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Abstract
Thought experiments in the form of paradox problems are useful for illustrating how our statistical
reasoning may be correct, or how it may be flawed, and how our models for behavior in the sci-
ences may be appropriate, or how such models may be incomplete. For example, the Monte Hall
problem, the Exchange paradox, the Ellsberg paradox, and transposed conditional paradoxes are all
interesting exercises in decision making, quantifying uncertainty, and statistical inference. In this
paper, we use the Exchange paradox to illustrate what paradox problems can teach us about the best
practices in statistical science.
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1. Introduction

Teaching proper notions of uncertainty is among the greatest challenges for statistical ed-
ucators, consultants, and collaborators. This challenge is made difficult because important
aspects of probability are not particularly intuitive. Persi Diaconis is credited with the ob-
servation “Our brains are just not wired to do probability problems very well.” If we are to
successfully communicate notions of uncertainty in educating statistical scientists, we need
a better understanding of how an over reliance on intuition may lead to flawed statistical
reasoning.

Thought experiments have proven to be useful for exposing the flaws in our intuitive
thinking. Kahneman (2011) provides an overview of the groundbreaking work in behav-
ioral economics used to study heuristic biases in judgement and decision making. These
experiments in social psychology have led to improved models of economic behavior. Per-
haps similar types of thought experiments can be used to highlight where models for be-
havior in the statistical sciences need change.

As a working definition, consider a paradox problem to be a thought experiment which
demonstrates how our statistical reasoning may go wrong. Perhaps the most famous para-
dox in statistics is the Monty Hall problem. Rosenhouse (2009) gives a book length treat-
ment of what this problem can teach us about proper statistical reasoning. In this paper,
our focus will be on the Exchange paradox, and the deeper lessons this thought experiment
can provide. Section 2 provides the details on the Exchange paradox problem, and offers
a Bayesian resolution. In Section 3, we take a deeper look at where our intuitive thinking
failed us, what we can learn from our mistake, and how this lesson can improve our statis-
tical thinking and communication. The paper closes with some final comments, including
an argument on the importance of persistently examining the role that statistics plays in the
scientific process.
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2. The Exchange Paradox

In this thought experiment, you are to randomly select one of two sealed envelopes; know-
ing that one envelope contains twice as much cash as the other (or that one envelope con-
tains half as much cash as the other). After opening the envelope, you are given the option
to switch. If your envelope contains x dollars, then the other contains either x/2 or 2x
dollars. It seems that from an expected value calculation
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x > x,

you should gladly accept an offer to switch envelopes.
Note that the calculation in (1) holds for any x, so you would not even need to open

your envelope before agreeing to switch. But now the same line of reasoning holds after
switching, so you should be agreeable to switching back. Under this logic, switching will
continue ad infinitum. Clearly, something must have gone wrong with our reasoning in
expression (1). What seems like a simple problem is showing itself to require a deeper
level of thinking.

A Bayesian view of the Exchange paradox will solve the puzzle (Christensen and Utts,
1992). Let’s start our more careful approach with some notation. Define θ as the smaller of
the amounts placed in the envelopes. Let π (θ) denote a prior distribution on θ. We observe
x, the amount in the selected envelope. Define A as the amount in the other envelope. Then
the expected value calculation we need for investigating a switching strategy is

E (A|x) = x

2
P
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2
|x

)
+ 2xP (A = 2x |x) . (2)

It can be shown that P (A = 2x |x) depends on the prior π over parameter θ as

P (A = 2x |x) = π (x)

π (x) + π (x/2)
. (3)

It makes sense that a decision to switch should depend on the amount observed from our
envelope, and on our prior beliefs as to what dollar amounts are likely to be placed in the
envelopes. For instance, if our prior is skewed toward larger amounts, and observed x is a
relatively small amount, we are willing to switch. If our prior information is that smaller
amounts seem more likely, we would tend to decide against switching envelopes.

3. What Can We Learn?

We now have an answer to a problem our intuition failed to solve correctly. Paradox prob-
lems like this traditionally have a place in mathematics and statistics as a fun diversion.
However, let’s take the problem more seriously and see what we can learn about where
our intuition failed us. The derivation of the posterior probability in expression (3) follows
from deriving the likelihood function in terms of unknown A as

L (A) =

{
1/2 if A = x/2
1/2 if A = 2x.

(4)

We interpret a likelihood function as representing the data evidence. So, the data provides
equal support to two possible values of A. It must be made clear that L (A) does not repre-
sent a probability on A, nor does it represent any measure of belief.
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Warnings on how a likelihood function does not represent a probability commonly ac-
company an introduction to likelihood inference. It is a tribute to the strong pull to think
likelihood and probability are synonymous that this mistake is so commonly made. In fact,
this misinterpretation of the likelihood function is the reason for misinterpreting the Ex-
change paradox problem. The expected value in (1) was incorrectly computed using L (A)
from (4), not P (A|x) from (3). Our intuition led us treat evidence as equivalent to belief.
This heuristic bias created a flaw in our statistical reasoning. As an aside, note from (3) that
P (A = x/2 |x) = P (A = 2x |x) = 1/2 if and only if θ follows an improper uniform
distribution. Because posterior probability is computed from both prior information and
data evidence, it is reasonable that the case of no prior information is where posterior prob-
ability matches the data evidence. See Pawitan (2013) for a formal treatment of likelihood
inference and its connection to Bayesian inference.

Our lesson from the Exchange paradox is how easy it is to mistake evidence for be-
lief. This seems like a simple lesson, but failure to follow the correct line of statistical
reasoning has enormous consequences. Misinterpretations of statistical significance, and
p-values, in hypothesis testing problems are due in a large part to treating data evidence
as equivalent to a probabilistic measure of belief. P-values, and hence determinations of
statistical significance, are data evidence measures in the same category as likelihood infer-
ence (Neath, 2017). For statistically significant testing outcomes, the likelihood function
is weighted more heavily toward one of the hypotheses, whereas the likelihood function in
the Exchange paradox problem is weighted evenly. The error in treating evidence as belief
is the same in both problems.

A claim of strong belief on the basis of a small p-value in a hypothesis testing setting
is a consequential error in statistical reasoning, and a major contributor to the replication
crisis in science (Ioannides, 2005; Open Science Collaboration, 2015). Concerns over the
harm caused to science necessitated a need for the ASA to issue a statement clarifying the
appropriate use of p-values in hypothesis testing (Wasserstein and Lazar, 2016). It seems
that any insight as to how statistical reasoning goes wrong in this regard would be helpful in
teaching good scientific principles. Indeed, the Exchange paradox can provide such insight.

4. Conclusion

In this paper, we focused on one aspect of one paradox problem. A review of the literature
will reveal dozens of papers on the Exchange paradox alone, suggesting many different
lessons in statistical reasoning. Our attention has been on what can be learned about p-
values, their interpretations, and the their highly influential role in the scientific process.
Correct statistical reasoning is the driving force behind doing good science, so it is im-
portant for statistical educators to carefully examine which scientific practices should be
promoted, and which practices should be discouraged. If thought experiments aid us in this
endeavor, then they can be as valuable in studying statistical behavior as they have been in
studying economic behavior.
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