4

#### Statistically-Significant Correlations

Milo Schield Augsburg College Editor of www.StatLit.org US Rep: International Statistical Literacy Project

#### Fall 2014 National Numeracy Network Conference www.StatLit.org/pdf/2014-Schield-NNN4-Slides.pdf



#### **Sufficient Condition**

2014 NNN4 Statistically Significant Correlation

3

Approach: Find an equation generating a minimum correlation for statistical-significance given N.

- Given N, find the smallest value of r where the left end of a 95% confidence interval is non-negative. Use calculator at www.vassarstats.net/rho.html or www.danielsoper.com/statcalc3/calc.aspx?id=44 For Daniels, use the results for a two-tailed test.
- 2. Generate correlation coefficient with simple model
- 3. Calculate error difference between calculated and exact using the exact as the standard. If all errors are positive, then the model is sufficient.

#### Simple Model: 2/SQRT(n)

| N   | Exact | 2/sqrt(n) | Erro |
|-----|-------|-----------|------|
| 400 | 0.10  | 0.10      | 3.0% |
| 256 | 0.12  | 0.13      | 2.7% |
| 100 | 0.20  | 0.20      | 2.0% |
| 49  | 0.28  | 0.29      | 1.7% |
| 25  | 0.40  | 0.40      | 1.3% |
| 16  | 0.50  | 0.50      | 1.0% |
| 12  | 0.57  | 0.58      | 0.6% |
| 10  | 0.63  | 0.63      | 0.4% |
| 7   | 0.75  | 0.76      | 0.4% |
| 6   | 0.81  | 0.82      | 0.6% |
| 5   | 0.88  | 0.89      | 1.4% |
| 4   | 0.96  | 1.00      | 4.0% |









#### **Something Seems Wrong!**

9

11

- 1. There is nothing linear about these associations.
- 2. These correlations seem unbelievably high.
- -----
- #1: The correlation between two time-series eliminates the common factor: time. The question is whether their mutual association is linear. To see this, an XY-plot is generated.



#### #2: Very High Correlations. Three Explanations

- 1. Association is causal. See Tyler Vigen's video: www.youtube.com/watch?feature=player\_embedded&v=g-g0ovHjQxs
- Association is spurious just random chance. Five percent of random associations will be mistakenly classified as statistically significant.
- 3. Association is cherry-picked -- after the fact. According to Tyler, "This server has generated 24,470 correlations." Tyler just picked those with high or interesting correlations.

#### **Conclusions**

- 1. Use 2/Sqrt(n) as the minimum correlation for statistical significance. This criteria is sufficient, fairly accurate (within 5%) and memorable.
- 2. The correlation between two time-series eliminates time. Correlation determines the degree of linearity in their cross-sectional association.
- Do not use a test for statistical significance if the data pairs were selected – after the fact via data mining – solely because of their high correlation.

12



## **Statistically-Significant** Correlations

## Milo Schield **Augsburg College** Editor of www.StatLit.org **US Rep: International Statistical Literacy Project**

# **Fall 2014 National Numeracy Network Conference**

www.StatLit.org/pdf/2014-Schield-NNN4-Slides.pdf

### **Exact Solutions**

For N random pairs from an uncorrelated bivariate normally-distributed distribution, the sampling distribution is not simple.

Here are three common analytic approaches:

1.Fisher transformation (using LN and Arctanh),

2.an exact solution (using a Gamma function), or

3.Student-t distribution:  $t=rSqrt[(n-2)/(1-r^2)]$ ; df=n-2

- For large *n*, the critical value of t (95% confidence) is 1.96.
- For small *n*, the critical value of *t* increases as *n* decreases.

None of these are simple or memorable.

### **Sufficient Condition**

Approach: Find an equation generating a minimum correlation for statistical-significance given N.

- Given N, find the smallest value of r where the left end of a 95% confidence interval is non-negative. Use calculator at www.vassarstats.net/rho.html or www.danielsoper.com/statcalc3/calc.aspx?id=44 For Daniels, use the results for a two-tailed test.
- 2. Generate correlation coefficient with simple model
- 3. Calculate error difference between calculated and exact using the exact as the standard. If all errors are positive, then the model is sufficient.

## Simple Model: 2/SQRT(n)

|     | Minimum Correlation for Statistical Significance |           |       |  |  |
|-----|--------------------------------------------------|-----------|-------|--|--|
| Ν   | Exact                                            | 2/sqrt(n) | Error |  |  |
| 400 | 0.10                                             | 0.10      | 3.0%  |  |  |
| 256 | 0.12                                             | 0.13      | 2.7%  |  |  |
| 100 | 0.20                                             | 0.20      | 2.0%  |  |  |
| 49  | 0.28                                             | 0.29      | 1.7%  |  |  |
| 25  | 0.40                                             | 0.40      | 1.3%  |  |  |
| 16  | 0.50                                             | 0.50      | 1.0%  |  |  |
| 12  | 0.57                                             | 0.58      | 0.6%  |  |  |
| 10  | 0.63                                             | 0.63      | 0.4%  |  |  |
| 7   | 0.75                                             | 0.76      | 0.4%  |  |  |
| 6   | 0.81                                             | 0.82      | 0.6%  |  |  |
| 5   | 0.88                                             | 0.89      | 1.4%  |  |  |
| 4   | 0.96                                             | 1.00      | 4.0%  |  |  |

All errors positive means the model is sufficient.

### Solution

Minimum statistically-significant r = 2/Sqrt(n)"n" is the number of pairs being correlated Less than 5% over for n between 5 and 4,000. Simple and memorable for two variables.

It is similar to the formula for the maximum 95% Margin of Error in samples from a binary variable: 95% ME = 1.96 Sqrt[p\*(1-p)/n] < 2 Sqrt[1/(4n)]95% ME < 1/Sqrt(n)Simple and memorable for one binary variable.

### Time-Series Correlations www.tylervigen.com



10 pairs; 2/Sqrt(10) = 0.63; Statistically significant

## Correlation = -0.993 Bee colonies & MJ arrests



20 pairs; 2/Sqrt(20) = 0.45; Statistically-significant

## Correlation = 0.664 Drownings & Cage films



11pairs; 2/Sqrt(11) = 0.60; Statistically-significant!

## **Something Seems Wrong!**

- 1. There is nothing linear about these associations.
- 2. These correlations seem unbelievably high.

#1: The correlation between two time-series eliminates the common factor: time. The question is whether their mutual association is linear. To see this, an XY-plot is generated.

## Correlation = 0.664 Drownings & Cage films



### #2: Very High Correlations. Three Explanations

- 1. Association is causal. See Tyler Vigen's video: www.youtube.com/watch?feature=player\_embedded&v=g-g0ovHjQxs
- Association is spurious just random chance. Five percent of random associations will be mistakenly classified as statistically significant.
- 3. Association is cherry-picked -- after the fact.
  According to Tyler, "This server has generated 24,470 correlations." Tyler just picked those with high or interesting correlations.

#### Conclusions

- Use 2/Sqrt(n) as the minimum correlation for statistical significance. This criteria is sufficient, fairly accurate (within 5%) and memorable.
- 2. The correlation between two time-series eliminates time. Correlation determines the degree of linearity in their cross-sectional association.
- 3. Do not use a test for statistical significance if the data pairs were selected after the fact via data mining solely because of their high correlation.

## Correlation = 0.993 Divorce & Margarine Usage



Correlation: 0.993. N=10, SS\_Rho = 1/sqrt(11) =

### 10 pairs; 2/Sqrt(10) = 0.64. Statistically-significant

www.tylervigen.com/view\_correlation?id=1703