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Inference for causal effects is a critical activity in many branches of science and public policy.  The field of 
statistics is the one field most suited to address such problems, whether from designed experiments or observational 
studies.  Consequently, it is arguably essential that departments of statistics teach courses in causal inference to 
both graduate and undergraduate students.  This presentation will discuss some aspects of such courses based on: a 
graduate level course taught at Harvard for a half dozen years, sometimes jointly with the Department of Economics 
(with Professor Guido Imbens, now at UCLA), and current plans for an undergraduate core course at Harvard 
University.  An expanded version of this brief document will outline the courses' contents more completely.  
Moreover, a textbook by Imbens and Rubin, due to appear in 2000, will cover the basic material needed in both 
courses. 

The current course at Harvard begins with the definition of causal effects through potential outcomes.  
Causal estimands are comparisons of the outcomes that would have been observed under different exposures of 
units to treatments.  This approach is commonly referred to as 'Rubin's Causal Model - RCM" (Holland, 1986), but 
the formal notation in the context of randomization-based inference in randomized experiments goes back to 
Neyman (1923), and the intuitive idea goes back centuries in various literatures; see also Fisher (1918), Tinbergen 
(1930) and Haavelmo (1944).  The label "RCM" arises because of extensions (e.g., Rubin, 1974, 1977, 1978) that 
allowed a formal framework beyond randomized experiments and beyond randomization-based inference; it also 
allowed the formal consideration of complications, such as unintended missing data and noncompliance.  Because of 
the importance of making this very intuitive and transparent definition of causal effects central to students' thinking 
about causality, the course devotes some brief time to the history of this idea, including the history of needed 
assumptions, such as “no-interference-between-units” (Cox, 1958) and the more encompassing “stable-unit-
treatment-value” assumption (Rubin, 1984).  Without some such “exclusion restrictions”, to use the language of 
economists, causal inference is impossible, and understanding this limitation is critical. 

This RCM framework is now rather generally accepted in many fields.  For example, in psychology, see 
Wilkinson et al. (1999); in economics see the transition to adopt it reflected by comparing Heckman (1979) to 
Heckman (1989), and Pratt and Schlaifer (1984) to Pratt and Schlaifer (1988), after discussion by Holland (1989) 
and Rosenbaum and Rubin (1984), respectively.  Also see Baker, (1998), Dempster (1990), Efron and Feldman 
(1991), Gelman and King (1991), Greenland and Pool (1988), Greenland, Robins, and Pearl (1999), Holland (1988a, 
b, 1989), Holland and Rubin (1983), Kadane and Seidenfeld (1990), Robins (1987, 1989), Rosenbaum (1987), Smith 
and Sugden (1988), Sobel (1990, 1995, 1996), Sugden (1988), and their references.  A recent article exploring 
whether the full potential outcomes framework can be avoided when conducting causal inference is Dawid (2000) 
with discussion. 

The essential role of the assignment mechanism is then introduced: without a model for how treatments get 
assigned to units, formal causal inference, as least using probabilistic statements, is impossible.  It is also critical that 
students appreciate this, especially because most articles purporting to do causal inference in many areas of 
application of statistics never even consider the assignment mechanism unless the study was randomized.  Examples 
of assignment mechanisms and a classification of them is introduced: classic randomized experiments, unconfounded 
and regular designs, more general ignorable designs, and nonignorable designs (Rubin, 1976).  At this point, we do 
not NEED any more assumptions to proceed with some forms of causal inference: those based solely on the 
randomization distribution induced by randomized assignment.  Unless students understand how to analyze 
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randomized experiments validly and why their analysis is relatively simple, it is impossible to teach them how to 
analyze observational data validly for causal effects.  Thus, they need to understand very well the basis of causal 
inference in randomized experiments, and then to use this foundation to learn how to draw causal inferences in 
nonrandomized studies. 

There are two distinct forms of randomization inference, one due to Neyman (1923) and the other due 
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to Fisher (1925).  Fisher's is the more direct conceptually and is introduced next.  It is closely related to the 
mathematical idea of proof by contradiction.  It basically is a stochastic "proof' by contradiction giving the 
significance level (or p-value) of the null hypothesis of absolutely no effect whatsoever: the probability of a result 
(represented by the value of an a priori defined statistic, such as the difference of observed average treatment 
outcome minus observed average control outcome) this rare or more rare if the null hypothesis were true, where the 
probability is over the distribution induced by the assignment mechanism.  This form of inference is very elegant but 
very limited: how much can be learned from finding, with high probability, a model that does not fit the data, 
especially as measured by some possibly arbitrary or mathematically convenient statistic? 

Neyman's form of randomization-based inference can be viewed as drawing inferences by evaluating the 
expectations of statistics over the distribution induced by the assignment mechanism the essential idea is the same as 
in Neyman's (1934) classic article on randomization-based (now often called 'designed-based") inference in surveys.  
Typically, an unbiased estimator of the causal estimand is created, and an unbiased, or upwardly biased estimator, 
of the variance of that unbiased estimator is found (bias and variance both defined with respect to the randomization 
distribution).  Then an appeal is made to the central limit theorem for the normality of the estimator over its 
randomization distribution, whence a confidence interval for the causal estimand is obtained.  This form of inference 
is less direct than Fisher's; it is really aimed at evaluations of procedures, and only indirectly at inference from the 
data at hand.  Nevertheless, it forms the basis for most of what is done in important areas of application (e.g., the 
world of pharmaceutical development and approval, the world of randomized clinical trials in medicine), and 
therefore, once again, it is critical that students understand the framework. 

The third form of statistical inference for causal effects is Bayesian, where the model for the assignment 
mechanism is supplemented with a model for the data (Rubin, 1978).  A causal inference is obtained as the posterior 
distribution of the causal estimand, which follows from the posterior predictive distribution of the unobserved 
potential outcomes, which in turn follows by Bayes theorem from the observed data and the models for the 
assignment mechanism and the data.  All calculations are described in terms of simulating this posterior predictive 
distribution - basically by multiply-imputing the missing potential outcomes.  This approach opens the door for the 
much more demanding computational methods used in the latter part of the graduate course, which would be absent 
from the undergraduate core course.  The Bayesian approach, which is the foundation for typical linear and loglinear 
models, is by far the most intuitive, direct and flexible of the modes of inference for causal effects, but achieves these 
benefits by postulating a distribution for the data, which the randomization-based approaches avoid.  Such a 
distribution can be very useful, but is like a loaded gun in the hands of a child, fraught with danger for the naive data 
analyst.  This inherent danger is an important message to convey to students, especially those who have been 
exposed to complicated automatic causal modelling software and so may be more willing to accept and use 
procedures they do not fully understand. 

In practice, one should be willing to use the best features of all approaches.  In simple classical randomized 
experiments with normal-like data, the three approaches give very similar practical answers, but they do not in more 
difficult cases, where each perspective provides different strengths.  At this point, the relationships between these 
three conceptually cogent formulations and the more common linear equation, regression and path diagram 
approaches are made.  Care must be taken here, especially in an undergraduate course, to avoid confusing students 
through the introduction of generally inappropriate methods, which can achieve appropriate answers in the simplest 
settings, but which lead to inappropriate answers in realistic settings. 

The course then turns to 'regular" designs, which are like classical randomized experiments except that the 
probabilities of treatment assignment are allowed to depend on observed covariates and so can vary from unit to unit 
(e.g., older males have probability .8 of being assigned the new treatment; younger males,, .6; older females, .5; and 
younger females, .2. Horvitz and Thompson (1952; Cochran, 1963) estimation is considered with known assignment 
probabilities, and Fisherian and Neymanian inferences are derived and compared with Bayesian model-based 
estimation for robustness and efficiency.  This leads to estimated propensity score methods (Rosenbaum and Rubin, 
1983), and their use in combination with models.  These techniques are then applied to observational studies. 
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The key idea is to conceptualize the observational study as if it were a regular design, and therefore an ignorable 
design, and to use this template to draw inferences.  Many illustrative examples are given, using matching, 
subclassification, and model building (e.g., Rosenbaum and Rubin, 1984, 1985; 
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Reinisch et al., 1995; Rubin, 1997; Smith, 1997).  Using real examples, including ones where there exist nearly 
parallel randomized and nonrandomized studies (e.g., as in LaLonde, 1986; Dehejia and Wahba, 1999), it becomes 
clear that in general the combination of both propensity score methods and Bayesian model building is superior to 
either alone for the objective of achieving essentially the same answer from an observational study as from the 
parallel randomized experiment.  In the graduate course, some attention is paid to theoretical results on propensity 
scores, such as in Rubin and Thomas (1992a,b) and on the combination of propensity score methods and modeling 
(Rubin and Thomas, 2000), but the most important ideas are easily conveyed by the real examples, and so the 
theory would be avoided in an undergraduate course, although not in the graduate course. 

Because the conceptualization of an observational data set as arising from a regular (and thus, ignorable) 
assignment mechanism is an assumption, it is important to consider deviations from that assumption.  Sensitivity of 
conclusions to the assumption of ignorability is then studied using methods such as those of Rosenbaum and Rubin 
(1985) and Rosenbaum (1995), which display how point and interval estimates change as a function of assumptions.  
Bounds on point estimates (e.g., Manski and Nagin, 1998; Horowitz and Manski, 1999) are also considered but 
usually as a special case of sensitivity analysis.  Such analyses are relatively easy to explain to students at all levels.  
Other issues about ignorability (e.g., tests for it as in Rosenbaum, 1984) can be considered in a graduate course but 
not in an undergraduate course. 

The topic of noncompliance in randomized studies is then introduced because it is a relatively well-
understood island between the shores of the perfect randomized experiment and the uncontrolled observational 
study.  For example, a random half of doctors are encouraged to give their patients a flu shot, but some patients in 
each random group do and do not take the flu shot (Hirano, Imbens, Rubin and Zhou, 1999).  Such studies are 
ignorable for the assigned treatment (e.g., encouragement to take the flu shot) but nonignorable for the received 
treatment (getting the flu shot), and comprise a more general template for the analysis of observational studies than 
do ignorable designs.  The approach taken to such studies in the course bridges classic econometric and statistical 
approaches to causal inference as described in Angrist, Imbens, and Rubin (1996).  The most direct result is the 
method-of-moments "instrumental variables' estimate for the "complier average causal effect', and used, for example, 
by Sommers and Zeger (1991) to estimate the effect of vitamin A on infant survival.  The much preferred approach 
to the analysis of such data, however, is likelihood/Bayesian, as described in Imbens and Rubin (1997), but this 
requires the introduction of iterative maximization and simulation techniques, such as the EM algorithm (Dempster, 
Laird and Rubin, 1977) and data augmentation (Tanner and Wong, 1987), which is appropriate for a graduate course, 
but is too demanding for an undergraduate core course.  Severd examples of this kind of approach are given, including 
actual randomized experiments with noncompliance (e.g., Sommer and Zeger, 1991; Goetghebeur and Molenberghs, 
1996; Baker and Lindeman, 1994; Frangakis, Rubin and Zhou, 1999) and observations studies where some version 
of the instrumenw variables approach seems plausible (e.g., Ettner, 1996). 

The graduate course continues with the consideration of how to deal with some common complications 
with randomized experiments with noncompliance, such as missing outcome data (Frangakis and Rubin, 1999), 
randomization in clustered groups (Frangakis, Rubin and Zhou, 1999), and missing covariates and multivariate 
outcomes (Barnard, Frangakis, Hill and Rubin, 2000), which are all beyond the scope of an undergraduate course, as 
is the topic of multiple treatments in a longitudinal setting (e.g., Robins, 1997). 

The final lecture is much like this little article: a review of how to apply fundamentally sound statistical 
thinking about causal inference to estimate causal effects in experiments and observational studies. 

As stated in the abstract, I firmly believe that some such course is arguably an essential ingredient of any 
statistics departments' offerings, and moreover is an important component of the education of anyone who intends 
to draw conclusions about causal effects. 
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