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Abstract

This paper describes my experiences and attitudes toward teaching both the Classical and
Bayesian paradigms in an introductory statistics class.  At Duke University, I teach two
first-course classes, one at the undergraduate level for social-science majors and one at
the graduate level for professional students in public policy. While covering both
perspectives is not easy, it is well worth the effort.  By introducing the Bayesian paradigm
students are better able to interpret an observed significance level correctly.  By
introducing the Classical paradigm students are able to understand that subjectivity is not
reserved for the Bayesian paradigm.  Many other advantages that arise from teaching both
perspectives will also be discussed.

Introduction

In a recent paper (Moore, 1997) David Moore argues that it is, at best, premature to teach

the ideas and methods of Bayesian inference in a first statistics course for general

students.    He argues that: 1) Bayesian techniques are little used, 2) Bayesians have not

yet agreed on standard approaches to standard problem settings, 3) Bayesian reasoning

requires a grasp of conditional probability, a concept confusing to beginners, and 4) an

emphasis on Bayesian inference might impede the trend toward experience with real data

and a better balance among data analysis, data production, and inference in first statistics

courses.  These arguments were striking to me, not because I vehemently agreed or

disagreed with them, but because they were remarkably similar to the reasons why, for the

last five years, I have been slowly incorporating Bayesian inference into my introductory

statistics classes.

Moore argues that Bayesian techniques are used little, and he uses the published medical

literature and a survey of Department of Energy statisticians as evidence. Since coming to

Duke as an assistant professor in 1992, I have collaborated with researchers trained in

medicine and the social sciences. These collaborators collect, analyze, and publish their

research with very little aid from trained statisticians.  In these collaborations I have



observed one thing in particular.  While the statistical analyses they present in

publications is nearly 100% classical, the statistical interpretations made in their day-to-

day work is not. In daily conversations, debates, and  statistical analyses, they rarely

follow classical prescriptions for ‘legitimate’ data analyses or give classical

interpretations to their inference.  In their day-to-day activities their thinking and the

decisions they make based on this thinking are nearly 100% Bayesian.   What appears on

paper is not indicative of what goes on in their heads.  I think it is important that

consumers of our statistical methods understand that this discrepancy exists and make a

conscious choice to live with the split reality or to work towards congruency between

thinking and publication.  The choice for my collaborators is an easy one, they will live

with the split reality.  Resources give them no alternative.  This brings me to my students.

My work at Duke also requires that I teach students interested primarily in social science

who aspire to be the doctors, lawyers, policy makers, and researchers. I want them to be

conscious of the split reality too.  I take it as part of my job as a responsible educator to

do what I can to make sure that they understand both perspectives.  My ultimate goal is to

teach students to learn to think analytically about applied problems.  Teaching standard

templates of statistics, whether Classical or Bayesian, is counterproductive to this effort.

Teaching them to ask questions from both a classical perspective and from a Bayesian

perspective and to examine the differences requires intense analytic thinking.  Because

conditional probability is one of the most important analytic concepts I teach, and because

mastery of this concept is required for interpreting both p-values and posterior

probabilities correctly, teaching both classical and Bayesian paradigms gives my students

a double dose of this concept and a double dose of analytic thinking.  So, how can a

professor teach both paradigms in a single semester?

Methods

Because of the breadth and pace of the course, I use what Schau and Mattern (1997) call a

map technique.  Students receive a visual aid depicting the topics and interrelation

between topics to be covered in the next 14 weeks.  Every few weeks we review a low-



resolution map to refresh their image of how the details just covered fit into the ‘big-

picture’ and we preview a high-resolution map that tells where we will be going in the

next few weeks.  At the lowest resolution, topics are grouped into 3 categories: 1)

descriptive statistics, 2) probability, and 3) inference. During the 14 weeks of class, the

proportion of time spent on each of the categories is roughly 3/7, 1/7, and 3/7

respectively. Because it is unsurpassed in cogently presenting the basics of descriptive

statistics, probability, and classical inference, I use the book Statistics by Freedman,

Pisani, and Purves (1997).  I supplement the probability section of the book with my own

segments on conditional probability and Bayes theorem, and the inference section with

my own segments on Bayesian inference that borrow heavily from Statistics: A Bayesian

Perspective by Berry (1996).  Students spend 2.5 hours/week in lecture and 50

minutes/week in a supplemental session used for ‘real-data’ computer assignments and

discussion of the use of ‘real’ statistics in articles related to their fields of interest.

The first half of the semester probably looks like an introductory statistics class at most

any university, just a slightly faster pace.  Students are taught the differences between

observational studies and controlled experiments, how to describe the distribution of a

single variable and the relationship between two variables using graphical and numerical

techniques, and the basics of probability. The pace is quick, but every year more and more

students enter this course having seen this material in high school mathematics classes.  I

find the quicker pace is also made manageable by the vastly improved computing

technology of the last few years.  The new menu-driven statistical software allows

students to begin analyzing data instantly, and the new multi-media teaching tools save an

enormous amount of chalkboard time.

The second half of the semester probably does not look like any other introductory

statistics class at any university.  Using Freedman et al. (1997) I cover classical inference

showing students 
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in a half-dozen different contexts.  Then we

return to probability and cover subjective probability, conditional probability, and Bayes



theorem.  Finally, we get to Bayesian inference. I teach two contexts only.  First I

demonstrate simple binomial-data examples with a discrete parameter space and hence

discrete prior, and then I demonstrate simple normal-data examples with a continuous

parameter space and a normal prior.  In the latter case, they learn to calculate the posterior

mean and standard deviation of the population average. The emphasis is on thinking

through Bayes theorem, updating beliefs, and making predictions about future

observations.

Students must pull together the entire course and compare and contrast the Bayesian and

Classical paradigms in three assignments, an oral presentation of a journal article, a

written data-analysis project, and a role-playing exercise.  The oral presentation requires

students to select an article from a list.  Popular choices are: "Should Pregnant Women

Move?  Linking Risks for Birth Defects with Proximity to Toxic Waste Sites",

(Geschwind, 1992),  "Lesson Learned From Challenger:  A Statistical Perspective",

(Dalal et al., 1989), “Small Cars, Big Cars:  What is the Safety Difference?”, (Evans,

1994), "When batterer turns murderer", (Good, 1995), “DNA, Statistics, and the Simpson

Case”, (Berry, 1994), "How Birth Order Influences Individual Characteristics", (Moore et

al., 1995), "Statistical Evidence of Cheating on Multiple-ChoiceTests", (Klein, 1992),

"Techno-Thriller' Statistics: Chance in the Fiction of Michael Crichton", (Rossman,

1994), and "Who's Number 1 in College Football? ... And How Might We Decide?",

(Stern, 1995).   During discussion sections students present the article relating it to the

concepts learned in class, placing it in context of the Classical or Bayesian paradigm,  and

challenging, if possible, the statistician’s methods.

For the data analysis project, students must find a data set on a topic of personal interest.

Most students conduct surveys, surf the internet, or skim through my own collection to

find a data set of interest.  The data set must contain nominal and continuous variables.

The students must analyze the data set demonstrating mastery of each technique

(graphical and numerical) learned throughout the semester.  They must hand in not only

the analysis, but a written description and interpretation of each piece of output for a



person who has not yet taken statistics.  Their analysis must include at least one question

addressed from both the Classical and Bayesian viewpoint.

The role-playing assignment has taken two forms, a written exercise or a mock legal trial,

both based on information from the article, “The Mathematics of Making up Your Mind”,

by W. Hively.  The article appeared in the popular science magazine Discover in May,

1996.  It covers the differences between the Classical and Bayesian paradigm and

highlights the controversies that can arise in interpretation using the published results

from a clinical trial testing the superiority of tissue-plasminogen activator over

streptokinase in the treatment of acute myocardial infarction.  They are also given

excerpts from the original articles that inspired the Discover article (Brophy and Joseph,

1995 and The Gusto Investigators, 1993).

In the written exercise, students are asked to role-play 3 individuals: 1) a government

policy maker deciding whether Medicare will pay for the more expensive treatment, 2) an

insurance company officer deciding whether their company will pay for the more

expensive drug, and 3) an individual who is trying to convince the insurance company

that they should pay for the more expensive drug.  They must present a written statistical

argument (Bayesian or Classical) to defend each position.  In the mock legal trial,

students are given roles of plaintiff, defendant, prosecuting attorney, defense attorney, or

expert witness (statistical).  The case they must act out is a malpractice suit against a

doctor  who prescribes the cheaper drug and the patient dies.  Both the written exercise

and the mock trial have worked well.

What do these final assignments that require students to compare and contrast the

Bayesian and Classical paradigms teach the students?  These final assignments bring to

light the advantages and disadvantages of each inferential paradigm and highlight the

nuances that distinguish them.  Students learn to make persuasive statistical arguments

and are better able to critique others’ statistical arguments.  Students learn that there are

alternative ways of thinking and publishing, and it is their choice.  Students learn that

statistics are a tool for more than hypothesis testing:  they are a tool for decision making.



Students learn that statistics will be useful in the future not just for testing null

hypotheses, but rather for most everything they do and read for the rest of their lives.
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