1A

Statistical Literacy: The Lognormal Distribution

Milo Schield, Augsburg U. Editor: www.StatLit.org US Rep: International Statistical Literacy Project

Amer. Statistical Association JSM July 30, 2018 www.StatLit.org/ pdf/2018-Schield-ASA-Slides.pdf XLS/Explore-LogNormal-Incomes-Excel2013.xlsx

EPI (2018): US Income Inequality by Metro Area

Inside the United States

Metropolitan areas

The **Jackson, WY-ID metro area** is the most unequal metro area in the United States.

- The top 1% make 132 times more than the bottom 99%.
- Average income of the top 1%: **\$16,161,955**.
- Average income of the bottom 99%: \$122,447.

EPI (2018): US Income Inequality by County

Counties

Teton County, WY is the most unequal county in the United States.

- The top 1% make 142.2 times more than the bottom 99%.
- Average income of the top 1%: \$22,508,018.
- Average income of the bottom 99%: \$158,290.

1A

2018 454 **Log-Normal Distribution: Atchison and Brown**

13

"In many ways, it [the Log-Normal] has remained the Cinderella of distributions, the interest of writers in the learned journals being curiously sporadic and that of the authors of statistical text-books but faintly aroused."

"We ... state our belief that the lognormal is as fundamental a distribution in statistics as is the normal, despite the stigma of the derivative nature of its name."

Shape is determined by the mean-median ratio. Aitchison and Brown (1957). P 1.

1A 2018 ASA 15 **Paired Distributions** For anything that is distributed by X, there are always two distributions: 1. Distribution of subjects by X 2. Distribution of total X by X. Sometime we ignore the 2nd: height or weight. Sometimes we care about the 2nd: income or assets.

Surprise: If the 1st is lognormal, so is the 2nd.

If the distribution of households by income is lognormal with normal parameters mu# and sigma#,

the distribution of total income by household income has a log-normal distribution where $mu\$ = mu\# + sigma\#^2; sigma\$ = sigma\#.$

See Aitchison and Brown (1957), p. 158. Special thanks to Mohammod Irfan (Denver University) for his help on this topic.

2018 ASA 1A 21 **Atchison-Brown Balance Theorem**

If the average household income is located at the Xth percentile, then it follows that;

- X% of all HH have incomes below the average income (1-X)% of all HH are located above this point
- X% of all HH income is earned by Households above this point.
- Above-average income households earn X/(1-X) times their pro-rata share of total income
- Below-average income households earn (1-X)/X times their pro-rata share of income.

2018 484 22 As Mean-Median Ratio ↑ **Rich get Richer (relatively)**

1A

1A

Log-normal distribution. Median HH income: \$50K.									
	Top 5%		Top 1%						
Mean#	Min\$	%Income	Min\$	%Income	Gini				
55	103	11%	138	2.9%	0.24				
60	135	15%	204	4.2%	0.33				
65	165	18%	270	5.5%	0.39				
70	193	20%	337	6.6%	0.44				
75	220	23%	406	7.7%	0.48				
80	246	25%	477	8.7%	0.51				
85	272	27%	549	9.7%	0.53				
90	298	29%	623	10.7%	0.56				

2010 404 23 What Causes an Increase in the Mean-Median Ratio?

Bad things: Crony capitalism, illegal gains.

Good things:

1A

More people getting college degrees.

Creating ways to do existing things better, cheaper or faster (Making pins, .

Providing value or entertainment that people enjoy.

Creating ways to do new things that were not doable before (telegraph, telephone, internet).

2019 494 Conclusion

Using the LogNormal distribution provides a simple, principled way for students

- to explore a plausible distribution of incomes
- to understand the factors that influence the change in income distributions

24

1

Statistical Literacy: The Lognormal Distribution

Milo Schield, Augsburg U. Editor: www.StatLit.org US Rep: International Statistical Literacy Project

Amer. Statistical Association JSM July 30, 2018

www.StatLit.org/ pdf/2018-Schield-ASA-Slides.pdf XLS/Explore-LogNormal-Incomes-Excel2013.xlsx

Best-selling statistics books

80 million: *World Almanac (Since 1896)*5 million: Economist: *World in Figures* (200K/yr; 25 years)

1.5 million: Piketty (2017): Capital in the 21st Century
500,000: Murray & Hernstein (1994): The Bell Curve
200,000: Hacker (1992): "Two Nations: Black and White, Separate, Hostile, Unequal."

https://www.washingtonpost.com/archive/lifestyle/1995/09/22/black-and-white-read-all-overthe-hot-books-that-make-the-melting-pot-boil/ee1de9b5-a172-4dfd-bb7a-1eb1d6cf9d77/

TRANSLATED BY ARTHUR GOLDHAMMER

Capital in the 21st Century: Income by Country (Top 1%)

INCOME INEQUALITY IN ANGLO-SAXON COUNTRIES, 1910-2010

3

2018 ASA

Capital in the 21st Century: <u>Wealth</u> by Country (Top 1%)

4

2018 ASA

EPI (2018): US Income Inequality by Metro Area

Inside the United States

Metropolitan areas

The Jackson, WY-ID metro area is the most unequal metro area in the United States.

- The top 1% make 132 times more than the bottom 99%.
- Average income of the top 1%: **\$16,161,955**.
- Average income of the bottom 99%: \$122,447.

EPI (2018): US Income Inequality by County

Counties

Teton County, WY is the most unequal county in the United States.

- The top 1% make 142.2 times more than the bottom 99%.
- Average income of the top 1%: \$22,508,018.
- Average income of the bottom 99%: \$158,290.

Evaluate income share held by top 1% over time. Data source: Tax data Problem: Tax authorities censors high-income data. So, how did Piketty deduce the income share of top 1%

Piketty used a model: the Pareto distribution.
By fitting this model to uncensored incomes, he inferred the distribution of the censored incomes.
Atkinson et al (2011). P 12-14.

The key property of Pareto distributions is this: the "ratio of 'average income $y^*(y)$ of individuals with income above y' to y does not depend on the income threshold y."

[Ave Income > y] / y = Beta

"if $\beta = 2$, the average income of individuals with income above \$100,000 is \$200,000 and the average income of individuals with income above \$1 million is \$2 million."

Atkinson, Piketty, Suan (2011). P 12-14.

EPI (2018): Income Inequality Top 1% Since 1920 by Country

Distribution of annual household income in the United States (2012 estimate)

1A

Log-Normal Distribution

Log-Normal shape is common. Examples:

- Incomes (bottom 97%), assets, size of cities
- Weight and blood pressure of humans (by gender)
- Stock and portfolio returns

Log-Normal is useful.

- Function is easier to work with than a histogram
- Understand what determines or explains shape
- calculate the share of total income held by the top X%
- calculate share of total income held by the 'above-average'
- explore effects of change in mean-median ratio.

Log-Normal Distribution: Atchison and Brown

"In many ways, it [the Log-Normal] has remained the Cinderella of distributions, the interest of writers in the learned journals being curiously sporadic and that of the authors of statistical text-books but faintly aroused."

"We ... state our belief that the lognormal is as fundamental a distribution in statistics as is the normal, despite the stigma of the derivative nature of its name."

Shape is determined by the mean-median ratio.

Aitchison and Brown (1957). P 1.

Log-Normal Distribution of Units

Paired Distributions

For anything that is distributed by X, there are always two distributions:

- 1. Distribution of subjects by X
- 2. Distribution of total X by X.

Sometime we ignore the 2nd: height or weight.

Sometimes we care about the 2nd: income or assets.

Surprise: If the 1st is lognormal, so is the 2nd.

Distribution of Households and Total Income by Income

If the **distribution of households** by income is lognormal with normal parameters mu# and sigma#,

the **distribution of total income** by household income has a log-normal distribution where mu\$ = mu# + sigma#^2; sigma\$ = sigma#.

See Aitchison and Brown (1957), p. 158. Special thanks to Mohammod Irfan (Denver University) for his help on this topic.

Distribution of Total Income

Distribution of Households and Total Income

1A

Lorenz Curve and Gini Coefficient

Champagne-Glass Distribution

The Gini coefficient is determined by the Mean#/Median# ratio.

The bigger this ratio the bigger the Gini coefficient and the greater the economic inequality.

Atchison-Brown Balance Theorem

If the average household income is located at the Xth percentile, then it follows that;

- X% of all HH have incomes below the average income (1-X)% of all HH are located above this point
- X% of all HH income is earned by Households above this point.
- Above-average income households earn X/(1-X) times their pro-rata share of total income
- Below-average income households earn (1-X)/X times their pro-rata share of income.

As Mean-Median Ratio [↑] Rich get Richer (relatively)

Log-normal distribution. Median HH income: \$50K.

	Тор	o 5%	Top 1%		
Mean#	Min\$	%Income	Min\$	%Income	Gini
55	103	11%	138	2.9%	0.24
60	135	15%	204	4.2%	0.33
65	165	18%	270	5.5%	0.39
70	193	20%	337	6.6%	0.44
75	220	23%	406	7.7%	0.48
80	246	25%	477	8.7%	0.51
85	272	27%	549	9.7%	0.53
90	298	29%	623	10.7%	0.56

What Causes an Increase in the Mean-Median Ratio?

Bad things: Crony capitalism, illegal gains.

Good things:

More people getting college degrees.

Creating ways to do existing things better, cheaper or faster (Making pins, .

Providing value or entertainment that people enjoy.

Creating ways to do new things that were not doable before (telegraph, telephone, internet).

Conclusion

Using the LogNormal distribution provides a simple, principled way for students

- to explore a plausible distribution of incomes
- to understand the factors that influence the change in income distributions

EPI (2018): US Income Inequality by State

	Top 1%		TOP 1%		Top 1%
STATE1	MIN \$	Rank-Min	AVE \$	Rank-Ave	AVE/MIN
Wyoming	405,596	16	1,900,659	4	4.69
New York	550,174	4	2,202,480	2	4.00
Nevada	341,335	28	1,354,780	11	3.97
Florida	417,587	14	1,543,124	8	3.70
Connecticut	700,800	1	2,522,806	1	3.60
Arkansas	255,050	49	864,772	36	3.39
California	514,694	5	1,693,094	6	3.29
Massachusetts	582,774	3	1,904,805	3	3.27
District of Columbia	598,155	2*	1,858,878	5	3.11
Illinois	456,377	7	1,412,024	9	3.09
Washington	451,395	8	1,383,223	10	3.06
Texas	440,758	12	1,343,897	12	3.05

Bibliography

Aitchison J and JAC Brown (1957). The Log-normal Distribution. Cambridge (UK): Cambridge University Press. Searchable copy at Google Books: http://books.google.com/books?id=Kus8AAAAIAAJ Cassidy, John (2014). Piketty's Inequality Story in 6 Graphs. The New Yorker www.newyorker.com/news/john-cassidy/pikettys-inequality-story-in-six-charts Cobham, Alex and Andy Sumner (2014). Is inequality all about the tails?: The Palma measure of income inequality. Significance. Volume 11 Issue 1. Limpert, E., W.A. Stahel and M. Abbt (2001). Log-normal Distributions across the Sciences: Keys and Clues. *Bioscience* 51, No 5, May 2001, 342-352. Copy at http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf Schield, Milo (2013) Creating a Log-Normal Distribution using Excel 2013. www.statlit.org/pdf/Create-LogNormal-Excel2013-Demo-6up.pdf Stahel, Werner (2014). Website: http://stat.ethz.ch/~stahel Univ. Denver (2014). Using the LogNormal Distribution. Copy at http://www.du.edu/ifs/help/understand/economy/poverty/lognormal.html Wikipedia. LogNormal Distribution.