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WHAT DOES 100%
JUICE MEAN?
EXPLORING ADULT LEARNERS’ INFORMAL
KNOWLEDGE OF PERCENT

Lynda Ginsburg
Iddo Gal

Alex Schuh
National Center on Adult Literacy

University of Pennsylvania

Abstract

This report examines adult students’ informal knowledge of percent and its
relationship to their formal computational skills. Sixty adults studying in adult
education programs were interviewed to ascertain (a) their ideas of the meanings
of three benchmark percents, 100%, 50%, and 25%, as they appear in
advertising and media contexts; (b) their ability to use these numbers in
everyday mental math tasks; and (c) their visual representations of these
quantities. Students also completed school-like, computational percent
exercises. Students’ responses were examined to determine the nature of their
informal knowledge and skills; a number of patterns of informal knowledge and
formal skills were identified. The range and fragility of student responses and
the diversity of existing knowledge gaps suggest the need to broaden the
content of percent instruction beyond computation. Mathematics assessments
should be expanded to include performance on real-world tasks and should
involve probing of responses to explore depth of understanding.
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INTRODUCTION

Percents are central to many aspects of adults’ lives; knowledge of percents
is required for effective understanding of and performance in numerous real-
world situations, such as managing personal finances (e.g., understanding
interest), handling functional tasks (e.g., understanding discounts), and dealing
with work-related tasks (e.g., generating indicators of product quality). Some
conceptual understanding of percents is also essential for comprehension of
messages in the media, such as statistical information about economic or social
trends (e.g., changing tax rates or pollution levels).

Given the importance of the concept of percent, it is surprising that little is
known about children’s learning and difficulties with percent, and that
apparently no research has examined adults’ knowledge of percent. Research
has focused on exploring children’s acquisition of rational numbers and
proportional ideas (Behr, Harel, Post, & Lesh, 1992; Mack, 1990; Wearne &
Hiebert, 1988) rather than their understanding of percent. This reflects the view
taken by many teachers and textbooks (in both K-12 and adult education) that
the study of percent is only an extension of the study of fractions and decimals.
This approach leads to an emphasis on the mechanics of percent-related
calculations or converting between percents, fractions, and decimals, rather than
on conceptual understanding.

The few studies that have examined children’s knowledge of percents
looked only at specific cognitive processes in limited contexts: Venezky and
Bregar (1988) focused on solving traditional word problem tasks, Streefland
and van den Heuvel-Panhuizen (1992) explored fifth graders’ informal
knowledge displayed in response to four daily-life stories, and Joram,
Raghavan, and Resnick (1992) investigated students’ interpretation of percents
found in text. A recent study by Lembke and Reys (1994) employed a broader
research framework, and examined the performance of students in grades 5, 7,
9, and 11 on decontextualized and situational percent problems. Among other
findings, these researchers reported that older students used a narrow range of
solution approaches, usually based on procedures learned in school. In
contrast, younger students used a more diverse range of strategies and showed
greater reliance on benchmark percents, such as 50% and 25%. Lembke and
Reys also reported that students’ conceptual understanding and ability to solve
percent problems increased with age, but that even at the eleventh grade,
middle-ability students could not solve one fourth of all problems. They
concluded that “Formal instruction in the application of percent tends to make
the students’ concepts of percent less intuitive and more rule-driven, actually
narrowing rather than expanding the strategies and the computational methods
students use when working with percents” (p. 256).

These and other findings, such as results from the National Assessment of
Educational Progress (Mullis, Dossey, Owen, & Phillips, 1991), imply that
many students are likely to leave school with an incomplete conceptual
understanding and computational knowledge of percent, as well as with
insufficient preparation for using or understanding the use of percents in the real
world. This assumption is bolstered by results from the recent National Adult
Literacy Survey (Kirsch, Jungeblut, Jenkins, & Kolstad, 1993), which showed
that between a quarter and a half of the adult population in the United States
have difficulty dealing with many functional tasks involving mathematical
elements, including numerous tasks with percents.
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ADULTS AND PERCENTS

This study was designed as a preliminary exploration of adults’
knowledge of percents, with a focus on adults who are returning to an
educational setting to study math, such as in a literacy, basic skills, or an
employment-preparation program. We will see that this population is
significant in size.

Based on a survey of a representative sample of 350 adult education
programs in the United States, Gal and Schuh (1994) estimate that
approximately 80% of the almost four million adults presently studying in
state-administered adult education programs each year receive some math
education; roughly half of those who study math are classified at the adult
basic education level (ABE, usually taken as equivalent to grades 1-8) and
the remainder at the adult secondary education level (ASE, mostly including
those preparing for high-school equivalency exams such as the GED). While
adult education programs in America may teach or re-teach percents to
millions of adult students, we have found no research on adults’
understanding of and difficulties with percents. (A search of the ERIC and
PSYCHLIT databases did not uncover any report of research involving
adults’ understanding of percent. The National Adult Literacy Survey
(Kirsch et al., 1993) included questions involving percents but thus far,
published reports have not described adults’ responses or solution strategies
for these particular tasks.) Such knowledge is needed to design effective
teaching and to inform training of teachers and curriculum development.

In designing the present study, it seemed important to attend not only to
the formal skills and knowledge that adults may already have, but also to the
informal knowledge and skills about percents that they bring to their studies.
Informal knowledge is likely to be shaped by adults’ particular life
circumstances and experiences after formal schooling ended. We expected
that most adults in the United States, including those who did not complete
high school, frequently come into some contact with percents in their daily
lives, and that adults develop some intuitions or ideas about percents, even if
they have not formally studied (or fully understood) percents while in
school.

One important aspect of adults’ informal experience with percents, which
may be somewhat different from the informal experiences of younger people,
pertains to the greater exposure that adults can be expected to have to
“interpretive situations” (Gal, 1993; Kirsch et al., 1993), such as percents
embedded in media-based messages, which require no calculations but rather
comprehension and critical analysis. In addition, adults, more so than
children, may come across situations requiring quick “ballpark” estimation
such as when shopping or dealing with discounts. In such contexts, effective
functioning does not necessarily require people to have strong computational
skills, but rather a general, perhaps intuitive, understanding of the percent
system, as well as “number sense” and mental math skills (Sowder, 1988).

The informal mathematical conceptions and intuitions that adults (and
children) carry with them may vary in their degree of “correctness”
(Fischbein, Deri, Nello, & Marino, 1985; Leinhardt, 1988; Mack, 1990;
Nunes, Schliemann, & Carraher, 1993; Riley, Greeno, & Heller, 1983).
Information about such informal or prior knowledge that adults bring with
them to their studies of percents is essential for the design of effective
instruction that builds on students’ strengths and tries to ameliorate
knowledge gaps or misunderstandings.
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RESEARCH APPROACH AND QUESTIONS

We chose to explore adults’ responses to a variety of tasks involving
percents, including tasks that people generally encounter only in school as well
as tasks that adults encounter in everyday situations, such as shopping and
interpreting statements with percents. The subjects in this study are adults who
returned to school because their mathematical (and other basic) skills have been
deemed inadequate by themselves or others. These adults may have informally
developed ideas and intuitions about percents (and many other mathematical
topics) to enable them to function in everyday situations. Our goal was to
document if and how adults modify or invent percent-related ideas in ways that
are meaningful and useful to them.

We focus in this paper on students’ understanding of three specific percent
values: 100%, 50%, and 25%. Knowledge of the percent system requires an
appreciation of 100% as the basis for the system. From an informal survey of
advertisements in the media and in stores, we found 50% and 25% to be among
the most commonly used percents. In addition, these two percents are
mathematically related and easily converted into familiar fractions and decimals.
Thus, we expected that adult students would likely have been exposed to these
two percents and may have developed personally useful informal knowledge
and strategies for dealing with them. Lembke and Reys (1994) identified these
percents as “benchmark percents” and we will use that terminology as well.

The specific questions addressed in this study are as follows:

• What knowledge do adult students’ have of 100% and its role as the basis of
the percent system?

• How do adult students make sense of and solve problems involving the
benchmark percents 50% and 25%?

• How are informal knowledge and skills related to formal computational
skills?

• Are the standardized tests that most adult literacy programs use to inform
placement and advancement decisions sensitive to the level of adults’
informal and formal knowledge about percent?

METHOD

SUBJECTS

This study involved 60 adults from seven adult education classes, three
serving inner city and four serving suburban populations. The sample included
3 men and 57 women, ranging in age from 18 to 53 years, with a mean age of
27.5 years. Only a small number of men participated in the study because five
of the programs were either designated by funding agencies as “women’s
programs” or were aimed at reducing the dependence of single parents (who are
usually women) on public assistance. Fifty-three percent of the students were
African American, 14% were Hispanic, and 33% Caucasian. The students had
been studying math (and in most cases, also other subjects) in their classes for
between 2 weeks and 3 months but had not yet engaged in learning percent. All
students in each designated class were given the opportunity to participate in the
study. All or almost all students in each class expressed curiosity and interest in
participation.
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The stated purposes of the seven educational programs were different,
but the goals regarding mathematics were the same for all programs—to
review the traditional mathematics curriculum and improve the computational
skills of the students. The programs aim to prepare students for successful
performance on standardized tests, primarily those used to screen applicants
for employment training or the GED test.

The vast majority of the students completed between 9 and 12 years of
school (mean=10.6 years). Three students completed between 6 and 8 years
of school and 3 others took courses at a community college for either one or
two years. The programs provided students’ scores on the math subtest of
standardized tests used at the intake stage; five programs used the TABE, the
Tests of Adult Basic Education; and two used the ABLE, the Adult Basic
Literacy Education test (see Sticht, 1990, for more details on these tests).
When expressed in grade-equivalent units (a common practice in adult
education programs), 15 students (25% of the sample) were classified as
having scores in the grade range 4.9-6.9, 24 students (40%) in the 7.0-8.9
range, and 15 (25%) scored in grade range 9.0 and above (scores were
unavailable for 6 students). Thus, students’ achievement on standardized
tests identified them as having lower computational skills than would be
expected on the basis of their prior education. In the analyses reported
below, the above-defined grade-level equivalents, rather than the number of
years of schooling completed, were used to describe groups of students. The
use of three grade-level groups provides better discrimination than the use of
prior years of schooling for two reasons: (a) 43% of the students in the
sample attended school for either 11 or 12 years yet are spread over all three
grade-level groups; they comprise half of the highest grade-level group, half
of the middle-scoring group, and one fourth of the lowest scoring group; and
(b) there is no way to describe or evaluate the content of former schooling for
these students.

PROCEDURE

Overall, students were presented with four different types of tasks
involving percent: explanatory tasks, shopping tasks, visual tasks, and
computation tasks. The first three types of tasks were presented as part of an
individual, semistructured interview, which lasted approximately 30 minutes.
Since students participate in adult education programs on a voluntary basis
and often attend only for a limited time, overall assessment time was kept to a
minimum. To ensure that reading difficulties would not affect students’
responses, the interviewer read pertinent parts of the stimulus materials
aloud. Students’ statements were recorded in writing and also audiotaped.
About three weeks after the interviews, students at each site completed a brief
written assessment of computational skills as part of their regular classwork.

EXPLANATORY TASKS

The first part of the interview was designed to provide information on
adult students’ ideas about five interrelated facets of the meaning of 100%
and the role of 100% in the percent system. We identified these facets,
described below, as important in conceptualizing the structure of the percent
system and as useful in comprehension of statements about percents as they
appear in everyday situations. The tasks used to explore these five facets are
listed in Table 1.



N A T I O N A L  C E N T E R  O N  A D U L T  L I T E R A C Y 5

• Awareness that percents are expressed on a scale from 0-100; recognition of
this 0-100 scale and its ordinal nature is the foundation upon which people
can base simple interpretations of percent-based statements even if they are
unable to compute with percents. (Percents larger than 100 or smaller than 1
were not addressed in this study, as they are much less frequently
encountered.)

• Knowledge that the percentages of the parts of a whole must add up to
100%.

• Recognition that a percentage of a whole can be represented visually in a way
that conveys a sense of its proportional nature or relative size.

• Identification of 100% as meaning “whole” or “all.”
• Appreciation of the invariability of 100% as the reference point for percent

(i.e., that the use of 100 [and not any other number] is an accepted
convention in describing proportional amounts).

Table 1

Interview Tasks Used to Assess Knowledge of 100% as
the Basis of the Percent System

Facet Stimulus presented Questions asked

1. Percents lie on an
ordinal scale ranging
from 0 to 100.

Circled line from newspaper
article stating that a new
blood test “detects cancer
correctly in 90% of cases.”

Do you think this is a good
test? Why? What does the
90% tell you?

2. Percentages of the
parts of a “whole”
sum to 100%.

Printed statement
purportedly from a magazine
stating “In 1970, 15% of all
American children were
living in single parent
homes.”

Can you tell what percent of
the children were not living
in single parent homes?

3. Visual
representation of a
percent as a
proportional part of
a whole.

Same as #2 above. If this circle represents all
the children in the United
States during 1970, about
how big a slice of it would
be 15%?

4. 100% means
“whole” or “all.”

Bottle of apple juice that
says “100% Juice.”

What does “100% Juice”
mean?

5. Use of 100% as the
invariable reference
point for percents.

Follow up question when
subject mentioned 100%
during the interview.

Why did you use 100%?
Could you have used
something else?

These five facets represent a somewhat different approach than that taken by
Lembke and Reys (1994) and Allinger and Payne (1986), whose research
focused on students’ knowledge of percent in an instructional context and thus
emphasized the mathematical foundations of percent. The present research
focused more on the knowledge that adults may have developed and bring to a
new educational setting, and less on computational, school-based knowledge,
which is less relevant in the case of adults who have been out of school for
some time.
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SHOPPING TASKS

The second part of the interview focused on students’ reasoning about
specific percents that they may encounter in an everyday shopping context.
This context was chosen on the assumption that it would be familiar to all
students, and that it can bring to the surface informal knowledge that students
may have developed or otherwise incorporated into nonschool contexts.
Students were shown advertising flyers containing percent statements such
as “Sale, 50% off” and were asked to explain their ideas of the meaning of
the highlighted percents. Questions that elicited students’ ideas of the
meaning of 50% and 25% are shown in Table 2 under the column titled
“Meaning of the percent.”

Table 2

Tasks With Benchmark Percents

Task type

Percent Meaning
of the

percent

Shopping
tasks

Visual tasks Written
computational

tasks

50% Here it says,
“50% off.”
Can you
explain
what 50%
means?

How much
would you
pay for $10
pants on sale
at 50% off?

What is 50% of 10?

Why is 50%
equal to ...?

The 10 people in the circle
will work on math during
the class: (10 out of 20
=?%)

10 is what % of 20?

25% Here it says
“25% off.”
Can you
explain
what 25%
means?

How much
would you
pay for an
$80 coat on
sale at 25%
off?

Why is 25%
equal to ...?

25% of the 20 students
want to take the GED test:
(25% of 20=)

What is 25% of 20?

Next, after students described their shopping practices, they were asked
to imagine being in a store and wanting to know, before approaching the
cashier, how much items on sale would cost. Students were shown drawings
of priced items and discount figures in percent (e.g., a drawing of pants with
a price tag stating “$10” and a sign saying, “Pants 50% off”); they were
asked to find the discounted prices mentally, or to approximate the answers if
they were otherwise unable to come to an answer. No written computations
were allowed in this part since students would be unlikely to use paper and
pencil while shopping. Students were asked to think aloud during the
process and to explain their reasoning. Questions that used 50% and 25% in
shopping contexts are shown in Table 2 under the column titled “Shopping
tasks.”
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VISUAL TASKS

Visual tasks were used to explore additional aspects of students’ reasoning
about percent. These tasks were designed to enable students to reason about
percent in a context that was different from the everyday, familiar encounter
(shopping) yet was not a school-20 stick figures (see Figure 1) and were asked
to assume that the figures represented 20 students in a class. In some tasks,
students were given a percent value and were asked to circle the corresponding
proportion of stick figures. For example, students were presented with the
diagram of 20 stick figures and the statement “25% of the students in this class
are planning to take the GED test” and were asked to circle the number of
people corresponding to 25%. In other tasks, students were shown the diagram
with a number of stick figures circled and were asked what percent of the 20
figures was circled. The questions about 50% and 25% used in this part are
shown in Table 2 under the column titled “Visual tasks.” Due to constraints on
interview length, mathematically equivalent questions were not asked in the
shopping and visual formats.

25% of the students in this class are planning to take the GED test.
Circle the people you think will tke the GED test.

Figure 1. Sample Visual Percent Task

WRITTEN COMPUTATIONAL TASKS

The written assessment included three arithmetic items similar in
mathematical structure to items in the interview. Two of the items used 50% and
one used 25%. These items are shown in Table 2, under the column titled
“Written computational tasks,” and are shown horizontally across from the
mathematically equivalent shopping or visual question.

CODING

Responses to interview tasks that involved explanations of meaning rather
than numerical values were categorized as “appropriate” or “inappropriate”; the
criteria for this identification differed for each question and are explained below.
Numerical responses were coded as “correct,” “in the ballpark” (within 10%
above or below the correct response for the shopping questions since such an
estimate might well be useful in that context), or “incorrect,” and the solution
strategies used were described and grouped together into categories. Since
students completed the written computational tasks in their class settings, no
observations or explanatory information were available about their responses,
and the responses were only coded as arithmetically correct or incorrect.
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RESULTS

KNOWLEDGE OF 100% AS THE BASIS OF THE PERCENT
SYSTEM

This section examines students’ knowledge of the five basic facets about
the percent system discussed above, all of which revolve around the notion
of using 100% as the basis for thinking about percent. While each of the five
questions presented to students was designed to elicit their knowledge about
a different facet, each question very often elicited responses related to other
facets as well. As students’ ideas about these five facets are all interrelated, a
discussion of students’ knowledge should take into account all answers
rather than single responses in isolation.

IDENTIFYING PERCENT AS LYING ON A 0-100 SCALE

Students were asked to interpret the statement, “This new test detects
cancer correctly in 90% of the cases,” which appeared in a newspaper
clipping shown to them. Almost all students (93%) demonstrated knowledge
(either on their own or after probing) that 90% should be evaluated in relation
to 100%, where 100% would be a perfect detection rate.

In the sample responses quoted below, two students’ conclusions about
the acceptability of a 90% success rate were different, yet both students
indicated that the relative magnitude of a percent value is judged based on its
proximity to 100%, and were thus scored as appropriate.

Steve: It’s a good test. Ninety percent is almost all cases. It’s close to
100%.

Laura: I wouldn’t depend on the test, 90% is not good enough for
me.

Interviewer: What would be perfect?
Laura: 100%.

The remaining 7% of the students provided inappropriate responses,
which did not mention 100% as a reference point for evaluating 90%, but
rather appeared to interpret 90 in absolute terms.

Sandy: It’s good because 90% is a high percentage.
Interviewer: What would be the highest?
Sandy: I don’t know.
Interviewer: How about 150%?
Sandy: That’s higher, that would be better.
Interviewer: What would be perfect?
Sandy: I don’t know.

RECOGNIZING THAT PERCENTAGES OF THE PARTS OF A “WHOLE”
ADD UP TO 100%

Students were presented with a statement based on data from the 1970
Census, “In 1970, 15% of all American children lived in single parent
homes,” and were asked if they could tell what percent of children were not
living in single parent homes. Most students (83%) responded immediately
with “85%” and indicated that they expected the two percents to complement
each other and sum to 100%.
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Of the 10 students (17%) who did not demonstrate understanding that the
sum of the percentages should be 100%, 6 stated that they could not tell what
percent of the children did not live in single parent homes because they did not
know the total number of people, suggesting they were having difficulty taking
advantage of the proportional nature of percent.

The other four students either guessed at answers or performed
inappropriate computations reflecting a “number-grabbing” strategy, in which
they attempted to compute with whatever numbers were available, even
including the year that had been mentioned as part of the question.

Susan: The rest of them, 15 times 1970. You don’t have the other
number, you don’t have the all, you don’t have the other people.
So put 1970 over 15, you have to estimate. Divide 15 into 1970.
Whatever is left over, I think 11%.

VISUAL REPRESENTATION OF A PERCENT AS A PART OF A WHOLE

In connection with the statement, “In 1970, 15% of all American children
lived in single parent homes,” students were presented with a circle (pie)
containing densely drawn dots, said to represent all the American children in
1970. Students were asked to shade a slice of the circle representing the 15% of
the children who lived in single parent homes.

About three quarters (72%) of the students shaded a section somewhere
between 10% and 20% of the circle. Most of these students divided the circle
into four quarters and shaded in approximately half of one of the quarters.
Some students divided the circle into 10 parts, identified each part as 10%, and
then shaded one and one half parts. Others mentally estimated and shaded
approximately 15% without first partitioning the circle into any series of equal
parts, but were able to explain why their estimates were reasonable. All of these
responses were scored as “appropriate” since they implied that the entire circle
represented 100% (and thus that 15% was a proportionally small section).

Of the seventeen students (28% of sample) whose responses were scored as
inappropriate, eight divided the circle into 15 equal parts. These students
implied that 15% meant one fifteenth, and they did not recognize the idea of
percent as a proportion based on 100. Several students indicated that 15% is “a
little bit” (which shows rudimentary understanding of the ordinal 0-100 scale)
but were unable to explain why this is so. The remaining students in this group
shaded different portions of the circle as 15%, and provided no indication, even
after probing, that for them the entire circle represented 100%.

KNOWING THAT 100% MEANS “WHOLE” OR “ALL”

To provide additional information about students’ understanding of 100%
as the basis of the percent system, students were asked to interpret the statement
“100% juice,” printed on a bottle of apple juice, which was shown during the
interview. In this context, 83% of the students stated that to them, 100% means
“all” or “wholly” juice.

Anna: It’s all juice, all apple juice.
Interviewer: Can there be anything else in there too?
Anna: No, there shouldn’t be.
Several of the students who stated that “100%” means “all” conveyed a

sense of a contradiction between the mathematical meaning of 100% (i.e., that
100% should mean “all”) and its actual meaning in the apple juice context (i.e.,
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showing awareness of the real-world use or misuse of percent, particularly
related to advertising).

April: It’s basically natural, all juice, it doesn’t have excess water and
other things, like when they say 10% juice. Nothing that makes it
taste of apple other than the apple itself.

Interviewer: So there’s nothing else but juice?
April: I guess, vitamins, like vitamin A. When it says 100% juice, it’s

just that kind of juice. I wouldn’t think there’s nothing else but
juice, but mainly juice. If it’s 100%, it may not be 100% all juice but
mainly all juice. For example, decaf coffee has some caffeine.

In contrast, 17% of the students responded that 100% either means “the
majority” of something, rather than “all” (first quote below) or else
represents an absolute quantity or amount that is not related to proportionality
(second quote below).

Katrina: More juice than whatever they use to make the juice. More of it
is natural; it contains less sugar than the rest of the drinks. . . . More
fruit juice in this bottle.

Interviewer: Can there be other ingredients in there too?
Katrina: Yes.

Tara: You’re going to be drinking 100% juice. There may be other
ingredients, but you would want to have at least that much, 100%. I
would also look at the other ingredients, sugar, sodium.

Interviewer: Do you mean the juice could be higher than 100% juice?
Tara: It could be. If it said 100%, I would think it would be at least

100% and I would buy it.
Interviewer: So it could say a higher number than 100%?
Tara: Yes. I’ve never seen one. If I did I would assume it was more

than 100%, if it added another type of apple, two different types of
apples.

USE OF 100% AS THE REFERENCE POINT FOR PERCENTS

To further explore students’ knowledge of the special and invariant use
of 100% as the basis for the percent system, students were asked to explain
why they referred to 100% in an earlier question (e.g., when deciding that
85% of the children were not living in single parent homes), and whether any
other percent could have been used instead. Only in responding to such a
direct probe were the students forced to justify their use of 100% as an
organizing principle of the percent system, rather than having this idea
inferred from their answers to other questions.

Thirty-one of the 60 students (52%) provided appropriate explanations
for their use of 100% by suggesting that 100% means a “whole” or “all of
something.”

Interviewer: Why did you use 100%?
Lois: A whole is 100%.
Interviewer: Is it always 100%?
Lois: More or less. It depends on if you’re dealing with numbers. Well,

yes, it’s always 100% because a whole is 100%.
Interviewer: Could you have used a number other than 100%?
Lois: No.
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Some of those who gave appropriate responses appeared to be crystallizing
or rethinking their ideas about percents even as they constructed their
responses, and they demonstrated that their understanding of 100% as the basis
for percent is still evolving. Others tied their thoughts about 100% to their life
experiences (e.g., with money) rather than to an abstract principle or a
mathematical convention.

Interviewer: Why did you use 100% [to compute the number of children
not living in single parent homes]?

Tracey: I always do it by 100, I could do it by 200 but you would have to
double everything. I didn’t try it by 200, so I don’t know if it would
work.

Interviewer: So you could have used 200%?
Tracey: I don’t know. You probably could, but it would be more work.

100% of 200 would still be 100%, 100% is everything, all of it. I
guess you can’t do it by 200%, maybe some people could do it.

Interviewer: Why did you use 100?
Dorothy: It all depends on how you’re breaking it down. You can use any

number for a whole: fifty fiftieths, four fourths.
Interviewer: And when you are dealing with percent?
Dorothy: It would have to be over 100, 200% could be a whole, 250%

couldn’t be a whole because that breaks the rhythm.
Interviewer: So which numbers can be a whole?
Dorothy: Zeros: 100, 200, 300.
Interviewer: As high as you want?
Dorothy: All depends on what type of money you’re dealing with. Got 10

million dollars (pause). No keep it at 100%, forget the 200%, etc. 100%
is a whole.

The other 29 students (48% of the sample) provided one of several
inappropriate responses. Fifteen of these students (25% of the sample) were
confident that 100% was the right number to use but were unable to articulate
reasons why that was so other than “Percent is always 100,” “It seems right,”
or “It’s in my head.” Five students were unsure why they chose 100%; they
indicated that other numbers could have been used instead, but were unsure of
what such numbers could be. Two students understood 100% as 100
individuals or cases, without acknowledging any proportional nature of percent.

Interviewer: Would you always use 100% [to evaluate 90% in “This new
test detects cancer correctly in 90% of the cases”]?

Theresa: Yes. In a way, you don’t know. It all depends on how many
cases they used. 90% is good out of 100% of the people. If you have
250, 90% is not good. It’s not half of 250 people. 125 would be half.

Interviewer: Do you mean if there were 250 people, then 125% would be
half?

Theresa: Yes.

Four students explained that they used 100% because it is “the highest
percent can go,” and invoked their experience of not encountering a percent
greater than 100 rather than a conceptual understanding of how the percent
system is structured.

Interviewer: Why did you say 100%?
Arlene: That’s as high as I think you can go with percentage. I never heard

200% off, 220% off. I never seen any number that’s more than 100%,
not in stores.

Interviewer: So 100% is the highest?
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Arlene: More or less. Unless you’re taking bigger numbers. If you want
a percent off of $100,000, (pause) doesn’t make sense. No, 100%
is the highest, no matter what amount of money.

Finally, three students explained that 100% was used because it is a
“round number”; they seemed to equate (and confuse) round numbers with
rounding of numbers, and did not provide any particular reason why 100
was used in dealing with percents.

Interviewer: Why did you use 100%?
Tamika: It’s a round number, a whole number. I was taught to use it,

you have to round something off and the number was always 100. .
. . The nearest 10; 100; 1000; 100,000—always rounded off.
They’re supposed to come out even.

Interviewer: So why did you use 100%?
Tamika: It was easier.
Interviewer: Could you have picked something else?
Tamika: I could have, 1000, or 1,000,000.
Interviewer: Numbers with zeros?
Tamika: They don’t necessarily have to be zeros. You can round off

numbers in between too. Even the remainder you can round off.

RESPONSE PATTERNS AND EDUCATIONAL ACHIEVEMENT

Tables 3 and 4 provide two different summary views of students’
knowledge of 100% as the basis of the percent system (as measured by the
five questions described above).

Table 3

Percentages of Appropriate Responses for Each Facet of Role of
100% as the Basis of the Percent System

Grade level

Facet 6th and
below

n=15

7th-8th

n=24

9th and
above

n=15

Unclassified

n=6

Total

n=60

Percents lie on a 0-100  scale 87% 96% 93% 100% 93%

Percentages of the parts of a
“whole” sum to 100%

80% 79% 100% 67% 83%

Visual representation of   percent as
proportional part of whole

67% 71% 67% 100% 72%

100% means “whole” or “all” 80% 83% 87% 83% 83%

Use of 100% as the reference point
for percents

40% 38% 80% 67% 52%

In Table 3, the percentage of students who responded appropriately to
each of the five questions is shown. Table 4 shows cumulative data across
these five questions. A discussion of performance in relation to educational
achievement continues later in the section titled, “Educational achievement
and performance patterns.”

Almost all students showed at least some familiarity with the percent
system, as indicated by the finding that most responded appropriately to at
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least three of the five questions (see Table 4). Those who were able to justify
their use of 100% (the fifth question listed in Table 3) were also likely to be
those who responded correctly to the other four questions, indicating a
familiarity with several basic facets of the percent system. Other than that, there
was no discernible pattern of errors; different facets were poorly understood by
different individuals, suggesting that many adults may have isolated intuitions
about percent that are not part of an elaborated knowledge structure.

Table 4

Percentage* of Students Within Grade Levels by Total Number of
Appropriate Responses to Questions About 100% as the Basis of the
Percent System

Grade level

Total number of
appropriate responses

6th and
below
n=15

7th-8th

n=24

9th and
above
n=15

Unclassified

n=6

Total

n=60

0  7%  0%  0%  0%  2%

1  0%  4%  0%  0%  2%

2 20%  4%  7%  0%  8%

3 13% 29% 13% 17% 20%

4 27% 46% 27% 50% 37%

5 33% 17% 53% 33% 32%

*Note: Percentages are calculated within each grade level. Columns may not sum
to 100% due to rounding.

PERFORMANCE ON TASKS INVOLVING 50%

Certain percents, such as 50%, appear frequently in everyday life and are
also useful as benchmark percents for estimation or mental math tasks. An
understanding of the meaning of 50% and an ability to apply that understanding
flexibly are foundation blocks of a student’s ability to deal with a variety of
percent-laden situations. To explore students’ knowledge and skills relating to
50%, five tasks were presented: interpretation of a statement involving 50% (no
computation required), mental computation with 50%, identification of a given
portion of a visual array as 50%, and “paper and pencil” computation of two
school-like arithmetic tasks mathematically equivalent to the earlier tasks (see
Table 2).
The first two questions were couched in the context of department store
shopping. All students stated that they had frequently seen the type of local
department store advertising flyer that they were being shown. The visualization
question was accompanied by a diagram (as shown in Figure 1) of 20 stick
figures that were described as representing 20 people in an adult education
class. All students indicated that they understood the diagram. The diagram of
stick figures was used rather than shaded areas of circles or squares (which are
common in research on rational numbers) because the stick figures were less
abstract and could more obviously represent a familiar, real situation to the
students. The percentages of correct responses to the 50% questions for
students grouped by grade level are shown in Table 5.
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Table 5

Percentages of Appropriate or Correct Responses to Questions
About 50%

Grade level

Question type Question
asked

6th and
below

n=15

7th-8th

n=24

9th and
above

n=15

Unclassified

n=6

Total

n=60

Meaning What does
50% mean?

100% 100% 100% 100% 100%

Shopping What is
50% off
$10?

100% 92% 93% 83% 93%

Written compu-
tation

What is
50% of 10?

67% 79% 87% 67% 77%

Visual 10 is what
% of 20?

73% 88% 100% 83% 87%

Written compu-
tation

10 is what
% of 20?

27% 33% 60% 17% 37%

EXPLAINING THE MEANING OF 5 0 %

Students were presented with an advertising flyer stating “50% off” and
asked what 50% means in this context. All 60 students explained 50% as
“one half.” When asked to justify why 50% is the same as one half, 46% of
the students explained that 50% is one half of 100% or that 50 is one half of
100. Forty-one percent of the students used a money metaphor to explain that
50% is one half: “50 cents is one half of a dollar” or “$50 is one half of
$100.” The remaining 13% were confident that 50% meant one half but were
unable to state any reason or justification for this other than “I just think it
is.”

MENTAL MATH AND WRITTEN COMPUTATION WITH 50%

Almost all students (93%) were able to state correctly how much would
have to be paid if a $10 pair of pants were on sale for “50% off.” Practically
all of them first converted 50% to its fractional equivalent, one half; stated
that half of $10 is $5; and then took $5 from $10 to yield their answer. The
remaining 4 students (5%) were unable to generate any ideas on how they
could arrive at an answer other than by guessing. In contrast, 77% of all
students responded correctly to the mathematically equivalent question on the
written assessment (50% x 10=?).

VISUAL REPRESENTATION AND WRITTEN COMPUTATION WITH 50%

When asked what percent of the array of 20 stick figures were enclosed
in a circle containing 10 figures, 87% of the students responded correctly,
and all but one explained that because one half of the stick figures were
inside the circle, the circle contained 50% of the figures. One person
established that each figure represented 5% through trial and error guessing,
and then counted by 5s to 50.
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The 13% who did not answer correctly either named the number of figures
within the circle as the percent or guessed at an answer without being able to
explain a rationale for the guess.

In contrast, only 37% of all 60 students responded correctly to a
mathematically equivalent computational question, “10 is what % of 20?” The
large gap in solution rates between the written and visual forms of the question
was apparent for students in all grade-level groups. Of the 15 students in the
highest grade-level group, 100% responded correctly to the visual task but only
60% solved the equivalent written problem; even larger percentage differentials
were found for the middle and lowest grade-level groups.

RESPONSE PATTERNS ACROSS TASKS INVOLVING 5 0 %

All students answered at least one question appropriately. Twenty students
(33%) responded appropriately to all five questions using 50%.

Thirty students (50%) understood the meaning of 50% and were able to
apply their understanding of 50% in a shopping context and in a visual task, yet
they failed to solve either one or two mathematically equivalent written
computational problems (“What is 50% of 10?” and “10 is what % of 20?”).
Nine students failed on both computational problems, and 21 students failed to
solve only the second question. These two forms of percent problems (“find the
percentage quantity” vs. “find the percent”) are often presented in school
settings as completely different tasks requiring different algorithms for solution
rather than as complementary forms of the same concept. Possibly, the students
knew the algorithm for “finding the percentage given the percent and base”
(which is more familiar and generally taught first) but not the “find the percent”
algorithm. Perhaps the test-like environment and an expectation that the problem
had to be solved using a computational algorithm prevented students with
limited knowledge of percent algorithms from assuming that they could create a
mental (or visual) model of the test item, and thus answer the questions without
formal computational procedures.

The remaining 10 students (17%) displayed various patterns of responses to
questions involving 50%. Included in this group were two students who were
able to solve one written computational task (50% x 10=?) but were unable to
solve either the equivalent shopping question or the visual task.

PERFORMANCE ON TASKS INVOLVING 25%

We expected relatively high performance levels on tasks involving 25%, not
only because 25% appears frequently in daily life, but also because it can be
expressed as a familiar fraction (“quarter”) and it is numerically related to 50%.
However, when students were presented with shopping, visual, and
computational tasks similar to those involving 50%, knowledge and
performance were much more limited. Table 6 shows percentages of correct
responses grouped by grade level.
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Table 6

Percentages of Appropriate or Correct Responses
(Correct+Ballpark) to Questions About 25%

Grade level

Question
type

Mathematical
structure

6th and
below
n=15

7th-
8th

n=24

9th and
above
n=15

Unclassified
n=6

Total
n=60

Meaning What does
25% mean?

53% 83% 93% 67% 77%

Shopping What is 25%
off $80?

13%
(40%)

33%
(50%)

40%
(73%)

33%
(83%)

30%
(57%)

Visual What is 25%
of 20?

47% 63% 80% 83% 65%

Written
computation

What is 25%
of 20?

27% 58% 53% 33% 47%

EXPLAINING THE MEANING OF 2 5 %

When asked to explain what 25% means in a department store flyer
stating, “25% off sale,” 77% of the students provided appropriate responses
generally by referring to fractions (one fourth or one quarter), money (25
cents off a dollar), or a combination of fractions and money. (“One quarter”
was a difficult response to classify since the students could not always decide
if they meant a fractional part, the name of a coin, or both.)

Of the 14 (23%) inappropriate responses, 7 students could not provide
any explanation for what 25% means. Seven other students named
inappropriate fractions or numbers without being able to explain in
mathematical terms why that fraction or number would be equal to 25%, as is
illustrated by the following quotes.

Interviewer: How would you explain (25% off) to someone who
doesn’t know anything about percents?

Charlene: The price is going to be lower, one fifth.
Interviewer: Why is 25% equal to one fifth?
Charlene: From listening to my teacher.

Maria: I would ask my mom. Some would come off but I don’t know
how much. I guess about $5.

Interviewer: Why $5?
Maria: Just a guess. See the 5 (in 25%), I think $5 off. Could you

divide the 25 into the price? Could that be how much money?

MENTAL MATH WITH 25%

Thirty percent of the students were able to accurately compute mentally
the sale price of an $80 coat on sale for “25% off.” An additional 27%
arrived at responses that were within 10% above or below the correct
response (ballpark responses) although they did not necessarily use
mathematically meaningful strategies. Four strategies were identified as
appropriate because they each would lead, if utilized without computational
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errors, to a correct solution. Fifty-six percent of the students used one of these
four appropriate strategies to solve the “25% off of $80” problem.
• Benchmark percent strategy (31% of all students): The student uses “easy to

compute” percent (50%) as an intermediate step in the solution process.
(Lisa: 50% of 80 is $40. Half of that is 20, so I’m breaking my $80 into
fourths, that’s how I got the 25% off.)

• Fraction strategy (20% of all students): The student changes 25% to the
fraction one-fourth and then divides $80 by 4.

• Algorithm strategy (3% of all students): The student transforms 25% into a
decimal, .25, and then mentally multiplies by 80.

• Amount per unit strategy (2% of all students): The student identifies 25% as
25 cents out of one dollar. Then the student adds twenty-five cents 80 times.
This strategy may be one that is particularly suggested by a monetary
situation since a percentage of a dollar can be easily transformed into a certain
number of cents, which is a meaningful entity.
Forty-four percent of the students used strategies such as the following,

which would not necessarily generate correct solutions to percent problems.
• Using the percent as a number strategy (15% of all students): The student

ignored the fact that 25% was a percent and used 25 as a number, subtracting
it from $80 to get an answer of $55.

• Partial algorithm strategy (5% of all students): The student used a
combination of portions of a learned computational procedure and other
inappropriate procedures. (Depending on the numbers involved, this strategy
may result in a reasonable, in-the-ballpark solution.) (Terry: It would be
about $64. About $16.50 off. I multiplied the 2 with the 80 and got 16. The
5, I just threw an extra zero on it (for the fifty cents).)

• Proportional size strategy (5% of all students): The student identified 25% as
“pretty small” or “not too much,” and then took an estimated proportional
amount from the $80. This strategy suggests an appreciation for the
proportional nature of percent and with skill can yield a reasonable estimate,
but the students did not express a set of constraints to guide their solutions.
(Doris: I’m estimating, a few dollars off. Twenty-five percent, about 8 or 9
dollars off, give or take a dollar or a few.)

• Guessing strategy (18% of all students): The student chose a number “at
random” for a solution.

VISUAL REPRESENTATION AND WRITTEN COMPUTATION WITH 25%

Sixty-five percent of the students were able to circle 25% of a pictorial array
of 20 stick figures most often by using appropriate, but sometimes
inappropriate, strategies. Strategies that led to (or, had they been used without
computational errors, could have led to) correct solutions were generally similar
to those used in the mental math shopping task described above.
• Benchmark strategy (27% of all students),
• Fraction strategy (38% of all students),
• Algorithm strategy (2% of all students), and
• Partition 100% strategy (5% of all students): The student identified the entire

array as 100%, determined (often through trial and error) the percent that
each of the individual figures represented (5% in this case), then, using the
figures as “counters,” repetitively added that amount until the target percent
was reached.
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The inappropriate strategies included:
• Percent as a number strategy (5% of all students),
• Proportional size strategy (7% of all students), and
• Guessing strategy (17% of all students).

The partition strategy would have been unwieldy for the shopping task
using $80, but was reasonable for the visual task given the task variables,
which included the number 20 (evenly divisible into 100%), discrete objects
rather than continuous quantities (money), and the availability of the figures
as counters. The incidence of using the percent as a number (transforming
25% into the number “25”) was lower for the visual problem with 20 items
than for the mental math problem that used $80. The difference in the
numbers used in the problem may have discouraged the use of this strategy
since it would seem impossible to separate out “25” of the 20 stick figures
while it was not impossible to deduct 25 from $80 to find a sale price.

While 39 students were able to answer the “25% of 20 people” visual
task correctly, only 19 of them were also able to solve the mathematically
equivalent written computational task “What is 25% of 20?”. It is possible
that the students approached the written assessment with the belief that
because the assessment resembled a “school task,” only school-like strategies
such as algorithmic computation would be appropriate and therefore did not
consider using informal or intuitive strategies.

RESPONSE PATTERNS ACROSS TASKS INVOLVING 2 5 %

Of the 60 interviewees, 12 students (20%) responded appropriately to all
four different questions involving 25%. Seven people (12%) were unable to
respond correctly to any of the questions. The remaining 41 students (68%)
exhibited 5 patterns of responses, which are described below.
a. Success with all tasks except “25% off of $80.” Seven students (12%)

were able to appropriately explain the meaning of 25%, solve the visual
task, and answer the written computational problem, yet were unable to
compute mentally the cost of an $80 coat on sale for 25% off (a real-life
task). Some of these students simply subtracted 25 from 80, while some
tried to compute 25% of 80 by converting to a decimal notation and then
using a multiplication algorithm, but found the procedure awkward
without paper and pencil. One student first tried the percentage amount per
unit strategy which is suggested by the monetary nature of the problem,
then seemed to move towards finding half of a half (benchmark strategy),
but was unable to get through the process.

Angela: Taking 25 cents off each dollar and add up what’s left so 75
cents eighty times. (pause) I can’t.

Interviewer: Can you make a guess?
Angela: Cut that 80 in half, that’s $40. Two 25%s is 50 and half off of

80 is 40. So $40.

However, when attempting the visual problem (circle 25% of 20 stick
figures), this student was able to complete the process of finding half of a
half, probably by relying on the diagram to keep track of the quantities which
were too much to keep in working memory while solving the shopping
problem.

Angela: Twenty-five minus 20 is 5%, no. (Pause) Here’s half, half
again. So 5 of them will take it (the GED). The whole picture, split in
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half, 10 and 10, split it again.
Interviewer: Why?
Angela: You’re not asking for half. Four twenty-five percents make 100.

b. Success with all tasks except the computational question. Six students (10%
of all students) responded appropriately to all questions except the written
computational question (“25% x 20=?”). These students demonstrated
knowledge of the meaning of 25% and an ability to deal with 25% in
everyday environments, but were less competent when dealing with context-
free problems.

c. Success only with visual task. Fourteen students (23% of all students) were
able to solve the visual problem, but not the mathematically equivalent
written assessment problem, nor the shopping problem. These students have
some sense of the meaning of 25% as one fourth, but cannot operationalize
that knowledge in any way other than by visually dividing a quantity into 4
parts, as illustrated by the two quotes below.

Interviewer: 25% of the (20) people want to take the GED test.
Michelle: Only taking off one quarter of it, by counting by 5. Only got 20,

a quarter off of the whole thing. 5, just by looking at it.

Interviewer: Could you figure out how much money this $80 coat costs on
sale?

Michelle: $72.50. I divided 25 by 80, leave me with 72 remainder 50.
Interviewer: Why did you decide to do that?
Michelle: Just by looking at it and taking a guess. I averaged it out. I know

that 25% is one quarter of that price. One quarter off of $80 is $75. $80
taking one quarter off, only about 5 bucks off of it, so $75.

d. Success with computational task but not the shopping or visual tasks. Nine
adults (15% of all students) provided appropriate answers to the written
assessment question, but not the mental math shopping task nor the
mathematically equivalent visual problem. Five of these students explained
the meaning of 25% appropriately. Apparently, these students have
developed computational skills, but lack a sense of the meaning behind the
computations; this hinders them from making sense of situations where the
numbers involved are not set out in standard, school-based form.
Interviewer: Could you figure out how much money this $80 coat costs on

sale?
Tara: 25 over 100 probably, probably 80 over 100, cross multiply. I could

multiply quickly, but I don’t have paper. Use 100 amount, take 25%,
leave me $75, from that I would need 5 more to make 80. Take another
$5 off and come up with 30. Take 25 from 80 and another 5, take 30
from 80, about $50.

e. Does not operationalize conceptual understanding of 25%. Five students (8%
of all students) provided an appropriate response for the meaning of 25% but
did not answer the shopping, visual, or computational tasks involving 25%
correctly. Apparently, their intuitions of the meaning of 25% are fragile and
thus not really part of an integrated or useful system. The series of responses
given by one of these students demonstrates some appropriate ideas that
become confused easily.
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Interviewer: Here it says “25% off.” Can you explain what the 25%
means?

Theresa: One fourth off of the price.
Interviewer: Why is 25% equal to one fourth?
Theresa: Four 25s equals 100 and one 25 is one fourth of 100.
Interviewer: Why 100?
Theresa: Just thinking in quarters or 25s. Or $25. 4 of them equal to

$100. 25 out of 100 is taking one fourth of the 100.

Shopping problem
Interviewer: Could you figure out how much money this $80 coat costs

on sale (with 25% off)?
Theresa: $40, half of, 40 and 40 is 80. Split the 80 in half. Half of 50 is

25, so half of 80 is 40.
Interviewer: Why 50?
Theresa: I broke 80 in half, so I broke the 25 in half. Half of 50 is 25.

Visual problem involving 25%
Interviewer: 25% of the (20) people want to take the GED test.
Theresa: (Circling 10 students), this is one fourth of the students.

Visual problem involving 50%
Interviewer: The 10 people in the circle (out of 20) will work on math

today. What percent of the class is that?
Theresa: One half of the class, so 25%. Half of the class is taking math

and half of the class is not.
(Theresa did not respond to the written computational 25% question; she

solved written questions involving 50% and other percent values by
multiplying the percent by the base number, disregarding decimal
points and sometimes losing a zero.)

GENERAL TRENDS ACROSS TASKS INVOLVING BASIC
PERCENT IDEAS, 50% AND 2 5 %

In all, students were presented with 14 tasks in the interview and written
assessment: five tasks concerning knowledge of 100%; five tasks involving
50%; and four tasks involving 25%. Table 7 summarizes performances
across these three task categories, and shows the percentage of students who
performed successfully (using a criterion of responding appropriately to all
or all but one of the tasks within a category (i.e., 4 out of 5 tasks involving
100%, 4 out of 5 tasks involving 50%, or 3 out of 4 tasks involving 25%).

Table 7

Percentages of Students Who Had No More Than One
Inappropriate or Incorrect Response for Each Category of Percent
Questions

Grade level

Categories Total
number of
questions

6th and
below
n=15

7th-8th

n=24

9th and
above
n=15

Unclassified

n=6

Total

n=60

Knowledge of 100% 5 60% 63% 80% 83% 68%

50% tasks 5 53% 71% 93% 67% 72%

25% tasks 4 13% 46% 53% 50% 40%
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The success rates in the categories of “Knowledge of 100%” and “50%
tasks” are quite similar. Of the 60 students, 41 (68%) were successful with
“100% questions” and 43 students (72%) were successful with “50% tasks.”
When individual performance across these two categories of tasks is
considered, 55% of the students were successful in both categories and 15%
were successful in neither category. The remaining 30% of the students were
successful in one category but not the other, with about half successful in each
category.

The finding that 30% of the students were successful in one category but
not the other suggests that the ideas targeted by the two categories of questions
may not inform each other, meaning that a demonstrated knowledge of one set
of ideas or skills does not necessarily lead to knowledge of the other; each body
of information or skills is attainable in isolation for these students. Apparently,
some students have some knowledge of the different facets of 100%, yet this
knowledge does not help them sufficiently to make sense of situations in which
50% appears. Other students realize that 50% is equivalent to one half and are
able to apply that knowledge in a useful way, yet do not have an elaborated
conceptualization of a system based on 100% within which 50% has meaning.
Perhaps the knowledge of the meaning and application of 50% is not
mathematically based but was developed through personal experiences and
encountering the common usage of percent words in everyday language in
which the term “50%” is treated as a word synonymous with “half” rather than
as part of a mathematical system.

Table 7 shows that the tasks using 25% were more difficult for students in
all groups than were the 50% tasks. Yet, 24 students (40%) were successful
with at least three of the four 25% tasks, including 2 students from the group
with the lowest scores on the standardized tests. The successful students were
found to be those who also demonstrated proficiency on the “Knowledge of
100%” questions (only 1 of the 24 students responded appropriately to less than
four of the five questions) and on the tasks using 50% (only 2 of the 24
students were not successful here and all of their missed questions were written
computations). These data suggest that those who were competent in
comprehending and using 25% also demonstrated both a knowledge of the role
of 100% within the percent system and the ability to use at least one other
percent (50%) in a meaningful way.

On the other hand, demonstrated knowledge of the facets of 100% does not
necessarily imply an ability to activate that knowledge across a variety of tasks
using 25% (for 18 students), nor does an ability to work with 50% necessarily
transfer to an ability to work with 25% (for 21 students). Knowledge of 100%
and the ability to use 50% appropriately, to the extent these constructs were
measured, is apparently not always sufficient for students to be in a position to
generalize their knowledge to 25%.

As expected, the highest grade-level group was the most successful with the
various percent tasks and displayed a broad knowledge of the role of 100% as
the basis of the percent system. However, even within this group, there was
evidence of gaps in understanding as well as some limitations on how and when
knowledge was applied. Less expected was the ability of many in the lowest
grade-level group to respond successfully to many of the questions, particularly
those involving 100%. Half of those in the lowest grade group were able to
respond appropriately to either 4 or 5 of the questions regarding basic ideas
about the role of 100% in the percent system. Many of the adult students who
are classified as needing much remedial mathematics education (based on
existing testing practices), appear to have some knowledge of the percent
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system and/or some familiarity with 50%; this knowledge, however, seems
to be limited to informal ideas that are not integrated within an elaborated
framework of percent knowledge and that therefore do not inform activities
involving 25%.

DISCUSSION

When adults reenter an educational setting, they come to instruction with
preexisting intuitions and knowledge regarding mathematical concepts and
operations, based on their prior formal learning as well as on informal or
work-related experiences they may have had. The formal knowledge that
adult students bring with them may have been greatly modified or enhanced
since it was acquired in school; also, it may not necessarily be part of an
elaborated cognitive structure, but rather have been developed within specific
cultural or everyday practices and generally remain tied to those contexts
(Bishop, 1992; Lave, Murtaugh, & de la Rocha, 1984; Nunes et al., 1993).

Clarification of the nature of adults’ preexisting knowledge becomes
educationally important if we assume that adults construct new knowledge in
part on the basis of their (pre) existing knowledge. It is often argued that the
preexisting knowledge students bring with them to the classroom can
facilitate, but also hinder, later development of mathematical knowledge and
skills (Leinhardt, 1988). However, few detailed descriptions of the
mathematical knowledge of adult students in the United States have been
published. This study focused on clarifying the nature of adults’ informal
and formal knowledge about percent, a concept having wide application in
home, work, and citizenship life contexts of adults. Research on adults’
preexisting knowledge about percent would help illuminate issues in
assessment and accommodation during classroom instruction on percent. By
looking at adults’ patterns of responses to percent questions, we establish the
breadth, depth, and range of their preexisting knowledge and describe the
environment into which new instruction must be integrated.

RESPONSE PATTERNS

Virtually all of the adults who participated in this study, including those
with low prior educational achievement or “grade level” as determined by
standardized test scores, demonstrated some conceptual understanding of
percent upon entering their programs. However, response patterns to
explanatory, shopping, visual, and computational tasks varied considerably,
both within and across students. Only six students (10%) responded
appropriately to all tasks, even though these tasks involved percent values
(100%, 50%, 25%) that many educators would consider simple and that we
might expect adults to understand given that they have to deal with such
percent values almost daily.

Students classified at the higher grade levels showed stronger percent-
related knowledge and skills than students classified at lower grade levels.
Such a performance difference is not surprising and could be expected, in
part because performance on both program-administered tests and the written
assessments used in this study are determined to some extent by the same
factors, such as knowledge of school-taught computational algorithms or
test-wiseness.

While students at the higher grade levels performed better as a group,
many of them also showed gaps in their knowledge of percent, whether in
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knowledge of 100%, in informal mental math, or in computation. At the same
time, reasonable performance on some tasks was also found among a sizable,
though smaller, group of students classified in the lowest grade level (6th and
below). Between one third and one half of all students (depending on which
percent task was used) performed better on mental and visual tasks than on
mathematically equivalent written computational tasks. A smaller group did
better on computational tasks (probably by using school-based algorithms) than
on mental or visual tasks that required more conceptual understanding and
flexible problem-solving strategies.

KNOWLEDGE ABOUT THE PERCENT SYSTEM

The basic principle underlying the percent system, that proportions can be
expressed as quantities in relation to a standard number (100), appeared familiar
in at least one context to nearly all participating students (who have not yet
studied about percent in their programs). However, students’ knowledge of
100% was not robust; several students who, in one context, appeared to
understand the principle that percents are interpreted in relation to a 100-unit
system nevertheless became hesitant or unsure about it in other contexts.
Lembke and Reys (1994) reported a related finding: eleventh-grade students
showed less confidence in 100 as the basis for percent than did younger
students, even though the older students had the benefit of more formal
instruction in percents.

For many of the students in this study, “100%” appeared as a convenient,
commonly used, round number which, in at least some contexts, did not
specifically imply a whole that is always divisible into 100 parts. Some
students’ interpretations of “100% apple juice,” for example, were along verbal
rather than mathematical lines and were incompatible with statements that they
made about the meaning of 100% in other contexts. Similarly, while most
students had little or no difficulty interpreting the term “50%” as “half” and
many performed mental computations with 50% without errors, some were
unable to give a mathematical justification for why 50% is equal to half.

We expected that most students who know that 50% is a “half” would also
realize that 25% is “half of a half,” but this was not the case. Performance on
tasks involving 25% was markedly lower than on tasks involving 50%. Many
students identified 25% as “one fourth,” or invoked explanations couched in
their experience with the American monetary system (e.g., “25% is equal to a
quarter because there are four quarters in a dollar”); they often did not connect
this knowledge of facts about fractions or money to the knowledge of the
percent system that they may have demonstrated on other tasks.

This pattern of results gives rise to the hypothesis that many adults who
come to literacy programs may have developed certain verbal associations
involving percents through repeated encounters with percent terms within
everyday discourse (e.g., “I feel 100%,” “100% natural”). As a result, they
have not fully grasped the mathematical principle underlying the meaning of
such terms in each specific context and across different contexts.

The teaching and learning challenges caused by the existence of both
everyday and mathematical meanings for terms used in the mathematics
classroom have been the focus of previous work (e.g., Laborde, 1990). The
case usually made is that students (or teachers) apply a legitimate everyday
meaning of a term instead of a mathematical meaning, or vice versa, causing
confusion in classroom communication and disrupting understanding. This
study showed a related but different phenomenon: students associate 100% with
“all,” “50%” with “half,” or “25%” with “quarter,” but may not fully
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understand the mathematical relationship between 100% and 50%, or
between 50% and 25%. Each term may gain an idiosyncratic meaning for
some students, based on the context in which it was encountered. Under
such circumstances, uneven performance on different tasks, of the kind
observed in this study, is quite possible.

IMPLICATIONS FOR INSTRUCTIONAL PRACTICE

Adult mathematics instruction in percents aims to help students develop
the knowledge and skills that will be useful in a variety of contexts, both
within and outside of the learning environment. Since adult students already
function in the real world, new learning should enhance or improve their
existing numeracy practices as well as enrich their understanding of the
mathematical foundation that supports these practices. Effective instruction
requires attention to and analysis of existing knowledge and practices.

CONTENT OF INSTRUCTION

As Resnick (1986) and others (e.g., DeVault, 1991) have pointed out,
informal knowledge, regardless of its degree of correctness and usefulness,
is self-evident, obvious, and easily accessible to the individual holding it,
and is embedded in the everyday practices in which it develops. Nunes et al.
(1993) observed that knowledge developed in out-of-school contexts is less
accessible to reflection (i.e., its holder does not have reason to understand
the mathematical generalities that underlie it). Therefore, instruction of adult
students should encourage them to reexamine the meanings that they attach to
familiar terms, helping them to see the mathematics within and underlying
these terms while promoting the development of habits of reflecting on the
mathematical implications of their everyday practices.

Gal (1993) has noted that professional development resources for adult
educators often do not acknowledge the potential influence of learners’
informal mathematical knowledge on the teaching-learning process.
Textbooks and workbooks aimed at the adult education market usually focus
on developing students’ computational skills, and offer few opportunities for
students to connect classroom exercises with their out-of-school knowledge
and practices. Many textbooks present the study of percent as an extension of
the study of fractions and decimals. This approach leads to an emphasis on
the mechanics of percent-related calculations, or on converting between
percents, fractions, and decimals, rather than also on (a) developing an
intuitive “feel” for the ordinal properties or meaning of percent (e.g., that
90% is “pretty close” to 100%), (b) developing a robust understanding of the
meaning of percent in multiple contexts, and (c) developing interpretive skills
appropriate for percent-laden everyday contexts where computation is not
required.

Interpretive skills are seldom emphasized in textbooks or in professional
development resources for teachers (Gal, 1993), even though adults’
encounters with percents (e.g., in newspapers or financial documents) so
often require comprehension and sense-making rather than computation. Our
current study shows that many students can make appropriate interpretations
of some percent statements, even when their formal or mental computation
skills are lacking. Continued development of interpretive skills (including
students’ mathematical vocabulary and oral skills) may require better
integration of literacy and numeracy instruction, including the use of
everyday reading materials that mention percent (e.g., newspapers), rather
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than expecting interpretive skills to develop informally as a by-product of
attention to decontextualized computational skills.

USING ASSESSMENTS TO INFORM INSTRUCTION

Standardized tests such as the TABE or ABLE were used by all the
programs that participated in this study; they are being used by most adult
education programs in the United States (Gal & Schuh, 1994) to evaluate
students’ mathematical skills. The discussion above suggests that sole reliance
on written assessments can provide incomplete or distorted estimates of
students’ pre-instruction knowledge of percents (and other mathematical skills),
and misinform decisions about starting points for instruction (Streefland & van
den Heuvel-Panhuizen, 1992).

Students’ true knowledge of percent may at times be masked by ambiguities
caused by their ability to employ convincingly percent terms based on their
colloquial, non-mathematical use of such terms outside the classroom. This may
cause teachers to overestimate students’ knowledge, leading to erroneous
instructional decisions. Assessment of percent-related (and other numeracy)
skills either at the onset or during instruction, should therefore be enhanced by
including open-ended, realistic performance tasks or simple simulations, which
would aim to elicit students’ informal as well as formal knowledge. Care must
be taken to evaluate not only responses to questions involving familiar
benchmark percents, such as 50% or 25%, but also involving less familiar
percents (e.g., 15%, 7%, 1%, 150%). These percents are less likely to trigger
everyday verbal associations that may displace mathematical meaning for the
student or suggest an inaccurate assessment to the instructor.

The difficulties many students displayed in explaining their thinking about
percent raise doubts about the appropriateness of using self-assessments as a
diagnostic tool; such assessments are currently used by some adult literacy
programs in the United States during an intake process (Gal & Schuh, 1994).
Students may be unaware of the patchy or superficial nature of their own
knowledge of percents and, being (mis)led by their familiarity with context-
specific applications of percent, may overestimate their knowledge and skills.

CONCLUSIONS

An increasing number of mathematics educators argue that instruction will
be most effective if teachers acknowledge and build upon intuitions and
informal understanding that students bring to the classroom (Lacampagne,
1993). This study provided examples of strengths and weaknesses in adult
students’ pre-instruction knowledge of percents; adult educators should be
cognizant of this situation when planning instruction or when interacting with
students. Our findings further suggest that the learning of mathematics too often
occurs in isolation from its applications, and many functional uses of numeracy
skills go unrecognized and unsupported in the mathematics classroom. Both
practitioners and researchers should continue to explore effective methods for
ensuring that students’ classroom-based skills inform their everyday
quantitative practices and interpretive skills, and vice versa.

The knowledge that teachers may glean about students’ informal and formal
skills regarding percent (and other mathematical subjects) is of limited value
unless teachers make use of it in their instruction. Adult educators are pressured
by the need to prepare many students for passing tests (e.g., GED) and by the
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need to work with students within the same class who have a variety of
abilities and backgrounds. Under such circumstances, many educators may
find it difficult to assess and accommodate students’ preexisting knowledge.
(A similar situation may exist in K-12 education. Leinhardt (1988), for
example, describes a case of master mathematics teachers who ignore
elementary school students’ informal knowledge.)

Improving methods for assessing the full range of students’ preexisting
mathematical knowledge is only a first step on the way to improving practice.
This study showed that complex and diverse profiles of student knowledge
of percent do exist. Professional development efforts should therefore
encourage educators to consider the specific ways in which they can adapt
their instruction, depending on the results of improved assessments.

Modification of the teaching-learning process by taking into account adult
students’ prior knowledge will face many challenges. The implementation of
a new teaching perspective has been shown to involve a lengthy but
worthwhile experimentation process by teachers (Leonelli, Merson, &
Schmitt, 1994). Educational organizations must be willing to support
teachers as they explore new instructional and assessment practices. Just as
our understanding of adults’ mathematical knowledge and learning is
evolving, educational practice should also continually evolve to ensure the
most effective and meaningful educational experiences for adult students.
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