Math of Association in Quantitative Literacy

MILO SCHIELD

Augsburg College Dept of Business Administration Director, W. M. Keck Statistical Literacy Project

MAA
Quantitative Literacy
15 January 2006
Slides 2006SchieldMAA6up.pdf

```
www.StatLit.org
Schield@Augsburg.edu
```


QL

Numbers in Context
"The essence of QL is to use mathematical and logical thinking in context. " Lynn Steen 2004

QL must have defining core concepts that are - based on the role of context in arguments

- mathematically sound
- understandable by students and faculty
- useful to students in their everyday lives
- teachable by non-math faculty.

\#1: Numeric Comparisons Control For Context

Qualitative vs. quantitative

- Napoleon was shorter than many French soldiers
- Napoleon 4" shorter than average French soldier
- Women live longer than men
- Women can expect to live 7 years longer than men

If interest rates increase from 1% to 2%.

- Double (two times as much as)
- 100% increase (100% more; 1 times more than)
- 1 percentage point increase Not a 1% increase!

QL:
 Four Core Concepts

Whether QL is a separate course or is infused in other courses, it must have core concepts.
Here are some good candidates:
Four key math tools that control for context:

1. Arithmetic comparisons (\% more than)
2. Ratios (percentages, rates, probability)
3. Comparisons of ratios (likely, prevalent)
4. Standardizing (compare apples w. apples)

5. Unemployment is up Number is up
6. Unemployment is down Rate is down
\#2

Ratios Control For Context

Q1. Are these percentages the same?

1. The percentage of men WHO ARE runners
2. The percentage of men AMONG runners

Q2. Are these rates the same?
3. The women's death rate
4. The death rate of women
5. The rate of death among women
6. The women's rate of death

\#3: Comparisons of Ratios Control For Context Two Ways

Is marijuana a gateway drug to heroin?

1. 90% of heroin addicts first used marijuana
2. 99% of heroin addicts first used milk

Are men psychologically stronger than women?
3. Widows are more likely AMONG suicides than widowers [are].
4. Widows are less likely TO commit suicide than widowers [are].
"99.9\% Accurate ${ }^{4}$ Statistical Prevarication:
Q. Is this accuracy in prediction?

- $\mathbf{9 9 . 9 \%}$ of those testing positive have HIV? NO!
" 99.9 \%" involves confirmation, not prediction Confirmation:
- 99.9% of those with HIV test positive

Prediction is typically a different number:
Suppose that 0.1% of a population have HIV.
50\% of those testing positive, will have HIV

\#4: Standardizing Ratios Controls For Context

Once you have ratios (percentages, rates or averages) or comparisons of ratios, many students mistakenly think no more can be done.

Standardizing takes into account the influence of confounders on ratios.

Standardizing links mathematics, confounding and context in ways that everyone should know.

Standardizing involves multivariate thinking.

\#4: Numbers in Context: Multivariate Thinking

Let's try an example in Public Affairs:
Average family income:

- \$41,000 for US white families
- $\$ 25,000$ for US black families
- \$16,000 is the black-white income gap

Is this evidence of structural racism in America?

\#4: Numbers in Context: Seeing Confounding

Mexico has better medical care than the US.

- Death rate in Mexico: 5 per 1,000 population
- Death rate in US: 8.7 per 1,000 population

Utah schools (227) better than Oklahoma (225)
NAEP score: $4^{\text {th }}$ grade Math in 2000n.
OK higher than UT for low-income kids \& for high-income kids. OK had more low-income kids

\#4: Math of Confounding: Not Elementary

Some say that QL skills involve "sophisticated reasoning with elementary mathematics rather than elementary reasoning with sophisticated mathematics."

I disagree.
I believe that quantitative/statistical literacy involves "sophisticated reasoning with both elementary and sophisticated mathematics."

\#4: Confounding involves Differential Calculus

Confounding involves the distinction between a total derivative and a partial derivative.

$$
\frac{d z(x, y)}{d x}=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial x}
$$

\#4: Math of Confounding QL may Involve New Math

In mathematics, a course of study is identified and distinguished by the type and level of math.
So long as QR/QL is distinguished by school math, it is hard to justify as a college-level course.
Burnham and Schield (2006) have introduced some new math involving confounder influence, confounder resistance and confounder intervals.

If valid and practical, this new math could give QR/QL unique math credentials.

Confounder Intervals

References

1. "Statistical Literacy and the Liberal Arts at Augsburg College" in Peer Review. Copy at www.StatLit.org/pdf/2004SchieldAACU.pdf
2. "Confounders as Mathematical Objects" by Schield and Burnham. 150 equations. Copy at www.StatLit.org/pdf/2006SchieldBurnhamMAA.pdf
3. "Statistical Literacy Online at Capella University" by Marc Isaacson. Copy at www.StatLit.org/pdf/2005IsaacsonASA.pdf.
