 1,024
2. What is the chance of at least one set of 10 heads [somewhere] when flipping 1,024 sets of 10 coins each? At least 50\%.*

* Schield (2012)

Runs in Flipping a Fair Coin

1) Unlikely is expected given enough tries.
2) Unlikely (1 chance in k) is expected in k tries

Run of 6 is expected in 64 tries: $2^{\wedge} \mathbf{6}=64$.
Run of 7 is expected in 128 tries: $2 \wedge 7=128$
Run of 8 is expected in 256 tries: $2 \wedge 8=256$
\mathbf{k} tries = \mathbf{k} flips of a coin

Patterns in Rice: \# Touching																		
2:1/100;					4:1/10,000;						6: 1/1,000,000							
A3						\checkmark -			f_{x}			=RANDBETWEEN $(0,9)$						
	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
3	9	3	2	9	9	4	1	9	9	9	2	2	5	3	5	0	5	5
4	8	0	6	4	1	6	7	4	0	2	2	0	3	7	0	9	8	0
5	3	1	7	3	5	2	5	6	8	7	2	0	4	8	9	2	9	6
6	9	0	1	4	3	4	2	8	9	2	6	6	4	7	7	9	2	3
7	9	6	2	1	9	0	4	3	8	6	2	7	5	7	5	1	3	3
8	4	3	6	1	5	8	1	9	4	8	4	9	2	6	1	8	7	2
9	0	0	2	4	3	0	5	5	9	3	1	6	9	5	3	5	8	4
10	9	6	6	7	5	0	6	6	1	2	6	6	0	9	3	6	7	8
11	9	1	0	4	7	4	2	4	4	0	4	3	,	8	4	-	8	5
	9	8	0	1	4	6	0	8	2	0	4	2	3	5	6	4	5	

Coincidence Outcomes

Students must "see" that coincidence -may be more common than expected -depends on the context -may be totally spurious - may be a sign of causation

Michael Blastland's
The Tiger that Isn't
With rice scattered in two dimensions, people can often see memorable shapes.
After this webinar, check out this Excel scattered-rice demo with 1 chance in 100 per cell:

www.StatLit.org/Excel/2012Schield-Rice.xls

Statistical Literacy: Coincidence

MILO SCHIELD, Augsburg College

Director, W. M. Keck Statistical Literacy Project
US Rep, International Statistical Literacy Project Member, International Statistical Institute

National Numeracy Network Workshop
Oct 11, 2014.
www.StatLit.org/pdf/2014-Schield-NNN1-Slides.pdf

Law of Very-Large Numbers

Not the same as Law of Large Numbers!!!

Unlikely is almost certain given enough tries.

Given an event: one chance in N .
In N tries, one event is 'expected';

* More likely than not. Schield (2012)

Coincidence?

The "Birthday" Problem: Chance of a matching birthday

Richard von Mises (1938)
In a group of 28 people, a birthday match is expected.

The trick is to show it, - not just to prove

Try this Excel den

www.StatLit.org/Excel/2012Schield-Bday.xls

The "Birthday" Problem Math Answer

If the chance of an rare event is p and $p=1 / k$, then this event is "expected" in k trials.
In a group of size N , there are ($\mathrm{N}-1$)($\mathrm{N} / 2$) pairs.
Solve for $\mathrm{N}(\mathrm{k})$. $\mathrm{k}=(\mathrm{N}-1)(\mathrm{N} / 2)=(\mathrm{N} \wedge 2-\mathrm{N}) / 2$
Quadratic: $\mathrm{N}^{2}-\mathrm{N}-2 \mathrm{k}=0$
Estimate: $\mathrm{N}^{2} \sim 2 / \mathrm{p}$.
Trial and error: $27^{2} \sim 2 * 364$
Q. Are students convinced? No!!!

49 Connections: Quadrant 1

Schield (2011)
RICHARD VON MISES' BIRTHDAY PROBLEM
28 People

		Month	10	11	11	9	4	7	6		
		Day	16	18	8	9	13	25	24		
Month	Day									Month	Day
8	20							1		7	25
10	29									8	16
4	11									11	6
3	3									11	29
1	3									8	3
3	30									3	24
10	28									1	15
		Month	5	2	6	2	1	7	5		
		Day	28	8	6	12	14	1	25		

49 Connections: Quadrant 2

Schield (2011) RICHARD VON MISES' BIRTHDAY PROBLEM 28 People

		Month	8	12	7	11	6	4	2		
		Day	28	2	15	15	5	24	2		
Month	Day									Month	Day
10	8									2	5
5	17									2	17
9	13									12	26
11	18									3	6
12	21							2		4	20
2	28									10	2
10	11									3	23
		Month	10	7	4	12	8	4	8		
		Day	22	22	10	6	4	20	21		

49 Connections: Quadrant 3

Schield (2011) RICHARD VON MISES' BIRTHDAY PROBLEM 28 People

		Month	3	8	7	5	6	8	11		
		Day	4	5	25	27	19	4	26		
Month	Day									Month	Day
7	15									12	13
4	31									7	30
11	3									2	1
8	15									4	14
3	28									10	25
3	18									1	18
2	26		3							12	23
		Month	2	3	2	4	6	11	9		
		Day	26	26	23	6	30	11	8		

49 Connections: Quadrant 4

Schield (2011) RICHARD VON MISES' BIRTHDAY PROBLEM 28 People

		Month	11	11	3	5	1	5	2		
		Day	5	27	17	3	5	19	4		
Month	Day									Month	Day
11	5		4							11	12
11	17									8	24
8	2									5	1
4	26									3	28
4	22									10	13
10	8									4	4
12	22									8	11
		Month	1	7	5	5	12	10	5		
		Day	2	1	23	7	20	14	14		

49 Connections: Side-To-Side

Schield	(201)		RICH	D	N	ES'	RT	AY	OB		28 P	eople
		Month	2	3	10	6	6	9	6			
		Day	14	3	13	27	13	7	24			
Month	Day										Month	Day
1	24										1	31
9	8	E									6	28
12	6										12	24
12	28										10	1
10	27										11	19
9	18									W	9	8
4	12										4	16
		Month	8	8	6	5	7	4	7			
		Day	13	3	19	3	30	9	18			

49 Connections: Top-to-Bottom

Schield (2011)			RICHARD VON MISES' BIRTHDAY PROBLEM							28 People	
		Month	11	8	10	10	8	10	3		
		Day	19	3	28	17	27	29	5		
Month	Day					S				Month	Day
5	23									1	12
1	1									11	17
9	6									12	3
10	13									7	29
7	14									2	17
8	30									4	2
1	8									8	17
					N						
		Month	12	3	10	9	12	9	5		
		Day	24	6	17	19	1	20	29		

21 Connections: Same-Side

Schield (2011)
RICHARD VON MISES' BIRTHDAY PROBLEM

		Month	3	2	2	3	9	3	5			
		Day	4	5	9	29	20	5	20			
Month	Day										Month	Day
6	22									E	4	1
10	8										7	10
5	5										3	26
11	23										3	10
3	27									E	4	1
10	2										9	8
2	21										5	7
		Month	8	1	10	12	9	5	5			
		Day	18	6	11	9	3	26	19			

Connections and Chance

Pairs	GROUP	Details
196	Quadrants 1-4	49 pairs each
49	Side-to-Side	
49	Top-to-Bottom	
84	Within each side	21 pairs each
378	TOTAL	

A "birthday" match has one chance in 365.
In a group of 28, we have 378 pairs: ($\mathrm{N}-1$)($\mathrm{N} / 2$).
A match is expected: Match is more likely than not.

Runs: Flipping Coins

Law of Very-Large Numbers (Qualitative): The very unlikely is almost certain given enough tries

Law of Expected Values:
Events with 1 chance in k are "expected" in k tries.

Flip coins in rows. 1=Heads (Red fill) Adjacent Red cells is a Run of heads.

Source: www.statlit.org/Excel/2012Schield-Runs.xls

Chance of a run of 19 heads: One chance in 2^19 = 1 in 524,288

Consider a run of 10 heads? What is the chance of that?

Question is ambiguous! Doesn't state context!

1. Chance of $\mathbf{1 0}$ heads on the next $\mathbf{1 0}$ flips?

$$
\begin{aligned}
& \mathrm{p}=1 / 2 ; \quad \mathrm{k}=10 . \\
& \mathrm{P}=\mathrm{p}^{\wedge} \mathrm{k}=(1 / 2)^{\wedge} 10=\text { one chance in } 1,024
\end{aligned}
$$

2. What is the chance of at least one set of 10 heads [somewhere] when flipping 1,024 sets of 10 coins each? At least 50\%.*

* Schield (2012)

Runs in Flipping a Fair Coin

1) Unlikely is expected given enough tries.
2) Unlikely (1 chance in k) is expected in k tries

Run of 6 is expected in 64 tries: $\mathbf{2}^{\wedge} \mathbf{6}=\mathbf{6 4}$.
Run of 7 is expected in 128 tries: $2^{\wedge} 7=128$
Run of 8 is expected in 256 tries: $2^{\wedge} 8=256$
k tries = k flips of a coin

Coincidence increases as data size increases

Michael Blastland's The Tiger that Isn't

With rice scattered in two dimensions, people can often see memorable shapes.
After this webinar, check out this Excel scattered-rice demo with 1 chance in 100 per cell:

www.StatLit.org/Excel/2012Schield-Rice.xls

Patterns in Rice: \# Touching 2:1/100; 4:1/10,000; 6: 1/1,000,000

	A3					-			f_{x}			=RANDBETWEEN $(0,9)$						
	A	B	C	D	E	F	G	H		J	K	L	M	N	0	P	Q	R
3	9	3	2	9	9	4	1	9	9	9	2	2	5	3	5	0	5	5
4	8	0	6	4	1	6	7	4	0	2	2	0	3	7	0	9	8	0
5	3	1	7	3	5	2	5	6	8	7	2	0	4	8	9	2	9	6
6	9	0	1	4	3	4	2	8	9	2	6	6	4	7	7	9	2	3
7	9	6	2	1	9	0	4	3	8	6	2	7	5	7	5	1	3	3
8	4	3	6	1	5	8	1	9	4	8	4	9	2	6	1	8	7	2
9	0	0	2	4	3	0	5	5	9	3	1	6	9	5	3	5	8	4
10	9	6	6	7	5	0	6	6	1	2	6	6	0	9	3	6	7	8
11	9	1	0	4	7	4	2	4	4	0	4	3	8	8	4	9	8	5
12	9	8	0	1	4	6	0	8	2	0	4	2	3	5	6	4	5	7

3 touching: 1in 1,000 6 touching: 1 in a million

Coincidence Outcomes

Students must "see" that coincidence $\bullet m a y ~ b e ~ m o r e ~ c o m m o n ~ t h a n ~ e x p e c t e d ~$ -depends on the context -may be totally spurious

- may be a sign of causation

References

Papers:

Schield (2012). Coincidence in Runs and Clusters www.statlit.org/pdf/2012Schield-MAA.pdf
Schield (2014). Two Big Ideas for Teaching Big Data www.statlit.org/pdf/2014-Schield-ECOTS.pdf

Downloadable spreadsheets:

- Birthdays: www.statlit.org/Excel/2012Schield-Bday.xls
- Runs of Coins: www.statlit.org/Excel/2012Schield-Runs.xls

