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Abstract
The p-value is widely used for quantifying evidence in a statistical hypothesis testing problem. A

major criticism, however, is that the p-value does not satisfy the likelihood principle. In this paper,
we show that a p-value assessment of evidence can indeed be defined within the likelihood inference
framework. The connection between p-values and likelihood based measures of evidence broaden
the use of the p-value and deepen our understanding of statistical hypothesis testing.
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1. Introduction

The p-value is a popular tool for statistical inference. Unfortunately, the p-value and its role
in hypothesis testing is often misused in drawing scientific conclusions. Concern over the
use, and misuse, of what is perhaps the most widely taught statistical practice has led the
American Statistical Association to craft a statement on behalf of its members (Wasserstein
and Lazar, 2016). For statistical practitioners, a deeper insight into the workings of the
p-value is essential for an understanding of statistical hypothesis testing.

The purpose of this paper is to highlight the flexibility of the p-value as an assessment
of statistical evidence. An alleged disadvantage of the p-value is its isolation from more
rigorously defined likelihood based measures of evidence. However, this disconnect can
be bridged. In this paper, we present a result establishing a p-value measure of evidence
within the likelihood inferential framework.

In Section 2, we discuss the general idea of statistical evidence. In Section 3, we con-
sider the likelihood principle and establish the aforementioned connection with the p-value.
We close the paper in Section 4 with some concluding remarks on how the p-value plays a
role in a broader class of hypothesis testing problems than may be currently appreciated.

2. The p-value and evidence

Before going any further, let’s take a moment to think about what is meant by statistical
evidence. Let’s think of a researcher collecting data on some natural phenomenon in or-
der to determine which of two (or more) scientific hypotheses is most valid. Data favors
a hypothesis when that hypothesis provides a reasonable explanation for what has been
observed. Conversely, data provides evidence against a hypothesis when what has been
observed deviates from what would be expected. Scientific evidence is not equivalent to
scientific belief. It is not until multiple sources of data evidence favor a hypothesis that
a foundation of strong belief is built. Because belief arises from multiple researchers and
multiple studies, the language for communicating an advancement of scientific knowledge
is the language of evidence. Thus, quantification of evidence is a core principle in statistical
science.

R.A. Fisher is credited with popularizing the p-value as an objective way for investi-
gators to assess the compatibility between the null hypothesis and the observed data. The
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Table 1: p-value scale of evidence

p evidence against Ho

.10 borderline

.05 moderate
.025 substantial
.01 strong

.001 overwhelming

p-value is defined as the probability, computed under the null hypothesis, that the test statis-
tic would be equal to or more extreme than its observed value. While the p-value definition
is familiar to statistical practitioners, a simple example may help focus on the idea of quan-
tifying evidence. Consider a scientist investigating a binomial probability θ. The goal is to
test Ho : θ = 1/2 against a lower tail alternative H1 : θ < 1/2. So, X ∼ B(n, 1/2) under
the null hypothesis. In n = 12 trials, x = 3 successes are observed. Since small values of
X support the alternative, the p-value is computed to be

p = Po (X ≤ 3)

=
3∑

i=0

(
12

i

)
(1/2)12 = .0730

The null hypothesis is most compatible with data near the center of the null distribution.
Data incompatible to the null distribution is then characterized by a small p-value. In this
way, the p-value serves as an assessment of evidence against the null hypothesis.

The p-value is a probabilistic measure of evidence, but not a probabilistic measure of
belief. The desire to interpret p as a probability on the null hypothesis must be resisted.
But this leaves open the question of how to represent a p-value scale of evidence. Fisher
recommended the scale displayed in Table 1 ( Efron, 2013).

The Fisher scale seems to be consistent with common p-value interpretations. For
our simple example, we can say there is moderate to borderline evidence against the null
hypothesis. In the end, the choice of an appropriate evidence scale should depend on the
underlying science, as well as an assessment of the costs and benefits for the application
at hand (Gelman and Robert, 2013). Particularly troublesome to the goal of improving
scientific discourse is a blind adherence to any threshold separating significant and non-
significant results.

A perceived shortcoming of the p-value as an assessment of evidence can be illustrated
from our simple example. Note that the p-value is not only a function of the data observed
(x = 3) , but of more extreme data that has not been observed (x < 3) . The definition of
the p-value as a tail probability implies that the computation of p depends on the sampling
distribution of the test statistic. So, the p-value depends on the, perhaps irrelevant, inten-
tions of the investigator, and not merely on the data observed. In this way, the p-value is in
violation of the likelihood principle. We will see in the next section, however, that a p-value
measure of evidence can be defined to satisfy the likelihood principle. With this result, a
major criticism of the p-value is answered.
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3. Likelihood inference

We will take a relatively informal approach in our introduction to likelihood inference.
Readers interested in a more rigorous treatment are encouraged to consult Pawitan (2013)
and Berger, Wolpert (1988). Simply put, the likelihood principle requires that an evidence
measure satisfy two conditions: sufficiency and conditionality. The sufficiency condition
states that evidence depend on the data only through a sufficient statistic. The p-value has
no real issue in that regard. The conditionality condition states that evidence depend only on
the experiment performed, and the data observed; not on the intention of the investigator. To
see that the p-value fails in this regard, we return to the simple binomial example. Suppose
instead of a predetermined sample size n = 12, the scientist’s intention was to sample until
x = 3 successes were observed. Under this scenario, the number of trials N is a random
variable. Under the null hypothesis, N ∼ NB(3, 1/2). Since large values of N support
the lower tail alternative, the p-value is computed to be

p = Po (N ≥ 3)

=
∞∑

i=12

(
i− 1

2

)
(1/2)i = .0327

Now, we have moderate to substantial evidence against the null. Equivalent hypotheses,
tested from equivalent data, reach different levels of evidence. Computation of the p-value
is not invariant to the sampling scheme, even though the plan to collect the data is unrelated
to the evidence provided from what is actually observed. That an unambiguous p-value
assessment does not seem to be available is a problem we will address.

The development of an evidence measure which does satisfy the likelihood principle
proceeds as follows. Let L (θ) denote the likelihood as a function of an unknown param-
eter θ. (For simplicity, we take the single parameter case. Nuisance parameters and pa-
rameter vectors can be handled with slight adjustments to the development.) Let θ̂ denote
the maximum likelihood estimate. We consider the problem of testing the null hypothe-
sis Ho : θ = θo under the likelihood inference framework. Define the likelihood ratio as
LR (θo) = L (θo) /L

(
θ̂
)
. Then 0 < LR (θo) < 1. As LR (θo) decreases, data evidence

against the null hypothesis increases. In this sense, LR (θo) provides a measure of evidence
against the null hypothesis in the same spirit as a p-value.

We return once more to the binomial data. The likelihood ratio is invariant to sampling
scheme. So, the measure of evidence is the same whether the data comes from a binomial
or negative binomial. Write

LR (θ) =
θx (1− θ)n−x

θ̂x
(
1− θ̂

)n−x

where the sample proportion θ̂ = x/n is the maximum likelihood estimate. For testing
θo = 1/2 with observed data x = 3, n = 12, we compute θ̂ = 1/4 and LR (θo) = .208. We
can say the data supports the null value at about 20% of the level of support to the maximum
likelihood estimate. But while we are successful in creating a measure of evidence which
satisfies the likelihood principle, we have lost the familiarity of working with a probability
scale.

It would be desirable to calibrate a likelihood scale for evidence with the more familiar
p-value scale. We can achieve this goal directly when the likelihood function is of the
regular case. Let l (θ) = lnL (θ) denote the log-likelihood, and write its Taylor expansion
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as

l (θ) = l
(
θ̂
)
+ l′

(
θ̂
)
·
(
θ − θ̂

)
+

l′′
(
θ̂
)

2
·
(
θ − θ̂

)2
+ . . .

The regular case occurs when the log-likelihood can be approximated by a quadratic func-
tion. Asymptotics for maximum likelihood estimators are derived under the conditions
leading to the regular case. Since l′

(
θ̂
)
= 0, then

l (θ) ≈ l
(
θ̂
)
− 1

2

(
θ − θ̂

)2
σ̂2

where σ̂2 = −1/l′′
(
θ̂
)

is the reciprocal of the observed Fisher information F̂ I = −l′′
(
θ̂
)
.

We can then write the likelihood function at the null value θo as

L (θo) ≈ L
(
θ̂
)
· exp

{
−1

2
z2
}

where z =
(
θ̂ − θ

)
/σ̂ is the Wald statistic for testing Ho : θ = θo. The likelihood ratio

statistic becomes

LR (θo) ≈ exp

{
−1

2
z2
}
. (1)

Let’s introduce a second example to demonstrate the approximation in (1). In a well-
known example of data collection (MacKenzie, 2002), a statistics class experimented with
spinning the newly minted Belgian Euro. Spinning instead of tossing a coin is more sen-
sitive to unequal weighting of the sides. In n = 250 spins, x = 140 landed heads side
up. Now, the intended sampling scheme is not at all clear from the summary provided. But
quantifying evidence through the likelihood ratio statistic renders the question of experi-
menter intention unimportant. We have θ̂ = .56 and σ̂ = .0314. For testing Ho : θ = .5,
we get z = 1.91. From (1), we compute the approximation LR (θo) ≈ 0.161. The exact
value of the likelihood ratio statistic is computed as

LR (θo) =
(.5)140 (.5)110

(.56)140 (.44)110
= 0.165

The use of z in approximating LR (θo) connects the Wald statistic to the likelihood
ratio statistic. A z statistic also leads directly to the calculation of a p-value. Since LR (θo)
depends on the data through test statistic z alone, then LR (θo) is a function of the cor-
responding p-value. Therefore, in the regular case, one can define a p-value which does
satisfy the likelihood principle. No matter the intended sampling scheme in our exam-
ple, the p-value for a two-sided alternative is seen from the computed Wald statistic to be
p = .056.

We will extend the connection between a likelihood ratio statistic and a p-value to a
more general case. Before that, let’s think about some consequences of the regular case.
We note that the development could proceed from the asymptotics of the likelihood ratio
statistic directly. The Wald statistic z appears naturally in the regular case, so no extra dif-
ficulty is caused by its consideration. Since the likelihood function is invariant to sampling
scheme, so is the Wald statistic. Specifically, the standard error σ̂ does not depend on the
underlying sampling distribution. Let’s demonstrate this by comparing the binomial and
negative binomial sampling distributions. In both cases, θ̂ = x/n. In the binomial setting,
X is the random variable with V ar

(
θ̂
)
= θ (1− θ) /n. The estimated variance becomes

V̂ ar
(
θ̂
)
=

θ̂
(
1− θ̂

)
n

=
x (n− x)

n3
.
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Table 2: likelihood ratio scale of evidence

p (one-sided) p (two-sided) z LR

.05 .10 1.645 .258
.025 .05 1.960 .146
.005 .01 2.326 .067

.0025 .005 2.576 .036

In the negative binomial setting, N is the random variable. Applying the delta method
leads to the asymptotic variance AV ar

(
θ̂
)
= θ2 (1− θ) /x. The estimated variance here

becomes

ÂV ar
(
θ̂
)
=

θ̂2
(
1− θ̂

)
x

=
x (n− x)

n3
.

Thus, σ̂ =
√
V̂ ar is identical across sampling schemes. This property holds true whenever

the likelihood belongs to the regular case. It is interesting to see that the variance parameter
does depend on the sampling distribution. Test statistics based on evaluating the variance
parameter at the null value are not invariant to the sampling scheme. An example of such
a test statistic is the score statistic. Some prefer the score statistic in hypothesis testing be-
cause its error rate properties better approximate the stated levels (Agresti, 2013). However,
a score statistic does not satisfy the likelihood principle. Under the Fisher viewpoint, the
goal of hypothesis testing is to provide a statistical measure of evidence for the case at hand.
Error rates for (hypothetical) repeated trials hold no sway under this philosophy (Hubbard
and Bayarri, 2003). The Wald statistic would thus be preferable under the evidentiary view.

The arrangement which binds a p-value with the likelihood principle is beneficial to
both schools of thought. As mentioned previously, the likelihood ratio scale for evidence
lacks the familiarity of the p-value scale. The approximation in (1) allows one to more
easily interpret a likelihood ratio. Translating z to both LR and p leads to an evidential
equivalence displayed in Table 2.

A likelihood ratio near .15 is the evidential equivalent of a two-sided p-value near .05.
The 1 in 20 rule applied to the likelihood ratio (LR < .05) would translate to a more
stringent rule than the p < .05 rule prevalent throughout much of statistical practice. Table
2 is our link between two seemingly disparate approaches to quantifying evidence.

We still need a way to unambiguously connect the p-value to the likelihood ratio for
problems outside of the regular case. Evidence measured on the likelihood ratio scale is
interpreted the same, whether from the regular case or not. Thus, we have an unambiguous
measure of evidence against a null hypothesis Ho : θ = θo on the likelihood ratio scale.
We can read this in Table 2 as the right most column. The answer we are looking for can
be found by reading Table 2 from right to left. For any likelihood ratio statistic, there exists
a translated z statistic. Note that such a z statistic need not actually exist. We are only
interested in the equivalence to some value on the evidence scale. We can then translate
this z into a p-value measure of evidence. In other words, any likelihood ratio can be
uniquely translated into a p-value. We thus have a p-value, or at least an evidential measure
on the p-value scale, which satisfies the likelihood principle.

Let’s demonstrate the computation of a likelihood based p-value by returning one last
time to the simple binomial example. The likelihood function is not of the regular case, but
that does not matter. Earlier in this section, we computed LR (θo) = .208. We can connect
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a likelihood ratio to a z statistic by solving (1) as

z =
√
−2 lnLR (θo).

For our problem, we get z = 1.77. We can easily connect a z statistic to a p-value.
Since the alternative hypothesis is one-sided, we can compute LRp = .0384. No matter
the frequentist intention for the experiment, the calculations for LRp remain the same. The
result is an unambiguous p-value calculation. One can use a p-value measure of evidence
while adhering to the likelihood principle.

Any testing problem where evidence can be quantified through the likelihood function
can also be quantified through a uniquely defined measure on the p-value scale. We can
think of this measure as defining a p-value which does indeed satisfy the likelihood princi-
ple.

4. Concluding remarks

An understanding of what can be implied from hypothesis testing results is a necessary
obligation for a conscientious scientist. There is much debate as to the role of the p-value
in scientific reasoning and discussion. Criticism over the use of the p-value tends to focus
on its deficiencies in comparison to more rigorously defined evidential measures. We have
seen, however, that a p-value measure of evidence can be defined under the likelihood
principle. The connection between p-values and likelihood based measures of evidence
broaden the use of the p-value in statistical hypothesis testing. If one desires a quantification
of evidence through the likelihood principle, a p-value can still be a useful instrument.
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