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Abstract 

In undergraduate and graduate statistics courses, concepts are often taught using algebraic 
or computational explanations. These may not, however, be optimal teaching methods for 
all students. Thus, the use of geometry can provide an alternative pedagogy that satisfies 
different learning styles without a loss of accuracy and rigor. This paper demonstrates an 
approach using geometric diagrams to introduce students to the concepts of bivariate, 
partial, and part correlations, multiple regression, R2, and R2 change in a concrete 
manner. In addition to supplementing current teaching methods, a geometric approach 
provides a visual representation of concepts that enables students to see statistics while 
requiring only a high school level of geometrical background knowledge. 
 
Key Words: geometry, statistics pedagogy, visual representation, regression, correlation 

 
1. Objectives and Framework 

 
Statistics courses are often challenging for students and some may view statistics as a 
stumbling block to degree attainment. Given that the M.A. and Ph.D. are both research 
degrees, students must develop some level of statistical competency. Thus, statistics 
instructors may need alternative pedagogies to make concepts accessible to students with 
different learning styles without sacrificing accuracy or rigor. Geometry can provide one 
such alternative. Rather than supersede the more common algebraic or computational 
approaches, geometrical representation of statistical concepts can be used as a 
supplement, providing students multiple opportunities to learn material and leading to 
better success for all students. This paper demonstrates how geometry can be used to 
introduce students to bivariate, partial, and part correlations, multiple regression, R2, and 
R2 change in a very concrete manner allowing students to see statistics. It is hoped that a 
picture is truly worth a thousand words, or at least several algebraic formulas. 
 
Current methods of teaching statistics typically fall into two broad categories: the 
algebraic approach and the computational approach (Wickens, 2014). The algebraic 
approach explains the mathematical underpinnings and formulas for computation. While 
these concepts are necessary for aspiring statisticians, for students in non-math fields the 
presence of complex formulae and mathematical notation elicits anxiety and negative 
attitudes toward the class (Cobb & Moore, 1997). Onwuegbuzie and Wilson (2003) found 
upwards of 80% of graduate students experience uncomfortable levels of statistics 
anxiety, particularly those in the social and biological sciences. Furthermore, the use of 
matrix algebra or formulas to teach concepts does little to develop students’ statistical 
thinking and reasoning by failing to promote consideration of context, experimental 
design, assumptions, and limitations (Cobb & Moore, 1997). For novice students this 
makes statistics seem abstract, disjointed, and a skill only learned through rote 
memorization and cookbook application. Another criticism is the algebraic approach 
often neglects how statistical concepts relate to real world situations (Rumsey, 2002; 
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Yilmaz, 1996). Students might be able to calculate a standard deviation, and even define 
it using statistical language, but be unable to explain its relevance to on-the-job problems, 
such as properly interpreting a student’s test score. In the absence of application to 
practical situations, formulas and definitions are quickly forgotten after an exam. 
Alternatively, it has been consistently argued that statistics instructors should deliberately 
minimize the use of complex formulas and mathematical notation, but if necessary, 
graphical and verbal methods should be used to first introduce the concept and care 
should be taken to connect concepts to the broader picture of why they are needed in a 
given situation (e.g. Bradstreet, 1996; Garfield & Ben-Zvi, 2007; Moore, 1997). 
 
The computational approach is quite opposite of the algebraic approach.  It focuses on the 
use of statistical software to transform data into interpretable results with minimal 
exposure to the underlying statistical theory and mathematics. In some ways this 
approach heeds the advice of many authors to use data exploration and analysis to 
introduce concepts because it encourages students to be active learners and illustrates 
various purposes and uses of statistics (Garfield & Ben-Zvi, 2007; Moore, 1997). 
However, the relative absence of underlying mathematics risks presenting statistics as 
magic (Cobb & Moore, 1997). Data can be inputted to software and with a few clicks 
produce results before any consideration is given to the quality of the data, 
appropriateness of the analysis, or validity of the interpretations. Thus, through the effort 
to make statistics more accessible to non-mathematicians there is a loss of rigor that can 
produce students who know just enough to be dangerous, as the idiom goes (Spirer, 
Spirer, & Jaffe, 1998).  
 
Both the algebraic and computation approaches provide valuable information to aspiring 
researchers and data analysists, especially when they are used in tandem. Nonetheless, 
there lacks a framework connecting the formulas and techniques of how statistics are 
estimated to their use by statistical software in a manner that is still accessible to students 
interested in applying statistical methods to a wide variety of fields. In some ways 
students’ learning of statistics can be likened to the challenged faced by the blind men in 
John Godfrey Saxe’s poem The Blind Men and the Elephant (Saxe, J.G.). In Saxe’s poem 
six inquisitive blind men seek to establish truth about the nature of an elephant by having 
each man explore a different portion of its body. The examinations lead each man to 
develop a unique understanding of the animal that ranged from a spear to a tree. All six 
men made “blind” conjectures based on the sense of touch and all six settled on a reality 
far from the truth. In some sense, the use of touch represents a pedagogical tool for 
learning—it is with touch that the men were able to derive some meaning of truth. In the 
case of the blind men, the pedagogy they employed produced a disjointed and incomplete 
understanding of the animal. To complete their intellectual conquest, the men require a 
supplemental tool that unifies each man’s partial truth into a comprehensive picture. For 
students, the algebraic and computational approaches are each a tool in the process of 
learning and using statistics, but fail to provide a complete understanding. Furthermore, 
unlike the blind men who all had similar strengths and weaknesses in their ability to 
learn, students in undergraduate and graduate programs are rather diverse in their 
methods for optimal learning. Therefore, how can we help algebraically challenged 
individuals visualize statistical concepts in an accessible, yet rigorous manner to produce 
students well-versed in both the computation and application of statistics? If the old 
cliché that a picture is worth a thousand words holds any merit then maybe the answer 
lies with a visual or geometrical presentation of statistical concepts. 
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2. Theoretical Background 

 
The field of statistics has a rich history of using geometry to illustrate, derive, and explain 
statistical concepts. Some of the most prominent statisticians of the 20th century have 
presented complex statistical ideas with geometry (Bartlett, 1934; Durbin & Kendall, 
1951; Fisher, 1915; Kendall, 1961; Kruskal, 1961, 1968, 1975; Watson, 1967; Zyskind, 
1967). Kruskal (1961) notes one benefit of using a geometric approach is that, “…it 
permits a simpler, more general, more elegant, and more direct treatment of the general 
theory of linear estimation than do its notational competitors.” More recently, Saville & 
Wood (2012) add, “use of geometry clarifies and unifies our understanding of the basic 
statistical techniques.”  
 
For instance, the geometric approach played a prominent role in popularizing the least 
squares method. DeLaubenfels (2006) explains that it was the geometrical features of 
least squares that ultimately led to its preference over earlier, more intuitive approaches 
such as the sum of absolute deviations1. While a squared lost function is not as intuitive, 
its application along with concepts of orthogonality allows the use of Pythagorean’s 
Theorem for distance to be related to the vector decomposition of the total sums of 
squares; i.e., SST = SSE + SSM where SST is the total sums of squares, SSE is the sums of 
squares error, SSM is the sums of square for the model. The formula for this 
decomposition is given in summation notation below (equation 1). The decomposition, 
however, is more readily understood when represented geometrically (Figure 1) where 
one can more clearly see that error is minimized by the orthogonal projection (a) from the 
vector representing SSM (b) to the vector representing SST (c). 
 

        
222 ˆˆ YYYYYY  (1) 

 

Figure 1: Decomposition of the total sums of squares. 
                                                 
1 Under conditions of non-redundancy, Least Squares is also preferred to the sum of 
absolute deviations, since it will always guarantee a unique solution for the estimates. 
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There has also been a plethora of prior research developing geometric demonstrations of 
various aspects of the general linear model. Herr (1980) chronicles the early contributions 
of prominent statisticians while much of the research during the last four decades has 
focused on the geometric presentation of regression and correlations. These include 
Leung and Lam’s (1975) short discussion about the relationship between correlations and 
the angle between two n-dimensional vectors; Schulman’s (1979) illustration of a model 
of rank correlations (e.g. Spearman’s rho and Kendall’s tau); Thomas and O’Quigley’s 
(1993) extension of the traditional geometrical display of correlations with the use of 
spherical triangles; and Bring’s (1996) excellent treatment of the geometric 
representation of regression to compare the relative importance of variables in a model. 
 
Another benefit of geometrical presentation of statistical concepts is it can sometimes 
provide an intuitive understanding to initially perplexing situations. Leung and Lam 
(1975) link algebraic facts about correlations to a geometric display and note that, 
“…many facts concerning correlation coefficients can be seen in terms of the geometry 
of representation” (p. 129). This idea has been enumerated in other articles, as well. For 
instance, Saville and Wood (1986) provide a thorough presentation of a geometric 
display of randomized block designs and simple linear regression and Schey (1993) 
employs geometric techniques to display the conditions for suppressor variables. 
Additionally, Hamilton (1987) used geometry to inform an analytical discussion while 
presenting a case where two predictors are essentially uncorrelated with a criterion, yet, 
the coefficient of determination equaled one—which is perhaps one example that would 
not be immediately accessible in an algebraic discussion. Also, Davenport, Kuang, 
Davison, Nickodem, and Wang (2015) use geometry to show the equivalence of several 
models that at first glance would appear discrepant. 
 
If geometry can be a useful vehicle for those who do not intuitively understand statistics 
or have different learning styles, why is geometry not employed more frequently in the 
social and biological sciences to teach statistics? Two possible reasons have been posited: 
(1) While the 19th century was the golden age of geometry, the rise of statistics in the 20th 
century coincided with algebraic methods coming into vogue. Computation was also 
easier with algebraic expressions than geometric calculations, although a century of 
advances in computers has rendered this point moot. Nonetheless, a tradition of teaching 
statistic algebraically was established and had not until recently been challenged. (2) 
Some of the early uses of geometry during the reign of the algebraic tradition were 
reserved solely for advanced statistics students rather than novices and beginning 
students. This precedent led to the misconception that only those with a deep knowledge 
of mathematics could connect with a geometric approach (Herr, 1980; Saville & Wood, 
2012). Neither tradition nor misconception are justifiable reasons for ignoring geometry 
as a valuable tool for improving novice students’ understanding of statistics. 
 
The goal of this study is to present statistical concepts, namely multiple regression, 
bivariate correlations, partial correlations, part correlations, R2, and R2 change with 
geometric diagrams in order to promote their use when teaching statistics to 
undergraduate and graduate students in the social and biological sciences. As a 
supplement to algebraic and computational approaches, a geometric approach to teaching 
statistic provides a mechanism for integrating the calculation and application of statistics 
into a unified framework that is both rigorous and accessible to students from a variety of 
backgrounds and learning styles. This approach also uniquely provides a visual 
representation of concepts that enables students to see statistics while requiring only a 
high school level of geometrical background knowledge. 
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3. Data 

 

This study used data collected by the Office for Institutional Research at the University of 
Minnesota from the college application process for 2,975 high schools in the state of 
Minnesota who enrolled at the University for Fall 2000. The relationships among three 
variables were examined: 1) high school percentile rank (HSR), 2) percentage of non-
free/reduced priced lunch (%NFR) students in each entering students’ high school, and 3) 
ACT composite score. This paper employed four statistical analyses: bivariate 
correlations, partial correlations, part correlations, and linear regression. Table 1 presents 
the Pearson Product Moment, partial, and part correlations among the three variables. 
 

Table 1: Bivariate, Partial, and Part Correlations 
 

 ACT HSR %NFR AĈT 
ACT 1.00 0.36 0.24 0.45 
HSR  1.00 -0.10 0.79 
%NFR   1.00 0.53 
AĈT    1.00 
Partial Correlation   0.40 0.30   
Part Correlation   0.39 0.28   

Note. Partial and part correlations were calculated with ACT Composite as the criterion, holding 
the other predictor constant. ACT = ACT Composite, HSR = High school percentile rank, %NFR 
= % non-free/reduced priced lunch students in the high school, AĈT = the predicted ACT score 
with HSR and %NFR as independent variables. All correlations were significant at p < 0.001. 
 
The first three columns contain the correlations among HSR, %NFR, and ACT, while the 
last column contains the predicted ACT composite score, AĈT , with HSR and %NFR as 
the independent variables. The correlations between ACT and HSR and ACT and %NFR 
were 0.36 and 0.24, respectively. The correlation between HSR and %NFR was -0.10. 
The bivariate correlations were all statistically significant at the 0.001 rejection level. 
Interestingly, the positive relationship between %NFR and ACT suggests that as the 
student body becomes less impoverished or more affluent, individual students’ composite 
ACT score tend to be higher. 
 

4. An Algebraic Overview of Bivariate, Part and Partial Correlations 

 The purpose of this section is to provide an overview of the traditional 
presentation of bivariate, part, and partial correlations with analytic formulae. A bivariate 
correlation expresses the strength of the relationship between two variables in a single 
summary statistic that ranges from -1 to 1. For variables X and Y, the correlation is 
calculated with the formula: 

   rxy= 
∑ [(xi- x̅)(yi- y̅)]i 

√∑ [(xi- x̅)
2
][(yi- y̅)

2
]i 

    (2) 

Partial correlation is then the relationship between two variables while controlling for the 
effect of a third variable, Z, on both X and Y. The formula for partial correlation is 
presented below: 

   rxy.z= rxy - rxzryz

√(1- rxz
2 )(1- ryz

2 )
    (3) 
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Part correlation is similar to partial correlation, but only accounts for the link between Z 
and either X or Y, but not both. In the formula below we control for the effect of Z on X: 

   rxy.z= rxy - rxzryz

√(1- rxz
2 )

     (4) 

The formulas do not offer an intuitive understanding of how they characterize the 
relationship between the variables, X, Y, and Z, even with accompanying explanations. 
 
During this discussion consider the three variables to be standardized to have a mean of 
zero and a standard deviation of one. In the case of the bivariate correlation, the equation 
(2) shows that a correlation is the ratio of the covariance of X and Y and the product of 
the standard deviations for X and Y. Since we are assuming the variables are standardized, 
the denominator will be 1 and the covariance and bivariate correlation will be equal. The 
partial correlation between Y and X controlling for Z (rxy.z) is simply the correlation 
between the error terms from when Z is regressed separately on both X and Y. So the 
partial correlation can also be represented as reXeY, where eX = X - rXZZ and eY = Y- rYZZ 
with rXZ and rYZ being the correlations between X and Z and Y and Z, respectively. Note 
that rXZZ is the predicted value of X using Z and rYZZ is the predicted value of Y using Z. 
Incorporating these new variables controlled for Z in the formula for correlation yields 
equation (3). This becomes a ratio of the covariance between eX and eY over the product 
of the standard deviations of eX and eY. A simple algebraic derivation shows that 

rXY - rXY rYZ is the covariance between eX and eY while √(1- rxz
2 )(1- ryz

2 ) is the product of 

their respective standard deviations.  
 
An understanding of equation (4) for part correlations can be obtained using the same 
steps as presented for the partial correlation. The difference between part and partial 
correlations is that part correlations measure the relationship between Y and X with the 
influence of Z partialed only from X, but not from Y. Hence, another name for part 
correlations is semi-partials. Equation (4) is then obtained by computing the ratio of the 
covariance between Y and eX over the standard deviation of Y and eX In this case the 
denominator of equation (4) contains only the standard deviation for eX since Y is 
standardized with a mean of zero and a standard deviation of one and one times the 
standard deviation for eX is eX. 
 
While the formulas and explanations shed some light on how to conceptualize the 
relationship between three variables, such as for ACT, HSR, and %NFR, many students 
will still be in the dark and feeling a fair amount of statistical anxiety. Conversely, the 
computational approach would bypass the use of mathematical notation in the above 
discussion entirely and rely on the output in Table 1 to explain the concepts. Doing so 
certainly aids in comprehending and interpreting the strength of relationships between 
variables without the overwhelming nature of the formulas. Yet, even in the 
computational approach, how variables relate to each other is still presented in an abstract 
manner. Some students might be comfortable with abstract thinking and be able to 
mentally represent the variables in a comprehensible fashion, but others may still struggle 
to grasp the meaning of these correlations beyond the single statistic used to describe 
them. The use of geometry, however, can transform these abstractions into concrete 
visuals that are more intuitive and accessible to a wider audience. 
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5. Geometry of Bivariate, Part, and Partial Correlations and Regression 

 

5.1 Bivariate Correlation 

 
Previous research notes the inherent geometric interpretation of bivariate correlations, 
specifically how bivariate correlations relate to the cosine function. Using ACT and 
%NFR as exemplars, Draper and Smith (1966) as well as Leung and Lam (1975) show 
that the following expression holds: 
    rACT, %NFR = cos(θ)   (5) 
where cos(θ) is the cosine of the angle between the vectors of ACT and %NFR on a 
coordinate plane and rACT, %NFR is the bivariate relationship between ACT and %NFR. 
This relationship is expressed visually in Figure 2a:  

Figure 2: Geometric representation of bivariate correlations 
 
In Figure 2a, the angle between ACT and %NFR is 76° corresponding to a correlation of 
0.24, which is the same correlation we see in Table 1 and would obtain through equation 
(2). It is important to note that a correlation of one has a corresponding angle of 0°, 
meaning the variable vectors lie in the same space. The idea that two variables with a 
perfect positive relationship would share the same space is rather intuitive and provides a 
more concrete representation of the relationship between the variables than the statistic r 
= 1. Additionally, a correlation of zero suggests that the variables are orthogonal, 
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meaning they will not share any space on the plane. Unsurprisingly, a correlation of zero 
corresponds to a 90° angle making the vectors perpendicular. From these principles we 
can show that the more positively correlated two variables are, the more acute the angle 
between them will be. Therefore, even without any numeric information a student could 
identify HSR (Figure 2b) as being more closely related to ACT than %NFR (Figure 2a) 
simply by looking at the geometric visual (assuming the visuals are drawn proportionally) 
and noting that Figure 2b has a more acute angle. Such an assertion can then be 
confirmed geometrically with cos(θ), algebraically, or with software. 
 
5.2 Single Predictor Regression 
 
The triangle in Figure 1 can be linked to those in Figure 2 along with the sum of squares 
in Table 2 to demonstrate a geometric representation of regression. More specifically, a 
generalization of Pythagorean’s Theorem to Euclidian distance shows that the length of a 
vector equals the square root of the sum of the squared projections onto each dimension. 
In other words, equation (1) is equivalent to SST = SSE + SSM which is also equivalent to 
c2 = a2 + b2. Regardless of which of the three equations are used, taking the square root of 
each term produces the length of each of the three corresponding vectors in the triangle in 
Figure 1. With the assistance of the geometrical diagram, it is easy to show that the 
hypotenuse (side c) is equal to the square root of the total sums of squares while the side 
b corresponds to the model sums of squares which is necessarily orthogonal to side a -- 
the error sums of squares. While the mathematical notation in equation (1) might be 
intimidating to some students, all undergraduate and graduate students should be familiar 
with Pythagorean’s Theorem. Therefore, by relating the decomposition of the sums of 
squares to a common geometric principle, students are provided with a picture to more 
easily comprehend the least squares regression orthogonal projection. 
 

Table 2: Summary of Model Sum of Squares for Three Regression Models 

      
 Sum of Squares df F P-value R2 

ACTi = β00 + β10%NFR + ei,1    
SSModel 4,935.8 1 182.5 <0.001 .058 
SSResidual 80,417.9 2,973    
SSTotal 85,353.7 2,974    

ACTi = β01 + β11HSR + ei,2      
SSModel 10,965.6 1 438.3 <0.001 .128 
SSResidual 74,388.1 2,973    
SSTotal 85,353.7 2,974    

ACTi = β02 + β12%NFR + β22HSR + ei,1     
SSModel 17,639.5 2 387.1 <0.001 .207 
SSResidual 67,714.2 2,972    
SSTotal 85,353.7 2,974    
SS(HSR | %NFR) 12,703.7     
SS(%NFR | NFR) 6,673.9     
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Consider a one-predictor model with %NFR predicting ACT, shown below as well as at 
the top of Table 2: 
   ACTi = β00 + β10%NFR + ei,1   (6) 
As with the output from most statistical software, students can use the sums of squares 
from Table 2 to calculate the lengths of the corresponding vectors in Figure 2a. For 
instance, the total sums of squares for the model is 85,353.7, so we can find the length of 
the hypotenuse of Figure 2a by calculating  85,353.7 = 292.2. The line segment adjacent 
to the 74° angle is the SSM (side b). Given that %NFR is the only predictor, then the 
estimate of ACT as represented by the model must lie in the space of %NFR or along this 
vector. The length of which is determined by where the perpendicular projection of ACT 
hits the vector of %NFR which is represented by SSM . Thus, its length is equal to the 
square root of the model sum of squares,  4,935.8 which equals approximately 70.3. 
Finally, the error that is left over from predicting ACT with %NFR must necessarily be 
orthogonal to the vector %NFR -- which houses the model used to predict ACT -- since 
whatever relationship exists between %NFR and ACT is in the model with the remainder 
in error. This final vector, SSE, equals 80,417.9 which is approximately 283.6. As 
anticipated: 85,353.7 = 4,935.8 + 80,417.9 (re: Pythagorean’s c2 = a2 + b2). The extent to 
which SSM equals SST is the extent to which the model is helpful. A geometric 
description of the relationship between ACT and HSR can be developed in a similar 
manner from the regression equation below and its accompanying information in Table 2: 
   ACTi = β01 + β11HSR + ei,2   (7) 
 
5.3 Multiple Regression 

 

There are only two variables in a single predictor model: the predictor and the criterion. 
As such, the model resides in a two dimensional space, like we see in Figure 2. Each 
additional predictor added to the model also adds a dimension to the geometric space in 
which the regression is represented. Therefore, the number of dimensions is equal to k + 
1 predictors. While it is more difficult to visually depict models beyond the third 
dimension the principle demonstrates to students how the abstract notions of the 
interrelationship between variables can be transformed into a concrete illustration. A two 
predictor model with ACT regressed on both %NFR and HSR follows the equation: 
   ACTi = β02 + β12%NFR + β22HSR + ei,1  (8) 
Figure 3a shows the relationship of %NFR (vector D) and HSR (vector E) with the 
predicted ACT Composite score, AĈT (vector A), which lies in the plane defined by the 
two predictors and can be represented two-dimensionally. The length of D in the multiple 
regression model is the same as the square root of the SSM for the %NFR as the sole 
predictor model (equation 6) and represented on the x-axis in Figure 2a. Likewise, the 
length of E in the multiple regression model is equivalent to the square root of the SSM 
for the HSR as the sole predictor model (equation 7) and represented on the x-axis in 
Figure 2b. Whereas D and E are the SSMs for the single predictor models, A is the square 
root of the SSM for the multiple regression model. Vector B represents the contribution of 
HSR to the SSM for the two-predictor model above and beyond the contribution of 
%NFR, which is represented in Table 2 as SS(HSR | %NFR). C is the contribution of %NFR 
(SS(%NFR | HSR)). These are called incremental, or Type III, sums of squares. The length for 
each of these vectors is calculated from the sums of squares in Table 2:  
 

D = √SSM
%NFR =  4,935.8 = 70.3 
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E = √SSM
 HSR =  10,965.6 = 104.7 

A = √SSM
%NFR, HSR =  17,639.5 = 132.8 

B = √SSM
%NFR, HSR − SSM

%NFR = √17,639.5 - 4,935.8 =  12,703.7 = 112.7 

C = √SSM
%NFR, HSR − SSM

HSR = √17,639.5 - 10,965.6 =  6,673.9 = 81.7 
 

 

Figure 3. Two-dimensional (a) and three-dimensional (b) representations of the 
regression model with %NFR and HSR as predictors and ACT as the criterion. 

(b) 

(a) 
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The idea that C represents the amount of variation in AĈT that is unaccounted for by 
HSR, but accounted for by %NFR is further illustrated by noting that C is orthogonal to 
E, which is the square root of the SSM for the regression of HSR onto AĈT —i.e. C is the 
variation of AĈT that is independent of HSR. Likewise, B is the amount of variation in 
AĈT that is unaccounted for by %NFR. Also, since D represents the square root of the 
SSM with %NFR as the independent variable and AĈT as the dependent variable, B 
represents the portion in AĈT that is accounted for by HSR and that is orthogonal to 
%NFR.  
 
The three dimensional interpretation of the multiple regression model is displayed in 
Figure 3b. Of particular note is the bivariate relationships depicted in Figure 2 are 
maintained in the multiple regression relationship shown in Figure 3b. The linchpin is the 
SST which is the same for all three models (equations 6, 7 and 8) as shown in Table 2. In 
Figure 3b the square root of the SST is signified by vector F, which extends into the third 
dimension. Using vector F as our common thread we can see that model with %NFR as 
the only predictor (equation 6) is represented by triangle FDG where D is the SSM for the 
model and G is the SSE. Similarly, triangle FEH depicts the model with HSR as the single 
predictor (equation 7) where E corresponds with the SSM and H with the SSE. Note that 
the SSE for both of these models project down from the third dimension onto each of the 
SSM vectors for the single predictor models. Similarly, the SSE vector for the multiple 
regression model (vector I) projects down from the third dimension onto the two- 
dimensional plane defined by the predictor variables creating triangle FAI. Once again, 
the length of each of these vectors is calculated with the information from Table 2: 
 
F =  SST =  85,353.7 = 292.2 

G = √SST − SSM
%NFR = √85,353.7 - 4,935.8 = 283.6 

H = √SST − SSM
HSR = √85,353.7 - 19,965.5 = 272.2 

I = √SST − SSM
%NFR, HSR = √85,353.7 - 17,639.5 = 260.2 

 
Another way to view Figure 3b is from an architectural standpoint. Suppose I wish to 
build a structure and have an entity arising from the origin as is SST (remember that SST 
is in a third dimension). The best unidimensional support for SST and the one that will 
take less material is a support that has a perpendicular projection down from SST to the 
vector represented by %NFR or the vector represented by HSR -- the SSM for each single 
predictor model. Any other projection will use more material and provide less support 
due to its angle. These supports are represented by the endpoints of vectors D and E, 
respectively. In like manner, if one wishes to use the plane defined by HSR and %NFR 
simultaneously, the support using the least materials and providing maximal support is 
provided by a perpendicular projection into the plane. That support is represented here by 
the endpoint of vector A. 
 
5.4 Part and Partial Correlation 

 
Part correlations are the strength of the unique relationship of the predictor to the 
criterion above and beyond the relationship of the criterion with the other variables. 
Therefore, part correlations can be represented as what it takes to get from the prediction 
provided by the simple regression model for each predictor (equations 6 and 7) to the 
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prediction provided by the multiple regression model (expression 8) relative to the 
original total sums of squares. To get from the predictor of ACT provided by %NFR, D, 
to the predictor provided by both %NFR and HSR, A, requires an additional amount 
represented by B. Thus, the incremental increase in predictability, B/F = 112.71 / 292.2 = 
0.39, is the part correlation for HSR with ACT when %NFR has been partialed from HSR 
only. Note that calculating the part correlation is as simple as finding the ratio of the 
square root of the incremental sums of square for HSR, SS(HSR | %NFR) (vector B) and the 
square root of the SST (vector F). Not only does the geometric approach provide students 
with a visual representation of part correlation, but also offers a substantially easier 
method of computing the value than the formula in equation (4). In similar manner, to get 
from the predictor of ACT provided by HSR, E, to the predictor provided by both %NFR 
and HSR, A, requires an additional amount represented by C. Thus the incremental 
increase in predictability, C/F = 81.7 / 292.2 = 0.28 is the part correlation for %NFR 
when HSR is partialed only from %NFR.  
 
G is the error from predicting ACT with %NFR, 283.6. Thus, G is the remainder of ACT 
after partialling out %NFR. Above we said that B was the contribution of HSR after 
partialling out %NFR. Thus, the partial correlation of HSR with ACT after partialling 
%NFR from each is B/G = 112.7 / 283.6 = 0.40. Likewise, H is the error from predicting 
ACT with HSR, 272.7. Thus, H is the remainder of ACT after partialling out HSR. 
Above we said that C was the contribution of %NFR after partialling out HSR. Thus, the 
partial correlation of %NFR with ACT after partialling HSR from each is C/H = 81.7 / 
272.7 = 0.30. The part and partial correlations computed by taking the ratios of the 
appropriate vectors matches those found in Table 1 thereby demonstrating the accuracy 
of the geometric approach. In doing so, the geometric approach marries the simplicity of 
the computational approach by avoiding complex mathematics with the rigor of the 
algebraic approach while providing a more intuitive explanation of the processes 
underlying the calculation of correlations. 
 
5.5 R

2
 and R

2
 Change 

 
R2 is the proportion of the total variation explained by the model. In other words, it is 
simply the ratio of the SSM to the SST. For the single predictor model of ACT regressed 
on % NSF this produces an R2 = SSM

%NFR / SST = 4,935.8 / 85,353.7 = 0.057. Expressed 
geometrically, this is the ratio of the squared vector lengths: D2 / F2. Equivalently, 
equation (5) can be used to convert the angle between vectors D and F into their 
correlation by taking the inverse cosine. The R2 value is then equal to the correlation 
squared. For multiple regression, the R2 value can be derived from the ratio of the 
squared vector length for the criterion and the squared vector length for the predicted 
value. For the multiple regression model in equation (8), this is represented as A2 / F2. 
Alternatively, the angle between ACT (F) and AĈT (A) is 63.3°, meaning the correlation 
between these variables is 0.45 and the R2 = .203, which is what we see in Table 1.  
 
R2 change is the difference in the total variation explained when going from a model with 
one predictor to a multiple regression model. This concept is simply the part correlation 
of the predictor added to the model squared. We demonstrated above that the part 
correlation between HSR and ACT when controlling for %NFR was B / F = 112.7 / 292.2 
= 0.39. Thus, the R2 change from the model with %NFR as the sole predictor of ACT to 
the multiple regression model that included HSR is B2 / F2 = 0.392 = .15.  
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6. Closing Remarks 

 

6.1 Educational Importance 

 
The development of alternative pedagogies to address differing learning styles is a 
perennial concern for education. The current paper addresses the development of an 
alternative approach to teaching statistics with the incorporation of more annotated 
geometrical diagrams. It is possible that students who are more concrete learners may be 
better served by this approach than the current algebraic approach, which is more 
abstract. For most people, it is very difficult to see the results of an algebraic calculation. 
In contrast, geometrical diagrams present pictures from which many statistical concepts 
can be shown. Even if a picture is not worth a thousand words, it may be worth more than 
a couple algebraic equations. 
 
The discussion above provides a link between the traditional algebraic and geometric 
approaches of explaining multiple regression, bivariate, part, and partial correlations, R2 
and R2 change. The goal was to use geometric diagrams to help make abstract statistical 
concepts more concrete, and thus, more accessible to students in non-mathematics fields. 
That is not to say a geometric approach should replace algebraic and computational 
instruction, but rather be incorporated as a supplemental approach to provide students 
with a more complete picture of the calculation and application of statistical concepts. A 
key component of the geometric supplement is the basic geometric background 
knowledge necessary to understand the visuals and concepts does not exceed high school 
algebra and geometry. One need only understand how to use cosine to determine angles, 
Pythagorean’s theorem for length when the vectors are orthogonal, as well as the 
generalization of Pythagorean’s theorem to n-space to understand that each of the sums 
of squares in a variance decomposition is just a squared distance. 
 
6.2 Future Research 

 
There are opportunities for additional educational and psychological research in the use 
of geometry for explaining statistical concepts. First, there is a need to examine whether 
or not the geometric, algebraic, or computational approach is more effective in 
maximizing students’ short- and long-term comprehension of statistical theory and 
methods. Of equal importance to comprehension is how effective the methods are in 
minimizing statistical anxiety while eliciting positive attitudes toward and motivation to 
learn statistics. In many ways, statistics courses act as gatekeepers of opportunity for 
many mathematically under prepared and anxious masters and doctoral students, since 
these courses are often requirements for degree completion. However, can geometric 
presentations of statistical concepts act as a remedy for those who cannot ‘see’ statistical 
concepts with traditional algebraic approaches or fail to grasp the statistical reasoning 
required for appropriate use of statistical software in the computational approach? It may 
be the case that some students benefit more from the use of geometry in the class room 
rather than the traditional algebraic presentation. In this case, maintaining educational 
fairness may require the adaptation of new or differentiated curriculum that caters to 
multiple learners. Additionally, research that examines the use of geometry for explaining 
statistics to K-12 and undergraduate students may be worthwhile. If a picture is worth a 
thousand words, then the use of geometry to present statistics may serve as a new tool for 
helping more students “see” the meaning of varied statistical concepts and thereby 
creating a larger statistically literate group of students.  
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A second area of research may provide additional insights into individual differences of 
learning. Are students from different cultural backgrounds or gender better served with a 
geometric approach to teaching statistics? This is analogous to asking, what are the 
factors that impact whether or not the blind men perceived the elephant as a wall or a 
tree?  
 
Certainly, a goal of intellectual pursuit is to gain a clearer picture of reality. Sometimes 
our current understandings of questions and our theoretical constructs that we use to 
answer them are inherently biased. Other times, individuals’ reality is blurred simply 
because the conception of a question is not appropriate for their understanding; much like 
that of Saxe’s the Six Blind Men and the Elephant. In line with Howard Gardner’s (1993) 
work on multiple intelligences, we know that individuals have different strengths and 
weaknesses. It is illogical and maybe even unethical to not provide individuals with 
differing pedagogies in light of that fact. The use of geometry with statistics may hold a 
key in focusing on an often blurred reality. It is the duty of educators to provide better 
ways to teach. Hopefully, this will lead to better educational researchers which will lead 
to better educational research – maybe in the area of teaching statistics. 
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