$\begin{array}{c} P(h e) \\ P(e h) \\ P(e \sim h) \end{array}$	PROBABILITY: CLASSICAL AND BAYESIAN
	Colloquium University of Northern Iowa December 14, 1998
	MILO SCHIELD
	Augsburg College www.augsburg.edu/ppages/schield schield@augsburg.edu

$\begin{array}{c} P(h e) \\ P(e h) \\ P(e \sim h) \end{array}$	United on Probability Axioms
	$0 \ge 0$ for all a in domain of P
3. P(a	= 1 if t is a tautology (b) = P(a) + P(b)
-	b and a∨b are all in domain of P if a and b are mutually exclusive
4. $P(h e) = P(h \& e)/P(e)$	

LR = Likelihood Ratio = P(e|~h)/P(e|h) P(e) = P(e|h)P(h) + P(e|~h)P(~h)

P(h|e) Probability: P(e|h) Probability: P(e|~h) Classical versus Bayesian

Classical probability is *objective*:

- expresses fundamental laws regarding the assignment of <u>objective</u> physical probabilities to events in the outcome space of stochastic experiments
- independent of our feelings
- a property of the future: not of the past

P(h|e) P(e|h) Probability: P(e|~h) Classical versus Bayesian

Bayesian probability is <u>epistemic</u> -based on our context of knowledge

- expresses numeric degrees of uncertainty
- measures our strength of belief
- can be applied to the truth of propositions

P(h|e) **Probability:** P(e|h) **Classical versus Bayesian** P(e|~h)

12/14/98 Page 7

- Classical (Purely objective) Hypothesis testing with p-values Confidence that fixed parameter is in a range
- Bayesian strength of belief No hypothesis testing; no p-values Probability fixed parameter is in fixed range

P(h|e) **Teaching Bayesian: Yes!** P(e|h) **Realistic approach** P(e|~h)

12/14/98 Page 8

"...differences of opinion are the norm in science and an approach [Bayesian] that explicitly recognizes such differences is *realistic.*" [Statistics: A Bayesian Perspective by Berry]

"The Bayesian approach is the only one capable of representing faithfully the basic principles of scientific reasoning." [Scientific Reasoning by Howson and Urbach]

P(h|e) **Teaching Bayesian: No!** P(e|h) "at best, premature" P(e|~h)

"Surveys of the statistical methods actually in use suggest that Bayesian techniques are little used.

Bayesians have not yet agreed on standard approaches to standard problems settings.

Bayesian reasoning requires a grasp of conditional probability, a concept confusing to beginners.

Finally, an emphasis on Bayesian inference might well impede the trend toward experience with real data ... " David Moore, 1997

Page 10 P(h|e) "Bayesian Interpretation of P(e|h) **Classical Hypothesis Tests**" P(e|~h)

- Combines classical hypothesis test with Bayesian strength of belief.
- If prior belief about truth of null is 50%, P(alternate is false|reject null) = p-value
- Objectively determines prior strength of belief necessary to achieve a 95% probability that the alternate is true.

Milo Schield, 1995 ASA JSM

P(h|e) "Bayesian Interpretation P(e|h) of Classical Confidence" P(e|~h)

Interprets classical confidence as a Bayesian strength of belief.

One should be indifferent in betting on

- whether next ball is red (given 95% chance)
- whether a particular 95% confidence interval contains the population parameter

Milo Schield, 1996 ASA JSM

P(e|~h)

P(h|e)

P(e|h)

Page 12 Conclusion

• Students take statistics to help them make better decisions.

12/14/98

- Decision making is Bayesian -- based on a strength of belief.
- Elementary statistics should include a **Bayesian interpretation of classical** statistical inference.

12/14/98 P(h|e) "Statistical Literacy and P(e|h) **Evidential Statistics**" P(e|~h)

Page 13

- Focus on observational studies
- Focus on confounding factors
- Emphasize conditional probability
- Clearly identify role of chance:
 - Highly unlikely if due to chance"
 - highly unlikely to be due to chance"

Page 15

Milo Schield, 1998 ASA JSM

P(h|e) **"Statistical Literacy** P(e|h) and Simpson's Paradox" P(e|~h)

12/14/98 Page 14

- Simpson's Paradox: a reversal of an association due to a confounding factor.
- Objectively determines the minimum effect size for a reversal in the three variable case.

Milo Schield, 1999 ASA JSM

P(h|e) **Elementary Statistics:** P(e|h) **Technical versus Basic** P(e|~h)

Elementary Statistics should be split:

- Technical statistics for majors that use hypothesis tests (psychology, sociology, education, etc.)
- Basic statistics for majors that don't (humanities) and students that don't (twoyear schools)

Page 16 P(h|e) **Elementary Statistics:** P(e|h) **Technical versus Basic** P(e|~h) **Technical Statistics:**

- Statistical inference: sampling distributions, confidence intervals and hypothesis tests
- **Basic Statistics:** Reading tables, reading and interpreting graphs, and evaluating the results of observational studies.

Elementary Statistics: Benefits of Changes

12/14/08 Page 17

- Goal is statistical literacy: critical thinking about statistics
- Opportunity to Improve: Statistical education **Reputation of statistics**

P(h|e)

P(e|h)

P(e|~h)

Attract national attention ٠ **Demonstrate leadership**

12/14/98 Page 18 P(h|e) **Elementary Statistics:** (To be continued) P(e|~h)

- Need more research on
- assessment of statistical literacy •
- ٠ student comprehension/retention
- selection of topics ٠

P(e|h)

- development of teaching materials •
- value added for other majors •
- difficulty of training faculty •

12/14/98 P(h|e) Statistics Faculty P(e|h) **Bayesian: US and UK** P(e|~h)

Page 19

- US & Canada: 0 - 10% Pure Bayesian** 10 - 30% Mixed Bayesian**
- UK, Australia, & New Zealand: 20 - 40% Pure Bayesian** 40 - 60% Mixed Bayesian** ** Estimated

12/14/98 P(h|e) Math program enrollments P(e|h) **Two-year colleges** P(e|~h)

Page 20

Enrollment in elementary statistics

- 11,000 in 1970
- 20,000 in 1980 -- 6.0% growth/year
- 47,000 in 1990 -- 8.5% growth/year •
- 69,000 in 1995 -- 7.7% growth/year

Page 21 P(h|e) Math program enrollments P(e|h) Four-year colleges P(e|~h)

Enrollment in elementary statistics**

- 117,000 in 1990
- 164,000 in 1995: 6.8% growth/year ** taught just in math programs

77% of all enrollment in elementary statistics is at the 4-year level

Page 22 P(h|e) Math program enrollments: P(e|h) Four-year colleges $P(e|\sim h)$

Enrollment: 1995 versus 1990

- 25% increase in elementary stats
- 10% decrease in math courses
- 20% decrease in upper-level math
- 26% decrease in upper-level stats

P(h|e) Math program enrollments: P(e|h) **Statistics** P(e|~h)

12/14/08 Page 23

Why are more students taking stats?

- Desire: Students have a greater interest in understanding mathematical concepts such as variable, function, slope and correlation.
- Necessity: More students are required to take statistics for their major or graduation.

Page 1

P(e|h) $P(e|\sim h)$

P(h|e)

PROBABILITY: CLASSICAL AND BAYESIAN

Colloquium **University of Northern Iowa**

December 14, 1998

MILO SCHIELD **Augsburg College** www.augsburg.edu/ppages/schield schield@augsburg.edu

P(h|e) P(e|h) $P(e|\sim h)$

Probability Classical and Bayesian

Statisticians are

- *united* on the axioms of statistics (mathematics)
- *divided* on the meaning of chance (philosophy)

P(h|e)P(e|h) $P(e|\sim h)$

United on Probability Axioms

- **1.** $P(a) \ge 0$ for all a in domain of P
- **2.** P(t) = 1 if t is a tautology
- 3. P(a ∨ b) = P(a) + P(b)
 if a, b and a∨b are all in domain of P
 and if a and b are mutually exclusive
- 4. P(h|e) = P(h & e)/P(e)

United on Bayes Theorems

Bayes version: P(h|e) = P(e|h) P(h)/P(e)

LaPlace version: P(h|e)= P(h)/[P(h)+P(~h) LR]

 $LR = Likelihood Ratio = P(e|\sim h)/P(e|h)$ $P(e) = P(e|h)P(h) + P(e|\sim h)P(\sim h)$

 \bigcirc

P(h|e) P(e|h)

 $P(e|\sim h)$

Probability: Classical versus Bayesian

Classical probability is <u>objective</u>:

- expresses fundamental laws regarding the assignment of <u>objective</u> physical probabilities to events in the outcome space of stochastic experiments
- independent of our feelings
- a property of the future: not of the past

Bayesian probability is <u>epistemic</u> -based on our context of knowledge

- expresses numeric degrees of uncertainty
- measures our strength of belief
- can be applied to the truth of propositions

• Classical (Purely objective) Hypothesis testing with p-values Confidence that fixed parameter is in a range

• Bayesian strength of belief No hypothesis testing; no p-values Probability fixed parameter is in fixed range

Teaching Bayesian: Yes! Realistic approach

"...differences of opinion are the norm in science and an approach [Bayesian] that explicitly recognizes such differences is realistic." [Statistics: A Bayesian Perspective by Berry]

"The Bayesian approach is the only one capable of representing faithfully the basic principles of scientific reasoning." [Scientific Reasoning by Howson and Urbach]

Teaching Bayesian: No! "at best, premature"

"Surveys of the statistical methods actually in use suggest that Bayesian techniques are little used.

Bayesians have not yet agreed on standard approaches to standard problems settings.

Bayesian reasoning requires a grasp of conditional probability, a concept confusing to beginners.

Finally, an emphasis on Bayesian inference might well impede the trend toward experience with real data..."

David Moore, 1997

P(h|e)
P(e|h)"Bayesian Interpretation of
Classical Hypothesis Tests"

- Combines classical hypothesis test with Bayesian strength of belief.
- If prior belief about truth of null is 50%, P(alternate is false|reject null) = p-value
- Objectively determines prior strength of belief necessary to achieve a 95% probability that the alternate is true.

Milo Schield, 1995 ASA JSM

"Bayesian Interpretation of Classical Confidence"

Interprets classical confidence as a Bayesian strength of belief.

One should be <u>indifferent in betting</u> on

- whether next ball is red (given 95% chance)
- whether a particular 95% confidence interval contains the population parameter

Milo Schield, 1996 ASA JSM

- Students take statistics to help them make better decisions.
- Decision making is Bayesian -- based on a strength of belief.
- Elementary statistics should include a Bayesian interpretation of classical statistical inference.

"Statistical Literacy and Evidential Statistics"

- Focus on observational studies
- Focus on confounding factors
- Emphasize conditional probability
- Clearly identify role of chance:
 - Highly unlikely <u>if</u> due to chance"
 - highly unlikely <u>to be</u> due to chance"

Milo Schield, 1998 ASA JSM

"Statistical Literacy and Simpson's Paradox"

- Simpson's Paradox: a reversal of an association due to a confounding factor.
- Objectively determines the minimum effect size for a reversal in the three variable case.

Milo Schield, 1999 ASA JSM

Elementary Statistics: Technical versus Basic

Elementary Statistics should be split:

- *Technical statistics* for majors that use hypothesis tests (psychology, sociology, education, etc.)
- Basic statistics for majors that don't (humanities) and students that don't (twoyear schools)

Elementary Statistics: Technical versus Basic

• *Technical Statistics*: Statistical inference: sampling distributions, confidence intervals and hypothesis tests

• Basic Statistics:

Reading tables, reading and interpreting graphs, and evaluating the results of observational studies.

Elementary Statistics: Benefits of Changes

- Goal is statistical literacy: critical thinking about statistics
- Opportunity to Improve: Statistical education Reputation of statistics
- Attract national attention Demonstrate leadership

Elementary Statistics: (To be continued)

Need more research on

- assessment of statistical literacy
- student comprehension/retention
- selection of topics
- development of teaching materials
- value added for other majors
- difficulty of training faculty

Statistics Faculty Bayesian: US and UK

• US & Canada:

0 - 10% Pure Bayesian** 10 - 30% Mixed Bayesian**

 UK, Australia, & New Zealand: 20 - 40% Pure Bayesian** 40 - 60% Mixed Bayesian** ** Estimated

Math program enrollments Two-year colleges

Enrollment in elementary statistics

- 11,000 in 1970
- 20,000 in 1980 -- 6.0% growth/year
- 47,000 in 1990 -- 8.5% growth/year
- 69,000 in 1995 -- 7.7% growth/year

Math program enrollments Four-year colleges

Enrollment in elementary statistics**

- 117,000 in 1990
- 164,000 in 1995: 6.8% growth/year
 ** taught just in math programs

77% of all enrollment in elementary statistics is at the 4-year level

Enrollment: 1995 versus 1990

P(h|e)

P(e|h)

 $P(e|\sim h)$

• 25% increase in elementary stats

- 10% decrease in math courses
- 20% decrease in upper-level math
- 26% decrease in upper-level stats

P(h|e)
P(e|h)Math program enrollments:
Statistics

Why are more students taking stats?

- Desire: Students have a greater interest in understanding mathematical concepts such as variable, function, slope and correlation.
- Necessity: More students are required to take statistics for their major or graduation.