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Discriminant Analysis:
Outcome must be Categorical

Definition: A statistical technique used to classify
objects into groups (to predict membership in groups).

Two-Group (Binary) Examples:

Admission to grad, law or medical school

Passing a test (CPA, CMA, etc.)

Toxicity of a substance on insects (causes death in some)

Making a loan; Bankruptcy

Winning an election; Being unemployed

Use of contraceptives; Driving drunk

Pregnancy or divorce; Heart attack or Alzheimer's
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Discriminant Analysis
Uses Regression

Modelling a binary outcome (loan vs. no-loan) requires
logistic regression.

This presentation classifies college students by gender
based on their height and weight.

Three logistic models are referenced:

* www.statlit.org/pdf/2015-Schield-Logistic-OLS 1 A-slides.pdf
* www.statlit.org/pdf/2015-Schield-Logistic-OLS 1 B-slides.pdf
* www.statlit.org/pdf/2015-Schield-Logistic-OLS 1C-slides.pdf
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la: Model gender on Height

Chance of Male given Height
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1b: Predict Sex given Height
Diamond=Male; Circle=Female

Classify Gender based on Height
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1c: Predict Sex given Height:
Error Analysis Close-up

Classify Gender based on Height
Criteria: P(male) = 50%
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1d. Predict Sex given Height:
Error Analysis Summary

7
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Classified As: P=50%
Actual Female Male All
Female 25 10 35
Male & 49 a7
All 33 59 92

Male if Height » 67.5"; otherwise female
19.6% (18/92) are classified improperly

XL4E: oLs1D VoD

2a. Model Gender on Weight

Chance of Male given Weight

P(Male) = 1/(1+Exp(-Z))
08 Z=-2757+
0.2013*Weight

0.6
P{male)=0.5 ifZ=0.

04 iz =0, Wi=136.98 P>

Average Weight: 145.24
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2b. Predict Sex given Weight
Diamond=Male; Circle=Female

Classify Gender based on Weight
Criteria: P(male) = 50%
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2c. Predict Sex given Weight
Erxror Analysis Close-Up
Classify Gender based on Weight
Criteria: P{male) = 50%
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2d. Predict Sex given Weight
Error Analysis Summary

Classified As: P=50%
Actual Female Male All
Female 29 ] 35
Male i al a7
All 35 a7 92

Male if Weight = 137#; otherwise female
13% (12/92) are classified improperly
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3a. Model Gender on
Height and Weight

Chance of Male Given Height and Weight
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3b. Model Gender on
Height and Weight

XL4E: VOD

P(male) = 50%: 66.37 = 0.759*Ht+0.11*Wt
Weight(P50) = (66.37 — 0.759*Height) / 0.11

XL4E: oLs1D VoD 2016 S

3c. Model Gender on
Height and Weight

Classify Gender based on Weight & Height
Criteria: P(male) = 50%

220 +
200 i

Classifyas male . . :
180 $ $ v

. $
160 $ e *
- i .

140 O H
120 Cé C@
100 O Classifyas female

61 63 65 67 69 71 73 75

Height (inches)
Pulse.mtw Logistic OLS

Ht Weight Ht Weight
60 139 63 134

61 182 69 127

62 176 70 120

63 169 71 113

64 162 72 107

65 155 73 100

66 148 74 93

67 141 75 86

XL4E: oLs1D VoD 2016 Set c Rogression usin e 15

3d. Model Gender on Ht & Wt:
Error Close-up

Classify Gender based on Weight & Height
Criteria: P(male) = 50%
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3e. Model Gender on Ht & Wt:
Error Summary

ogsic Regre: ol o 16

Classified As: P=50%
Actual Female Male All
Female 29 b 35
Male ] 2l a7
All 35 a7 92

Male if weight = predicted wt given height
13% (12/92) are classified improperly
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Summary

Using just height, 19.6% are mis-classified.
Using just weight, 13.0% are misclassified.

Using both height and weight, 13.0% are misclassified.

What is the advantage of using weight instead of height?
34% reduction in error: (13-19.6)/19.6

Disadvantage of using both height & weight vs. weight?
More complex. Can’t show in 2D.

Advantage of using both height & weight vs. weight?
Probably better at handling future subjects.
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Appendix

Q. Why not just use the average? Mean height or weight?

A. Group average is influenced by the outcome mix.
Logistic regression models the chance of the outcome.
Chance is not influenced by the outcome mix.

Interpreting the coefficients in Logistic Regression: This
important topic is beyond this introductory presentation.

Read The Chicago Guide to “Writing about Multivariate
Analysis” by Jane Miller. See p. 220-243 and 418-431.

2016-Schield-Logistic-OLS1D-Excel2013-Slides.pdf




XL4E: oLs1D voD 2016 Schield Logistic Regression using OLS1D in Excel2013 1

Discriminant Analysis
using Logistic Regression

by
Milo Schield

Member: International Statistical Institute
US Rep: International Statistical Literacy Project
Director, W. M. Keck Statistical Literacy Project

Slides, output and data at: www.StatLit.org/

pdf/2016-Schield-Logistic-OLS1D-Excel2013-Slides.pdf
pdf/2016-Schield-Logistic-OLS1D-Excel2013-Demo.pdf
Excel/2016-Schield-Logistic-OLS1D-Excel2013-Data.xlIsx




XL4E: oLs1D voD 2016 Schield Logistic Regression using OLS1D in Excel2013 2

Discriminant Analysis:
Outcome must be Categorical

Definition: A statistical technique used to classify
objects into groups (to predict membership in groups).

Two-Group (Binary) Examples:

Admission to grad, law or medical school

Passing a test (CPA, CMA, etc.)

Toxicity of a substance on insects (causes death in some)

Making a loan; Bankruptcy

Winning an election; Being unemployed

Use of contraceptives; Driving drunk

Pregnancy or divorce; Heart attack or Alzheimer's
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Discriminant Analysis
Uses Regression

Modelling a binary outcome (loan vs. no-loan) requires
logistic regression.

This presentation classifies college students by gender
based on their height and weight.

Three logistic models are referenced:
* www.statlit.org/pdf/2015-Schield-Logistic-OLS1A-slides.pdf

* www.statlit.org/pdf/2015-Schield-Logistic-OLS1B-slides.pdf
* www.statlit.org/pdf/2015-Schield-Logistic-OLS1C-slides.pdf
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la: Model gender on Height

Chance of Male given Height
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1b: Predict Sex given Height
Diamond=Male; Circle=Female

Classify Gender based on Height
Criteria: P[male) = 50%

220 L

. : .
Classify as female Classify as male

200

* &
4

180 :
160 @ @*
140 O

0 5 @ % ¢
120 @@ 8
100 C% (’i O

al L
61 63 65 67 69 71 73 75
Pulse.mtw Height {inches) Logistic OLS

LR L B O

*

= 4 »
o o DI




XL4E: oLs1D voD

2016 Schield Logistic Regression using OLS1D in Excel2013

1c: Predict Sex given Height:
Error Analysis Close-up

Classify Gender based on Height
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1d. Predict Sex given Height:
Exror Analysis Summary

Classified As: P=50%
Male

Actual Female

Female
Male

All

Male if Height = 67.5"; otherwise female
19.6% (18/92) are classified improperly
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2a. Model Gender on Weight

Chance of Male given Weight
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08 | £=-2737+
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2b. Predict Sex given Weight
Diamond=Male; Circle=Female
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2c. Predict Sex given Weight
Error Analysis Close=-Up

Classify Gender based on Weight
Criteria: P[male) = 50%
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2d. Predict Sex given Weight
Exror Analysis Summary

Classified As: P=50%

Female Male

Male if Weight > 13748; otherwise female
13% (12/92) are classified improperly
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3a. Model Gender on
Height and Weight

Chance of Male Given Height and Weight
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3b. Model Gender on
Height and Weight

P(male) = 50%: 66.37 = 0.759*Ht+0.11*Wt
Weight(P50) = (66.37 — 0.759*Height) / 0.11
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3¢c. Model Gender on
Height and Weight

Classify Gender based on Weight & Height

Criteria: P(male) = 50%
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3d. Model Gender on Ht & Wt:
Exror Close-up

Classify Gender based on Weight & Height
Criteria: P(male) = 50%
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3e. Model Gender on Ht & Wt:
Exror Summary

Classified As: P=50%

Actual Female Male

Female
Male

All

Male if weight = predicted wt given height

13% (12/92) are classified improperly
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Summary

Using just height, 19.6% are mis-classified.
Using just weight, 13.0% are misclassified.

Using both height and weight, 13.0% are misclassified.

What Is the advantage of using weight instead of height?
34% reduction in error: (13-19.6)/19.6

Disadvantage of using both height & weight vs. weight?
More complex. Can’t show in 2D.

Advantage of using both height & weight vs. weight?
Probably better at handling future subjects.
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Appendix

Q. Why not just use the average? Mean height or weight?

A. Group average is influenced by the outcome mix.
Logistic regression models the chance of the outcome.
Chance is not influenced by the outcome mix.

Interpreting the coefficients in Logistic Regression: This
Important topic is beyond this introductory presentation.

Read The Chicago Guide to “Writing about Multivariate
Analysis” by Jane Miller. See p. 220-243 and 418-431.
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