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Most students see less value in statistics after taking the intro course than they did before.  Most 
students are in disciplines that deal with observational studies and confounding. Introductory 
statistics doesn't deal with observational studies.  Most intro statistics textbooks never mention 
confounding.  Confounding wasn't one of McKenzie's top 30 concepts.  Why are we so silent? 
Perhaps we aren't comfortable teaching confounding.  To change the future, we need to go back to 
when Jerome Cornfield argued that smoking caused cancer.  Fisher disagreed arguing it might be 
caused by a genetic confounder.  Cornfield refuted Fisher by deriving the Cornfield conditions: 
one of the greatest contributions of statistics to human knowledge.  We need to teach multivariate 
statistics, confounding and the Cornfield conditions so students will appreciate statistics. 
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STATISTICAL EDUCATION ENJOYS SUCCESS 
Statistical education has had success.  Most college graduates study statistics.  Schield 

(2016a) estimates that 57% of US four-year college students graduating in 2012 studied statistics.  
This estimate assumes that all students in the Table 1 majors must take statistics. This assumption 
will over-estimate the number in math, biology and history, but it omits many other majors where 
statistics may be required. ASA (2016).  

The number of US high school students taking the AP statistics exam has more than 
doubled in  9 years: from 98 thousand in 2007 to 206 thousand in 2016. Wikipedia (2018a) 

 
Table 1: Distribution Stat 101 by Major 

' 

Table 2: Student Math Aptitudes by Major 

 
 

STATISTICAL EDUCATION HAS ONE BIG PROBLEM 
Students see less value in statistics after taking the course than they did before. Schield and 

Schield (2008).   Statistical educators seem unwilling to survey their students on this criterion.  
This topic is almost absent in statistical education papers or conferences.  It's not a stated goal.  It's 
as though statistical educators don't want to know.  If we don't measure it, it doesn't exist.  

Why don't students appreciate the value of statistics despite being deluged by a sea of data?  
Perhaps it is an acquired taste like Scotch. Maybe students won't see the value until they start 
working; maybe their dislike of math carries over to statistics.   Here are some more explanations: 

One explanation is a student-teacher math-aptitude gap.  This gap can be seen in Table 2.  
(Schield 2016a). Most statistical educators majored in mathematics or statistics with an average 
math SAT score at the 80th percentile among college-bound SAT takers.  The biggest group of 
students taking statistics majored in business where the average math SAT score is the 51st 
percentile. The average math SAT for psychology and education majors is at the 39th percentile. 
Maybe statistics teachers think and teach at a more abstract level than their students.   

A second explanation is a student-teacher subject-interest gap.  A student's subject interest 
is typically related to their chosen major.  Table 1 shows the choice of majors among those taking 
statistics.  The majors in Table 1 can be classified into two groups: those in the social science and 
those in the physical sciences with math/stat included in the latter. Since statistics teachers tend to 
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come from math/stat or the physical sciences, perhaps they can't relate to the subject interests of 
their students in the social sciences.  

A third explanation involves a student-teacher prediction-causation gap.  Richard de Veaux 
argued that "We are teaching the wrong things in the wrong way and in the wrong order." Rossman 
(2016).  Perhaps it is the kinds of data we are – or are not – teaching.  Normally we introduce 
causation using random assignment.  If we teach observational data, it only involves predictive 
modeling – not causal exploration or explanation.  Confounding isn't a problem in predicting. 

Students majoring in the social sciences are more likely to use observational data to 
understand causation.  Confounding is a major problem.  Multivariate data is needed to deal with 
confounding.  Teachers may avoid those topics except to say "Association is not causation."  

By making multivariate data a goal for intro statistics, the 2016 update to the GAISE 
guidelines was a major step forward.  Mentioning observational studies and confounding was a big 
step.  Schield (2017)   But confounding was not mentioned at the highest level. Our unwillingness 
to talk about observational causation, confounding and strength of evidence is arguably the primary 
reason our students' see little value in the introductory statistics normally taught in Stat 101. 

STATISTICAL EDUCATORS: CAUSATION AND CONFOUNDING 
Statistical educators are encouraged to deal with causation and confounding in intro stats.   
• Moore (1997, 1998) identified "Beware the lurking variable" as a key component of statistical 

literacy.   
• Tintle et al (2014) identified “confounding and variation" as "two substantial hindrances to 

drawing conclusions from data".   
• Kaplan (2010).  "Saying 'Correlation is not causation' is like saying 'Sex is not love'."   

 
Statistical educators seem unwilling to deal with causation in the introductory course.   
• Pearl (2018) has written a most comprehensive critique of why statisticians are unwilling to 

deal with causation.  Pearl's book, The Book of Why: The New Science of Cause and Effect, is 
arguably the most important book on causal statistics since Cornfield debated Fisher on 
whether smoking caused lung cancer.   

 
Statistical educators seem unwilling to deal with confounding in the introductory course.   
• Confounding was not listed in McKenzie's (2004) top-30 topics in intro statistics. 
• Most statistical educators use confounding to show that association is not causation, but never 

mention the topic thereafter: a classic case of "bait and switch"!  
• Confounding is not mentioned in the index of many (most?) intro textbooks. (Schield, 2018).  

This finding was based on a convenience sample of 80 statistics textbooks.  Of these 65% 
(52/80) contained no index reference to confounding or lurking variable, 25% (20/80) 
contained a few index entries and 10% (8/80) contained substantial content. 

• Statistical educators disregarded Moore's call (1997) for two separate introductory statistics 
courses: statistical competence (a first course for those who must deal with data in their work); 
statistical literacy (what every educated person should know).   

 
So why are statistical educators unwilling to discuss confounding in the intro course? 
• Content.  Moore (1997) wondered if a statistical literacy course was really "statistics". 
• Mathematical allegiance.  Causation is not a mathematical idea or operation.  Avoiding 

causation and confounding maintains a closer allegiance to mathematics.  Schield (2013) 
• Statistical allegiance.  Statistical educators may share Fisher's total disregard for observational 

studies. Freedman et al (1997) quoted Fisher's comment on observational studies, "That's not 
an experiment you have there, that's an experience."   

• Concern.  “When students see how easily statistics are influenced by other factors, this may 
bring our discipline into disrepute.” Anonymous statistical educator. 

• Ignorance.  Most statistical educators never heard of Cornfield's minimum effect size needed 
to ward off nullification an observed association. 

This paper addresses the last two explanations. Concern and ignorance.   
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BACK TO THE FUTURE: BATTLE OF THE TITANS 
There is a similarity between statistical education today and the parents in the 80s hit 

movie: Back to the Future.  Wikipedia (2018b).  In that movie, Marty's dad and mom are not 
communicating.  His parents had great plans in the past, but now they've stopped listening.  
Similarly, statistical educators have stopped listening to their students.  They didn't listen when 
students said they saw less value in statistics after taking the course than they did before.  

To change the future, we need to go back to 1959 and see Jerome Cornfield arguing that 
smoking caused cancer – based on data from observational studies.  We need to see Sir Ronald 
Fisher arguing that the observationally-based association between smoking and cancer could be due 
to genetics: a confounder.  Yes, Fisher was a smoker, but he produced data from a German twins 
study showing an association between the type of twinship (identical vs. fraternal) and smoking 
preference. We need to see how Cornfield derived the minimum effect size needed for a 
confounder to nullify or reverse an observed association.  See Schield (1999).  

Cornfield noted that smokers were at least 10 times as likely to develop lung cancer as non-
smokers.  Fisher's association had a relative risk of only three.  Cornfield proved that Fisher's 
confounder was too small to nullify the observed association. Yes, there is no test for an 
unobserved confounder, but there is a necessary condition for an unobserved confounder to nullify 
an observed association. See Schield (1999), Gastwirth et al. (2000) and Cornfield (2018). 

Cornfield's minimum effect size is as important to observational studies as is the use of 
randomized assignment to experimental studies. No longer could one refute an ostensive 
causal association by simply asserting that some new factor (such as a genetic factor) might 
be the true cause. Now one had to argue that the relative prevalence of this potentially 
confounding factor was greater than the relative risk for the ostensive cause.  Schield (1999) 

Cornfield's minimum effect size is one of the greatest contributions of statistics to human 
knowledge alongside the central limit theorem and Fisher's use of random assignment to 
statistically-control for pre-existing confounders.  Cornfield's minimum size confounder eliminates 
the concern that a small confounder can overwhelm any observed association – regardless of size.  

Consider the case of second-hand smoke.  In a pooled analysis, the risk of lung cancer 
among spouses exposed to second-hand smoke is about 1.3 times as much as that among spouses 
not exposed and that this relative risk was statistically-significant. US Surgeon General (2006).   
Fisher's genetic confounder (RR=3) might easily nullify – and thereby totally explain – this weak 
association.   

Consider the loss of smell (anosmia) among those taking Zicam: a homeopathic remedy for 
the common cold.  With less than 100 cases among millions of users, the relative risk was 
extremely small and therefore not statistically-significant.  Schield (2011).  In their 2010 
appearance before the US Supreme Court, the manufacturer (Matrox) argued that "statistical 
significance should be required as a threshold element of materiality in 10(b) cases based on 
undisclosed Adverse Effect Reports (AERs)". The US Supreme Court disagreed saying that when 
the adverse effect is so extreme, a statistically-significant association should not be used as a 
requirement for a claim against the manufacturer.  Although relative risk was not cited as an issue, 
the presence of such an extreme adverse effect might justify treating a much lower relative-risk as 
supporting a causal connection.   

Rosenbaum (2017) has an excellent treatment of quasi-experimental devices (Ch 8), 
sensitivity to [confounder] bias (Ch 9) and design sensitivity [to confounder bias] (Ch 10).  

For some reason other statisticians seem to be united in ignoring Cornfield's game-
changing contribution.  Schield (2018) noted that most of those who reviewed Cornfield's 
contributions to statistics never mentioned his derivation of the minimum effect size: the Cornfield 
condition.  

 
EFFECT SIZE AND CONFOUNDING 

Effect size is another area where confounding is conspicuously absent.  Effect size is the 
subject of recent books by Ellis (2010), Cumming (2011), and Grissom and Kim (2012).  But none 
of these books included confounding in the index.  Those touting effect sizes certainly recognize 
their importance.   They may be aware that a large effect size was Hill's (1953) first criterion for 
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identifying a causal relationship.  But they may not understand why a big effect size is so 
important.   

The bigger the association effect size, the bigger the confounder effect-size it can resist 
(the greater the number of confounders it can resist). A bigger effect size is more confounder 
resistant.  

Schield and Burnham (2003) argued that when the association predictor is binary, the 
ability to ward off the influence of a given size binary confounder is directly related to relative risk 
(RR). This allowed Cornfield to argue that Fisher's genetic confounder (RR=3) was inadequate to 
nullify or overturn the observed effect size between smoking and lung cancer (RR=10). 

EFFECT SIZE: HOW BIG? 
The question. "How big is a strongly-resistant relative risk?" is similar to "How small is a 

statistically-significant p-value?"  Neither has a mathematical answer.  Both require a rule.  
Statistical significance used "one chance in 20" from Fisher.  Confounder significance has no such 
foundation.   

Furthermore, the shape of the sampling distribution is known whereas the shape of the 
confounder distribution is typically unknown.  As a result, any confounder cutoff will be arbitrary.  
However, there are two kinds of arbitrary: totally arbitrary and somewhat – but not totally – 
arbitrary. E.g., A speed limit of 750 mph is totally arbitrary; a speed limit of 75 mph is somewhat 
arbitrary.   

To avoid being totally arbitrary, it is best to use known information.  (1) Relative risk (RR) 
measures effect size when predictor and outcome are binary.  (2) Relative risk is never negative.  
(3) Taubes' (1995) list of 25 cancer associations had an average relative risk of 2.23.   

None of these say anything about the distribution of confounder relative risks.  But if we 
assume that the distribution of confounders is similar to the distribution of observed associations 
we can argue that (4) the distribution of confounder relative risks should have a maximum at one 
and decrease monotonically as RR increases and (5) the distribution of confounder relative risks 
should have an average relative risk of two (since small relative risks were presumably ignored).   

A simple model of confounder relative risks should have a shape determined by the fewest 
parameters.  Plausible candidates include the exponential distribution and a straight line. The 
exponential has a longer tail for a given average, so it is more conservative.  That seems preferable.   

To talk about confounder significance, we need to agree on a standard confounder 
distribution.  Consider this proposal.  A standard confounder distribution is an exponential 
distribution of confounder relative risks where the predictor values are exhaustive, the mean RR is 
two and the data is obtained from a cross-sectional study.   See Figure 1. 

The minimum size confounder that can nullify an association must have a relative risk that 
is at least as large as the relative risk in the association.  Schield and Burnham (2003). 

If we adopt a "one in 20" standard for confounder resistance (or confounder significance), 
then a relative risk of four is required.  Yes, this choice is arbitrary – perhaps doubly arbitrary in 
that both the distribution and the one-in-20 are arbitrary.  But, a standard is needed to facilitate 
translating the continuous measure of relative risk into a binary classification: confounder resistant 
(or confounder significant) versus confounder non-resistant (or confounder non-significant). 

If associations in scientific studies involving cross-sectional data need to be classified into 
five grades, consider using RR>4 (A: significant), 3<RR<4 (B: strong), 2<RR<3 (C: moderate or 
medium), 1.5<RR<2 (D: weak), 1<RR<1.5 (F: ignorable).  

Based on this standard confounder distribution, these five grades would have this 
distribution:  Significant (5%), Strong (10%), Moderate (23%), Weak (24%) and Ignorable (38%).  

These conservative levels may be lowered when making non-critical decisions, when using 
longitudinal before-after cohort data with a control group or when multiple studies indicate this 
distribution is overly conservative.  These levels may need to be lowered when the consequences or 
risks are severe and immediate action is required. 

Never forget that a large effect size is never sufficient by itself to conclude the association 
is causal.  Pearl (2018) prompted this example.  Suppose we divide people by shoe size (child or 
adult) and by the size of their vocabulary (child or adult), and calculate the percentage who have an 
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adult vocabulary in the two groups.  The resulting ratio may exceed a factor of ten.  But this large 
factor is weak evidence for saying that a large shoe size causes a large vocabulary.   

 

 
Figure 1: Standard Confounder Distribution 

Cornfield's 1959 paper is a good example.  Cornfield looked broadly and deeply at the 
evidence supporting the claim that smoking caused cancer.  He noted the lab studies on rats and the 
dose-response relationship.  He also looked at the evidence that opposed the claim.  All the data 
supported smoking as a cause; no other explanation was plausible.  As a statistician, Cornfield 
knew that an unknown super-confounder could be the underlying explanation.  But, he noted, there 
was no evidence for this.  Thus the claim that a super-confounder might exist was arbitrary – totally 
arbitrary.  Cornfield, a history major, recognized that the totally arbitrary had no status in inductive 
reasoning. 

TEACHING CONFOUNDING AND THE CORNFIELD CONDITIONS: 
Students find that thinking about plausible confounders (hypothetical thinking and 

minimum effect size) is very different from working a traditional math problem.  For details on 
how this can be taught and used to work testable problems, see Schield (2006 and 2016a). 

Most importantly, students see value in studying observationally-based statistics since most 
of the statistics they see in the news or at work are observationally-based.  Of the 105 students who 
recently took Augsburg's observationally-based statistical literacy course, 61% agreed that this 
course should be required by all college students for graduation.  Schield (2016b).  This result 
aligns with the MacNaughton (2004) goal for introductory statistics: to give students "a lasting 
appreciation for the value of statistics."  

CONCLUSION: 
Ideally, the GAISE guidelines will someday be updated to promote a statistical literacy 

course for decision makers and citizens that focuses on observational studies, confounding, strength 
of evidence and causation.  In that course, statistical educators should teach the "Smoking causes 
cancer" debate, identify Cornfield's necessary conditions, and present Cornfield's condition as one 
of the greatest contributions of statistics to human knowledge.   

Teaching a confounder-based introductory course will revolutionize the teaching of 
statistics.  It will help students think critically about everyday statistics, identify spurious 
associations and even detect fake news.   Teaching a confounder-based course will result in 
students seeing more value in statistics after completing an introductory course than they did 
before.    
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