Colloquium
University of Northern Iowa
December 14, 1998

MILO SCHIELD
Augsburg College
www.augsburg.edu/ppages/schield
schield@augsburg.edu

Probability: Classical and Bayesian

United on Probability Axioms
1. \(P(a) \geq 0 \) for all \(a \) in domain of \(P \)
2. \(P(t) = 1 \) if \(t \) is a tautology
3. \(P(a \lor b) = P(a) + P(b) \)
 if \(a, b \) and \(a \lor b \) are all in domain of \(P \)
 and if \(a \) and \(b \) are mutually exclusive
4. \(P(h|e) = P(h \& e)/P(e) \)

United on Bayes Theorems
Bayes version:
\[P(h|e) = \frac{P(e|h)P(h)}{P(e)} \]
LaPlace version:
\[P(h|e) = \frac{P(h)}{[P(h) + P(\neg h) LR]} \]
\[LR = \text{Likelihood Ratio} = \frac{P(e|\neg h)}{P(e|h)} \]
\[P(e) = P(e|h)P(h) + P(e|\neg h)P(\neg h) \]

Classical probability is objective:
- expresses fundamental laws regarding the assignment of objective physical probabilities to events in the outcome space of stochastic experiments
- independent of our feelings
- a property of the future: not of the past

Bayesian probability is epistemic — based on our context of knowledge
- expresses numeric degrees of uncertainty
- measures our strength of belief
- can be applied to the truth of propositions
Probability: Classical versus Bayesian

- **Classical (Purely objective)**
 - Hypothesis testing with p-values
 - Confidence that fixed parameter is in a range

- **Bayesian strength of belief**
 - No hypothesis testing; no p-values
 - Probability fixed parameter is in fixed range

Teaching Bayesian: Yes!

Realistic approach

“...differences of opinion are the norm in science and an approach [Bayesian] that explicitly recognizes such differences is realistic.” [Statistics: A Bayesian Perspective by Berry]

“The Bayesian approach is the only one capable of representing faithfully the basic principles of scientific reasoning.”

[Scientific Reasoning by Howson and Urbach]

Teaching Bayesian: No!

“at best, premature”

“Surveys of the statistical methods actually in use suggest that Bayesian techniques are little used. Bayesians have not yet agreed on standard approaches to standard problems settings. Bayesian reasoning requires a grasp of conditional probability, a concept confusing to beginners. Finally, an emphasis on Bayesian inference might well impede the trend toward experience with real data...”

David Moore, 1997

Bayesian Interpretation of Classical Hypothesis Tests

- Combines classical hypothesis test with Bayesian strength of belief.
- If prior belief about truth of null is 50%, \(P(\text{alternate is false|reject null}) = \text{p-value} \)
- Objectively determines prior strength of belief necessary to achieve a 95% probability that the alternate is true.

Milo Schield, 1995 ASA JSM

“Bayesian Interpretation of Classical Confidence”

Interprets classical confidence as a Bayesian strength of belief.

One should be indifferent in betting on
- whether next ball is red (given 95% chance)
- whether a particular 95% confidence interval contains the population parameter

Milo Schield, 1996ASA JSM

Conclusion

- Students take statistics to help them make better decisions.
- Decision making is Bayesian -- based on a strength of belief.
- Elementary statistics should include a Bayesian interpretation of classical statistical inference.
Focus on observational studies
Focus on confounding factors
Emphasize conditional probability
Clearly identify role of chance:
 * Highly unlikely if due to chance”
 * Highly unlikely to be due to chance”

Milo Schield, 1998 ASA JSM

Simpson’s Paradox: a reversal of an association due to a confounding factor.
Objectively determines the minimum effect size for a reversal in the three variable case.

Milo Schield, 1999 ASA JSM

Elementary Statistics should be split:
 * Technical statistics for majors that use hypothesis tests (psychology, sociology, education, etc.)
 * Basic statistics for majors that don’t (humanities) and students that don’t (two-year schools)

Elementary Statistics: Technical versus Basic

Goal is statistical literacy: critical thinking about statistics
Opportunity to Improve:
 * Statistical education
 * Reputation of statistics
 * Attract national attention
 * Demonstrate leadership

Need more research on
 * assessment of statistical literacy
 * student comprehension/retention
 * selection of topics
 * development of teaching materials
 * value added for other majors
 * difficulty of training faculty

Elementary Statistics: Benefits of Changes

Elementary Statistics: Technical versus Basic

(To be continued)
• **US & Canada:**
 - 0 - 10% Pure Bayesian**
 - 10 - 30% Mixed Bayesian**
• **UK, Australia, & New Zealand:**
 - 20 - 40% Pure Bayesian**
 - 40 - 60% Mixed Bayesian**
 ** Estimated

Enrollment in elementary statistics

- 11,000 in 1970
- 20,000 in 1980 -- 6.0% growth/year
- 47,000 in 1990 -- 8.5% growth/year
- 69,000 in 1995 -- 7.7% growth/year

77% of all enrollment in elementary statistics is at the 4-year level

Why are more students taking stats?

- **Desire:** Students have a greater interest in understanding mathematical concepts such as variable, function, slope and correlation.
- **Necessity:** More students are required to take statistics for their major or graduation.
PROBABILITY:
CLASSICAL AND BAYESIAN

Colloquium
University of Northern Iowa
December 14, 1998

MILO SCHIELD
Augsburg College
www.augsburg.edu/ppages/schield
schield@augsburg.edu
Statisticians are

• *united* on the axioms of statistics (mathematics)

• *divided* on the meaning of chance (philosophy)
United on Probability Axioms

1. \(P(a) \geq 0 \) for all \(a \) in domain of \(P \)

2. \(P(t) = 1 \) if \(t \) is a tautology

3. \(P(a \lor b) = P(a) + P(b) \)
 if \(a, b \) and \(a \lor b \) are all in domain of \(P \)
 and if \(a \) and \(b \) are mutually exclusive

4. \(P(h|e) = P(h \& e)/P(e) \)
Bayes version:

\[P(h|e) = \frac{P(e|h) \cdot P(h)}{P(e)} \]

LaPlace version:

\[P(h|e) = \frac{P(h)}{[P(h) + P(\sim h)] \cdot LR} \]

\[LR = \text{Likelihood Ratio} = \frac{P(e|\sim h)}{P(e|h)} \]

\[P(e) = P(e|h)P(h) + P(e|\sim h)P(\sim h) \]
Classical probability is **objective**:
- expresses fundamental laws regarding the assignment of **objective** physical probabilities to events in the outcome space of stochastic experiments
- independent of our feelings
- a property of the future: not of the past
Probability: Classical versus Bayesian

Bayesian probability is **epistemic** --
based on our context of knowledge

• expresses numeric degrees of uncertainty

• measures our strength of belief

• can be applied to the truth of propositions
Probability: Classical versus Bayesian

- **Classical (Purely objective)**
 Hypothesis testing with p-values
 Confidence that fixed parameter is in a range

- **Bayesian strength of belief**
 No hypothesis testing; no p-values
 Probability fixed parameter is in fixed range
“...differences of opinion are the norm in science and an approach [Bayesian] that explicitly recognizes such differences is realistic.” [Statistics: A Bayesian Perspective by Berry]

“The Bayesian approach is the only one capable of representing faithfully the basic principles of scientific reasoning.” [Scientific Reasoning by Howson and Urbach]
“Surveys of the statistical methods actually in use suggest that Bayesian techniques are little used. Bayesians have not yet agreed on standard approaches to standard problems settings. Bayesian reasoning requires a grasp of conditional probability, a concept confusing to beginners. Finally, an emphasis on Bayesian inference might well impede the trend toward experience with real data...”

David Moore, 1997
Combines classical hypothesis test with Bayesian strength of belief.

If prior belief about truth of null is 50%,
P(alternate is false|reject null) = p-value

Objectively determines prior strength of belief necessary to achieve a 95% probability that the alternate is true.

Milo Schield, 1995 ASA JSM
Interprets classical confidence as a Bayesian strength of belief.

One should be indifferent in betting on

• whether next ball is red (given 95% chance)
• whether a particular 95% confidence interval contains the population parameter

Milo Schield, 1996 ASA JSM
Conclusion

• Students take statistics to help them make better decisions.

• Decision making is Bayesian -- based on a strength of belief.

• Elementary statistics should include a Bayesian interpretation of classical statistical inference.
P(h|e) P(e|h) P(e|~h)

“Statistical Literacy and Evidential Statistics”

- Focus on observational studies
- Focus on confounding factors
- Emphasize conditional probability
- Clearly identify role of chance:
 - Highly unlikely if due to chance”
 - highly unlikely to be due to chance”

Milo Schield, 1998 ASA JSM
Simpson’s Paradox: a reversal of an association due to a confounding factor.

Objectively determines the minimum effect size for a reversal in the three variable case.

Milo Schield, 1999 ASA JSM
Elementary Statistics should be split:

- **Technical statistics** for majors that use hypothesis tests (psychology, sociology, education, etc.)
- **Basic statistics** for majors that don’t (humanities) and students that don’t (two-year schools)
Elementary Statistics: Technical versus Basic

- **Technical Statistics:**
 Statistical inference: sampling distributions, confidence intervals and hypothesis tests

- **Basic Statistics:**
 Reading tables, reading and interpreting graphs, and evaluating the results of observational studies.
Elementary Statistics: Benefits of Changes

- **Goal is statistical literacy:** critical thinking about statistics

- **Opportunity to Improve:**
 - Statistical education
 - Reputation of statistics

- **Attract national attention**
 - Demonstrate leadership
Need more research on

- assessment of statistical literacy
- student comprehension/retention
- selection of topics
- development of teaching materials
- value added for other majors
- difficulty of training faculty
Statistics Faculty
Bayesian: US and UK

- **US & Canada:**
 - 0 - 10% Pure Bayesian**
 - 10 - 30% Mixed Bayesian**

- **UK, Australia, & New Zealand:**
 - 20 - 40% Pure Bayesian**
 - 40 - 60% Mixed Bayesian**

** Estimated
Math program enrollments
Two-year colleges

Enrollment in elementary statistics

- 11,000 in 1970
- 20,000 in 1980 -- 6.0% growth/year
- 47,000 in 1990 -- 8.5% growth/year
- 69,000 in 1995 -- 7.7% growth/year
Enrollment in elementary statistics**

- **117,000 in 1990**
- **164,000 in 1995: 6.8% growth/year**

** taught just in math programs

77% of all enrollment in elementary statistics is at the 4-year level
Math program enrollments:
Four-year colleges

Enrollment: 1995 versus 1990

• 25% increase in elementary stats
• 10% decrease in math courses
• 20% decrease in upper-level math
• 26% decrease in upper-level stats
Why are more students taking stats?

• **Desire:** Students have a greater interest in understanding mathematical concepts such as variable, function, slope and correlation.

• **Necessity:** More students are required to take statistics for their major or graduation.