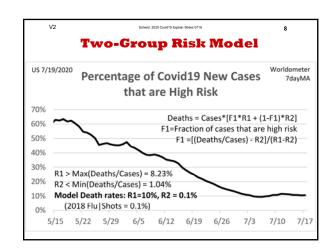
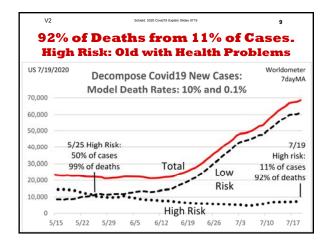
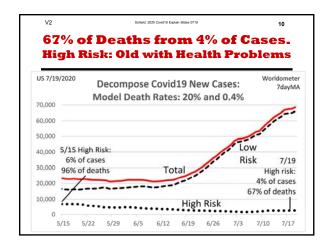


	Ac	sign	Acre	s to	Two	Gro	uns	
	****	3191		by Age gro		0.0	ups	
≤9	10-19	20-29	30-39	40–49	50-59	60-69	70-79	≥80
20,458	49,245	182,469	214,849	219,139	235,774	179,007	105,252	114,295
1.5%	3.7%	13.8%	16.3%	16.6%	17.9%	13.6%	8.0%	8.7%
			DEATH	S by Age g	oup (yrs)			
13	33	273	852	2,083	5,639	11,947	17,510	32,766
0.0%	0.0%	0.4%	1.2%	2.9%	7.9%	16.8%	24.6%	46.1%
		DEATH	RATE (per	1,000 and %) by Age g	roup (yrs)		
0.6	0.7	1.5	4.0	10	24	67	166	287
0.1%	0.1%	0.1%	0.4%	1.0%	2.4%	6.7%	16.6%	28.7%
	AVERAG	E DEATH RA	TE (%) UP	TO AGE SH	OWN and D	OWN TO A	GE SHOWN	
0.1%	0.1%	0.1%	0.3%	0.5%	1.0%	1.9%	3.2%	5.4%
5.4%	5.5%	5.7%	6.6%	8.2%	10.7%	15.6%	22.9%	28.7%

The Cases-Deaths Association: Confounded by Age-Risk Mix


We need a simple *explanatory model*. Assume two groups based on risk of death:


• Death rate: High risk (R1), Low risk (R2) Let F1 = Fraction of cases in high risk group


Deaths = Cases*[F1*R1 + (1-F1)*R2]

Select death rates for each group: R1 > R2

- Max(Deaths/Cases) = 8.2%. So let R1 = 10%
- Min(Deaths/Cases) = 1.0%. So let R2 = 0.1%

Technical Summary

- 1. Smooth the data (7day average)
- 2. Model the data: Predict vs. Explain
- 3. Look for biggest confounder: Age-risk mix
- 4. Confounder must vary as data changes.
- 3. Choose a simple model to highlight essentials
- 4. Check model assumptions against real data.
- 5. Summarize results to highlight the findings
- 6. Help officials minimize deaths and flatten the curve without flattening the economy

Statistical Education needs Statistical Literacy

Look at what was done here:

- Observational data; time series data, big data
- Model to explain (not trying to predict)
- Confounder that varies over time
- Create a simple 2-parameter model

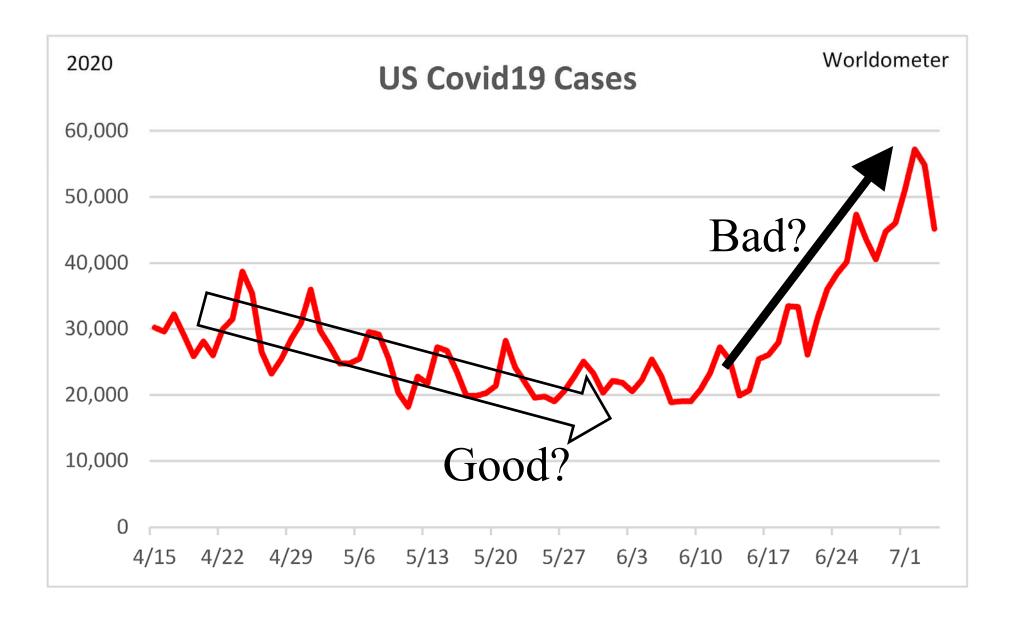
None of these are taught in traditional intro stats.

These are more of the reasons why students need a confounder-based Statistical Literacy course.

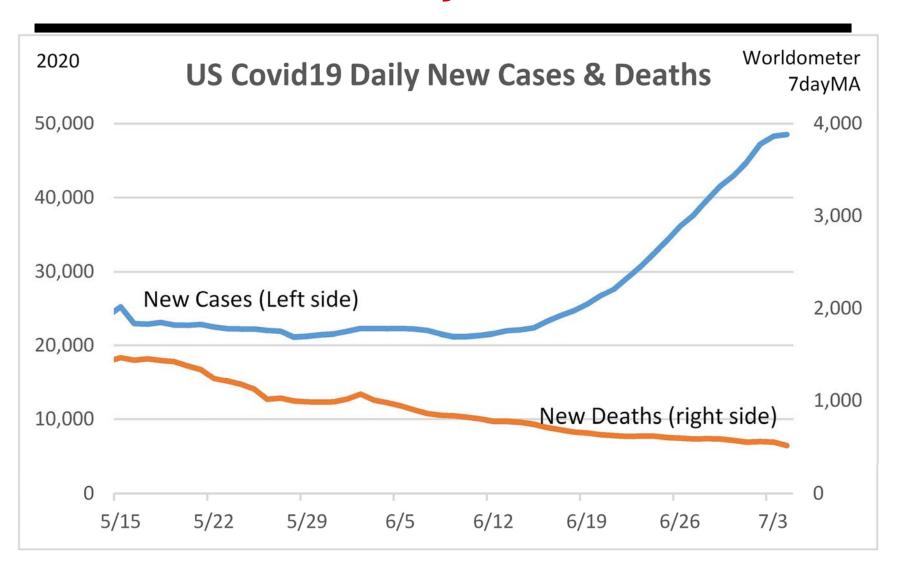
Covid19 Deaths: An Explanatory Model

by Milo Schield

ASA Fellow


Consultant: University of New Mexico

President: National Numeracy Network


July 19, 2020

www.StatLit.org/pdf/ 2020-Schield-Covid19-Explain-Slides-0719.pdf

US COVID-19 CASES

Association: Co-variation. As Cases↑; Deaths↓.

What explains lower death rate?

Change how things are counted or measured:

- More sensitive tests: more false positive cases
- Covid deaths now exclude non-Covid causes

Change reality:

- Improved medical care. Data not yet available.
- Change in mixture (confounding)
 What is the biggest confounder?
 Must vary: "takes a change to explain a change"

Model Confounder Change: What is death rate by age?

Death Rat	e of Cases	Health Problems*			
Age	ALL (5/31)	Some	None		
5	0.1%	0.6%	0.1%		
15	0.1%	0.8%	0.1%		
25	0.1%	1.4%	0.1%		
35	0.4%	1.0%	0.1%		
45	2.4%	4.5%	0.4%		
55	2.4%	7.8%	0.9%		
65	6.7%	16.7%	2.4%		
75	16.6%	31.7%	10.2%		
85	28.7%	49.7%	20%**(30%)		

Table 3: www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm

^{*} Half of the deaths lack health condition

^{** 19.7%} is estimated; (29.8% was recorded)

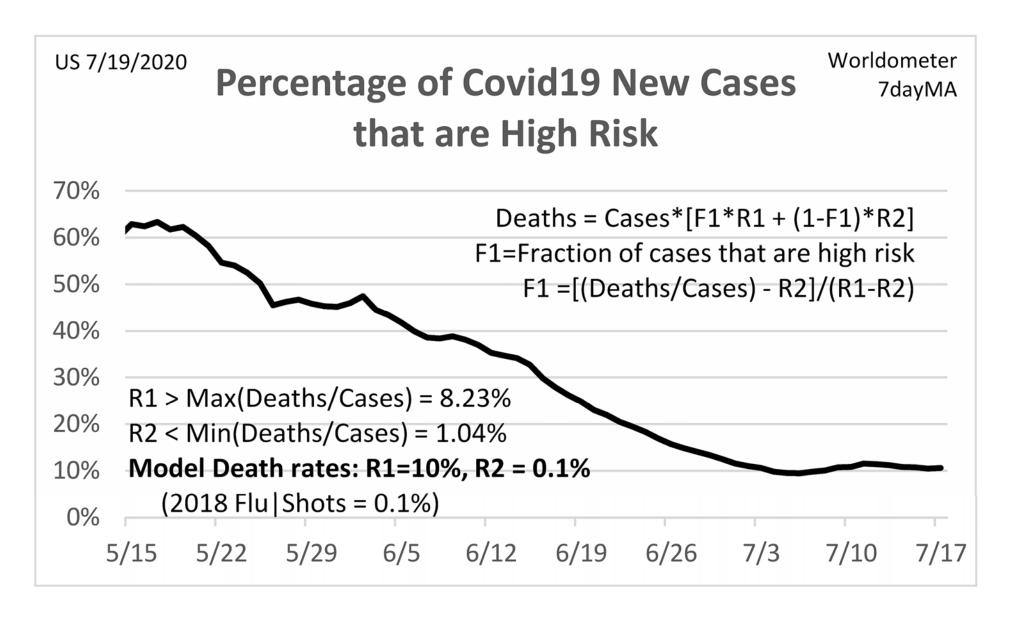
Death Rate among Cases by Age: Assign Ages to Two Groups

							-		
CASES by Age group (yrs)									
≤9	10–19	20–29	30–39	40–49	50–59	60–69	70–79	≥80	
20,458	49,245	182,469	214,849	219,139	235,774	179,007	105,252	114,295	
1.5%	3.7%	13.8%	16.3%	16.6%	17.9%	13.6%	8.0%	8.7%	
DEATHS by Age group (yrs)									
13	33	273	852	2,083	5,639	11,947	17,510	32,766	
0.0%	0.0%	0.4%	1.2%	2.9%	7.9%	16.8%	24.6%	46.1%	
		DEATH	RATE (per	1,000 and %	6) by Age g	roup (yrs)			
0.6	0.7	1.5	4.0	10	24	67	166	287	
0.1%	0.1%	0.1%	0.4%	1.0%	2.4%	6.7%	16.6%	28.7%	
AVERAGE DEATH RATE (%) UP TO AGE SHOWN and DOWN TO AGE SHOWN									
0.1%	0.1%	0.1%	0.3%	0.5%	1.0%	1.9%	3.2%	5.4%	
5.4%	5.5%	5.7%	6.6%	8.2%	10.7%	15.6%	22.9%	28.7%	
Table 3:	able 3: www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm						USA as of	5/30/2020	

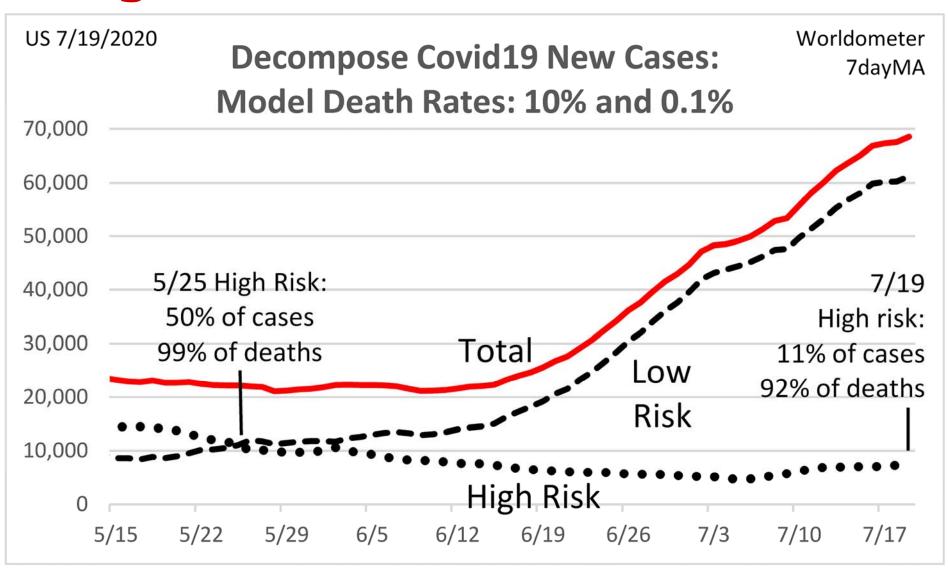
The Cases-Deaths Association: Confounded by Age-Risk Mix

We need a simple explanatory model.

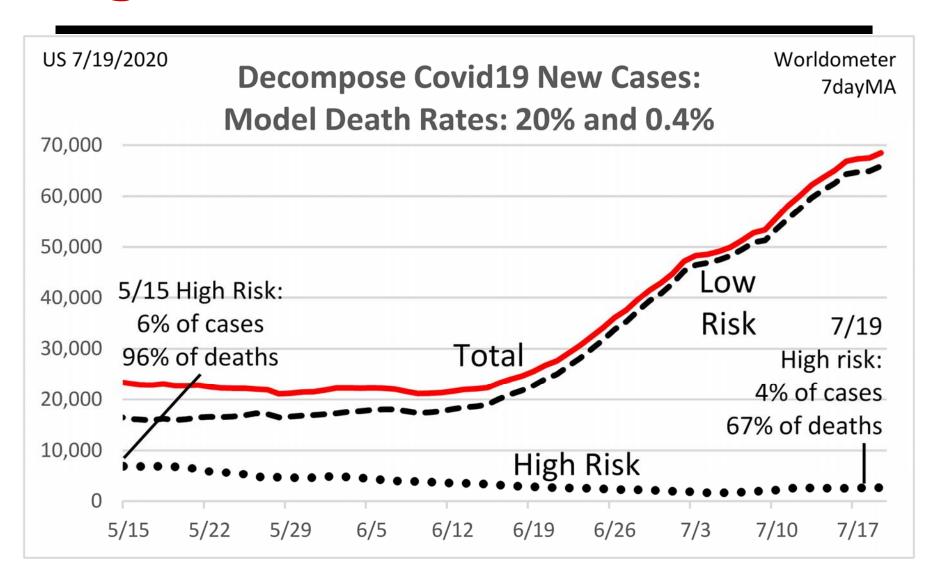
Assume two groups based on risk of death:


• Death rate: High risk (R1), Low risk (R2) Let F1 = Fraction of cases in high risk group

Deaths = Cases*[F1*R1 + (1-F1)*R2]


Select death rates for each group: R1 > R2

- Max(Deaths/Cases) = 8.2%. So let R1 = 10%
- Min(Deaths/Cases) = 1.0%. So let R2 = 0.1%


Two-Group Risk Model

92% of Deaths from 11% of Cases. High Risk: Old with Health Problems

67% of Deaths from 4% of Cases. High Risk: Old with Health Problems

Technical Summary

- 1. Smooth the data (7day average)
- 2. Model the data: Predict vs. Explain
- 3. Look for biggest confounder: Age-risk mix
- 4. Confounder must vary as data changes.
- 3. Choose a simple model to highlight essentials
- 4. Check model assumptions against real data.
- 5. Summarize results to highlight the findings
- 6. Help officials minimize deaths and flatten the curve without flattening the economy

Statistical Education needs Statistical Literacy

Look at what was done here:

- Observational data; time series data, big data
- Model to explain (not trying to predict)
- Confounder that varies over time
- Create a simple 2-parameter model

None of these are taught in traditional intro stats.

These are more of the reasons why students need a confounder-based Statistical Literacy course.