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Abstract  
Simpson's Paradox occurs when an observed associa-
tion is spurious – reversed after taking into account a 
confounding factor.  At best, Simpson's Paradox is used 
to argue that association is not causation.  At worst, 
Simpson's Paradox is used to argue that induction is 
impossible in observational studies (that all arguments 
from association to causation are equally suspect) since 
any association could possibly be reversed by some yet 
unknown confounding factor. This paper reviews Corn-
field's conditions – the necessary conditions for Simp-
son's Paradox – and argues that a simple-difference 
form of these conditions can be used to establish a 
minimum effect size for any potential confounder.  
Cornfield's minimum effect size is asserted to be a key 
element in statistical literacy.  In order to teach this 
important concept, a graphical technique was developed 
to illustrate percentage-point difference comparisons.  
Some preliminary results of teaching these ideas in an 
introductory statistics course are presented.  
 
Keywords:  Statistical Literacy, Teaching; Epistemo l-
ogy; Philosophy of science; Observational studies. 

1. STATISTICAL LITERACY 
Statistical literacy studies the use of statistics and sta-
tistical associations as evidence in arguments (Schield, 
1998).  Many arguments involving statistical associa-
tions are based on observational studies and are directed 
at  supporting claims on causation.  Interpreting such 
associations is a major problem due to the possibility of 
confounding.  Simpson's Paradox is a striking example 
of this problem. 

2. WHAT IS SIMPSON'S PARADOX? 
Simpson's Paradox is the reversal of an association be-
tween two variables after a third variable (a confound-
ing factor) is taken into account.  For an overview of 
association reversals, see Samuels (1993).  A confound-
ing factor is a factor — a lurking variable — which is 
found or mixed with another.  

Simpson's paradox has been observed in several real-
life situations.  One well-known example occurred in 
the Graduate Division of the University of California at 
Berkeley.  Women were rejected more often than men 
at the overall college level, but men were rejected more 
often than women at the individual departmental level.  
The confounding factor was the choice of department.  
Women were more likely to choose departments with 
higher rejection rates than were men (Freedman, Pisani, 
Purves, and Adhikari 1991, p. 16). 

In another example, it was found that whites were more 
likely to be sentenced to death for murder than blacks.  
But after taking into account the confounding factor of 
the race of the victim, it was found that blacks were 
more likely to be sentenced to death than whites.  A 
death sentence was more likely if the victim was white.  
Since blacks were more likely to kill blacks, they were 
less likely to be sentenced to death.  But whether the 
victim was white or black, a death sentence was more 
likely for blacks than for whites.  (Agresti 1984) 

3. IS SIMPSON'S PARADOX IMPORTANT? 
Simpson's Paradox is vitally important for several rea-
sons. (1) It clearly demonstrates that correlation is not 
always causation.  If the direction of an association can 
be reversed, any assertion about direct causation is 
clearly disputable.  (2) It demonstrates that associations 
are sometimes conditional.  Students often think of nu-
merical associations as immutable —as unconditional.  
By studying Simpson's Paradox students overcome this 
mistaken perception.  (3) It introduces the minimum 
effect size necessary for a confounder to explain a spu-
rious association.  The measurement of the minimum 
effect size is the point of this paper and is developed in 
a later section. 

4. UNDERSTANDING SIMPSON'S PARADOX 
It is not easy to understand the reasons for—much less 
the cause of—a reversal of an association, i.e., Simp-
son's Paradox.  Consider three types of explanations:  

Mathematical explanation: “Consider 8 variables: A, B, 
C, D, a, b, c and d.  If it is true that A/B > a/b and C/D 
> c/d, is it also true that (A+C)/(B+D) > (a+c)/(b+d)?”  
The reply: “Not in general.  For example, 1/1 > 3/4 and 
1/4 > 0/1.  Now (1+1)/(4+1) = 2/5 and (3+0)/(4+1) = 
3/5.  Now is 2/5 > 3/5?  No!” (sci.stat.edu, 12/96).  In 
this explanation, the reversal is just a consequence of 
the particular numbers involved.   

Group inhomogeneity explanation.  Suppose A, B, ... d 
are as above.  Let A/B = P1 and C/D = P3.  Let a/b = P2 
and c/d = P4.  Let the size of the groups being com-
pared be illustrated by the number of “x” symbols. 

xx   A/B=P1    >   P2=a/b  xxxxxxxxxx 
xxxxxx  C/D=P3    >   P4=c/d     xx 

The ⊕ symbol indicates the merging of the groups: 
P1 ⊕ P3  =  (A+C)/(B+D) 

     P2 ⊕  P4  =  (a+c)/(b+d) 

xxxxxxxx P1 ⊕  P3   <   P2 ⊕ P4   xxxxxxxxxxxx 
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We see above that P1 > P2 and P3 > P4, but P1 ⊕  P3 < 
P2 ⊕ P4: the Simpson’s Paradox reversal. 

The differing size of the groups explains the reversal in 
the association.  This explanation is sometimes pre-
sented using baseball batting averages.  Suppose in the 
first half of the season, Slugger (370 = P1) had a higher 
batting average than Bantam (330 = P2).  In the second 
half Slugger (200 = P3) had a higher batting average 
than Bantam (190 = P4).  Yet for the entire season, this 
association can reverse.  Bantam can have a higher bat-
ting average than Slugger if Bantam bats much more 
than Slugger in the first half and much less than Slugger 
in the second half.  

Confounding factor explanation: What we fail to take 
into account strongly influences our conclusions (Kelly 
1994).  Consider an example: 

A father and his young children were riding on the 
New York subway.  The children were out of control.  
The father was slumped over with his head in his 
hands.  When the father did nothing to control the 
children some of the passengers became irritated.  
One of them asked the father to control the children 
(implying the father was derelict in his responsibili-
ties).  The father lifted his head and explained that he 
and the children had left the hospital where his wife, 
their mother, had just died.  The passengers immedi-
ately reversed their evaluation once they took account 
of the influence of the death on the family.   

Students understand this principle: a more important 
factor can easily change one’s standard for evaluation.  

5. ANTICIPATING SIMPSON'S PARADOX 

But even if Simpson’s Paradox were readily under-
stood, it is not easily anticipated.  There is no test for 
determining whether an association is spurious (Pearl, 
1999).  Textbooks seldom indicate a way to estimate 
the likelihood of a Simpson's Paradox reversal.   

After studying Simpson’s Paradox, one student con-
cluded one should never trust any association based on 
an observational study.  And if there is no way to an-
ticipate when a Simpson's Paradox reversal could oc-
cur, this student is absolutely right.  One solution is to 
ignore observational studies and deal only with ran-
domized experiments where the problem of confound-
ing is minimized.  However, experiments are not al-
ways possible, so students need to learn how to deal 
with associations based on observational studies. 

6. FROM CORRELATION TO CAUSATION 
A serious concern about the possibility of Simpson’s 
Paradox arose in the late 1950s when several research 
projects found an association between smoking and 
lung cancer.  But these associations were observational 

so it was possible that an unknown confounding factor 
might significantly change the associations.  

Fisher (1958) noted that genetic factors might dispose 
one on whether to smoke or on what (cigarette, pipe, or 
cigar) to smoke.  Although Fisher was a smoker, his 
article demonstrated his allegiance to the power of data.  
He did not just allude to the possibility of some con-
founding factor; he presented actual data on smoking 
choices among fraternal and identical twins.  He calcu-
lated the percentage of twins in which there were dis-
tinct differences in smoking (smoker versus non-
smoker or cigarette smoker versus pipe smoker).  His 
data showed that there were distinct differences in 
smoking choice among 51% of the fraternal twins as 
opposed to 24% of the identical twins.  He concluded, 
“There can be little doubt that the genotype exercises 
considerable influence on smoking, and on the particu-
lar habit of smoking adopted…” 

Fisher used this association to suggest that perhaps lung 
cancer was not caused by smoking per se but was 
caused by that part of the genotype that also caused 
people to smoke.  Thus people who are disposed to 
smoke would contract lung cancer at the same rate 
whether they smoke or not. 

Cornfield et al (1959) countered Fisher’s alternate ex-
planation.  They derived a necessary condition for a 
confounding factor to explain away an observed asso-
ciation—assuming the association was totally spurious.   

7. CORNFIELD’S CONDITION 
Cornfield et al deduced the minimum effect size neces-
sary for a potential confounder to explain an observed 
association assuming the association is totally spuri-
ous. They wrote (Cornfield et al, 1959, Appendix A), 

If an agent, A, with no causal effect upon the risk of a 
disease, nevertheless, because of a positive correla-
tion with some other causal agent, B, shows an ap-
parent risk, r, for those exposed to A, relative to those 
not so exposed, then the prevalence of B, among 
those exposed to A, relative to the prevalence among 
those not so exposed, must be greater than r.  
Thus, if cigarette smokers have 9 times the risk of 
nonsmokers for developing lung cancer, and this is 
not because cigarette smoke is a causal agent, but 
only because cigarette smokers produce hormone X, 
then the proportion of hormone-X-producers among 
cigarette smokers must be at least 9 times greater 
than that of non-smokers.  If the relative prevalence 
of hormone-X-producers is considerably less than 
ninefold, then hormone X cannot account for the 
magnitude of the apparent effect." 

Cornfield's condition can be stated algebraically. P de-
notes a probability, A denotes the apparent cause, C 
denotes the common cause and E denotes an observable 
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effect.  A single quote following a letter is the comple-
ment of the condition (A' = non-A) so P(A') = 1 - P(A).  
The vertical bar (|) denotes “given”.  Thus P(C|A) is the 
probability of C given A; P(C|A') is the probability of C 
given the absence of A.   

If factor A (smoking) had no effect on the likelihood of 
an observable effect E (lung cancer), Cornfield et al, 
proved that the prevalence of the actual cause (C) must 
satisfy: P(C|A)/P(C|A') > P(E|A)/P(E|A').   

Figure 1.  Necessary Relationship among Relative 
Prevalences to Explain a Totally Spurious Association. 
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This necessary prevalence—Cornfield’s condition—
blunted Fisher's argument.  Fisher had noted a 2 to 1 
relative prevalence (51% vs. 24%) in smoking behavior 
for the two types of twins.  But Cornfield's condition 
required that Fisher show the prevalence of his genetic 
factor was nine times as great among smokers as among 
non-smokers.  Fisher never replied.   

[Actually, Fisher's comparison was of the form 
P(A|C)/P(A|C') – the relative prevalence of smokers 
among bad genes versus good genes -- instead of 
P(C|A)/P(C|A') –  the relative prevalence of bad genes 
among smokers versus non-smokers. 

The necessary condition of Cornfield et al is the posi-
tive side of Simpson's Paradox.  It allowed statisticians 
to conclude that, to the best of their knowledge, smo k-
ing caused cancer – based on observational studies.   

Cornfield's minimum effect size is as important to ob-
servational studies as is the use of randomized assign-
ment to experimental studies.  No longer could one re-
fute an ostensive causal association by simply asserting 
that some new factor (such as a genetic factor) might be 
the true cause.  Now one had to argue that the relative 
prevalence of this potentially confounding factor was 
greater than the relative risk for the ostensive cause.  
The higher the relative risk in the observed association, 
the stronger the argument in favor of direct causation, 
and the more the burden of proof was shifted onto those 
arguing against causation.  While there might be many 
confounding factors, only those exceeding certain nec-
essary conditions could be relevant. 

Rosenbaum (1995) said of Cornfield's condition: 
Their statement is an important conceptual ad-
vance.  The advance consists in replacing a gen-
eral qualitative statement that applies in all ob-
servational studies by a quantitative statement 
that is specific to what is observed in a particular 
study.  Instead of saying that an association be-
tween treatment and outcome does not imply 
causation, that hidden biases can explain ob-
served associations, they say that to explain the 
association seen in a particular study, one would 
need a hidden bias of a particular magnitude.  If 
the association is strong, the hidden bias needed 
to explain it is large. 

8. METHOD OF DIFFERENCES  
The minimum effect size can also be a simple difference 
of two percentages. Consider three approaches:  

8.1   Cross-Rate Equality 
A sufficient condition for “no effect” is cross-A rate 
equality: P(E|C∩A) = P(E|C∩A') = P(E|C).  And 
P(E|C'∩A) = P(E|C'∩A') = P(E|C').  This 1 gives:  

P(E|A)  = P(E|C) P(C|A)  + P(E|C') P(C'|A)       1a 
P(E|A') = P(E|C) P(C|A') + P(E|C') P(C'|A')       1b 

P(E|A)-P(E|A') = [P(E|C)-P(E|C')][P(C|A)-P(C|A')]  1c 

Since [P(C|A) - P(C|A')] ≤ 1,  

 [P(E|C) - P(E|C')] ≥ [P(E|A) - P(E|A')]       1d 

Cornfield et al derived the risk-difference condition in 
(1c) but dismis sed it saying it “leads to no useful con-
clusion.”  This paper argues that this risk -difference 
condition is extremely useful (see Section 9).  

Figure 2.  Necessary Relationship among Absolute Dif-
ferences to Explain a Totally Spurious Association.  
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8.2   Regression Coefficients 
The influence of a confounding factor can be expressed 
as a bias in the expected value of a regression coeffi-

                                                                 
1 Start with P(E|A)  = P(E|C∩A) P(C|A)  + P(E|C'∩A) P(C'|A). 
P(E|A')  = P(E|C∩A') P(C|A')  + P(E|C'∩A') P(C'|A'). 
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cient (Wonnacott and Wonnacott 1990, p. 420).  In the 
case of three variables: A, C and E, the expected change 
in the response variable E given a change in A can be 
biased whenever one ignores the influence of a con-
founding factor C.  This bias is the product of two slope 
coefficients.   

To illustrate, let the uncontrolled coefficient regressing 
E on A be b0, the “whole effect”. When regressing E on 
A and controlling for C, there are two coefficients, both 
involving E.  Let b1 be the coefficient involving A (the 
“direct effect”); let b2 be the coefficient involving C.  
Let b3 be the coefficient regressing C on A.  The “indi-
rect effect” is the product of b2 and b3.  Wonnacott and 
Wonnacott show that the whole effect (b0) is the sum of 
the direct effect (b1) and the indirect effect (b2 x b3):  
   b0 = b1  +  (b2 × b3).         2a 
If we fail to include C, the change in the expected value 
of E for a one unit change in A will be b0, the whole 
effect.  If C is a confounding factor, the change in ex-
pected value of E for a one-unit change in A should be 
b1, the direct effect.  This estimated change in E based 
on the whole effect will be biased by the amount of b2 × 
b3, the indirect effect.  

In relating this regression coefficient approach to Corn-
field’s nullification, we can obtain the same result ob-
tained earlier in (1d).  With no direct effect (b1 = 0), the 
direct association is completely spurious and 

b0 = b2 × b3.            2b 
The difference between the uncontrolled effect (b0) and 
the direct effect (b1) can be viewed as bias—an appar-
ent influence due to a failure to take account of the con-
founding factor.   

If all the variables are binary, then the regression slope 
coefficients are the difference in the associated percent-
ages:  b0 = P(E|A) - P(E|A'),  
  b3 = P(C|A) - P(C|A') 
Assuming A has “no effect” on E, we get: 
  b2 = P(E|C∩A) - P(E|C'∩A) = P(E|C) - P(E|C') 
If b0 = b2 × b3, we obtain (1c). 

Since these slopes are differences in probabilities, they 
have absolute values no greater than 1.  Thus we can 
deduce that b2 ≥ b0, as shown in (1d). 

8.3  Partial Correlation Coefficients 
The influence of a confounding factor can be expressed 
using partial correlation.   

   rAE,C = {rAE - [rAC rCE]}/ √[(1-r2
AC) (1-r2

CE)]       3a 
If the apparent association between A and E (rAE) is 
entirely spurious and is due entirely to associations with 
a common cause (C), then the association between A 
and E, conditioned on C, is zero (rAE,C = 0).  Thus, 

 rAE = rAC rCE             3b 

It follows that |rAC| and |rCE| must each be at least as 
large as |rAE|.  This relationship is well known, “For a 
confounding variable to explain an association of a 
given strength, it must have a much stronger association 
with both the possible causal factor and the disease” 
(Friedman 1994, p. 210 and 214).  

When the variables involved are binary, the Pearson 
correlation coefficient reduces to phi (φ ):  

φ (E,C)=[P(E|C)-P(E|C')]√[P(C)P(C')]/[P(E)P(E')]  3c 

Under (3b), φ (E,A) = φ (E,C) x φ  (C,A). Thus, 

[P(E|A) - P(E|A')] √{[P(A)P(A')]/[P(E)P(E')]}  

=  {[P(E|C) - P(E|C')]√{[P(C)P(C')]/[P(E)P(E')]}} 

{[P(C|A) - P(C|A')]√{[P(A)P(A')]/[P(C)P(C')]}}  3d 
which reduces to (1c). 

8.4  Comparison of Approaches 
All three “difference” approaches give the same result 
as summarized by (1c) and (1d).  The cross-rate equal-
ity approach is simplest.  The regression approach is 
most powerful since it can be generalized to multiple 
confounding factors (Wonnacott and Wonnacott 1979, 
p. 415).  Although the partial correlation coefficient 
approach is more theoretical, it can be shown to meas-
ure the strength of association without knowing the 
prevalence of C in A.  

9. EXPLANATORY POWER 
Equation (1d) gives a very simple method for determin-
ing whether a third variable (C) has the strength – the 
effect size – necessary to nullify or reverse an observed 
association between two other variables (A and E).  
Students need only compare two simple differences 
measured in percentage points.  If,  

 [P(E|C) - P(E|C')] ≥ [P(E|A) - P(E|A')]       1d 
then one should be concerned about the possibility of a 
Simpson's Paradox reversal.  This simple requirement 
establishes a minimum effect size for any confounding 
factor to nullify or reverse an observed association.  

10. TEACHING SIMPSON'S PARADOX 
For the past three years students in introductory statis-
tics were taught to use simple differences -- differences 
in percentage points -- in comparing the explanatory 
powers of two binary variables.  Students were cau-
tioned that the truth of the percentage-point difference 
is not sufficient to imply a Simpson’s Paradox rever-
sal—it is only a necessary condition.  Students have 
used these ideas as follows. 

1. Consider two hospitals: a city hospital and a rural 
hospital.  The death rate is 3% of cases at the city hos-
pital versus 2% at the rural. The combined death rate is 
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2.7%.  Thus, it seems that the rural hospital is safer than 
the city hospital.  See Figure 3. 

Figure 3.  Death rates by hospital and patient condition 

2.7%

3.8%

1.2%

3.0%

2.0%

By Hospital By Patient Condition

2.
6 

P
ct

. P
ts

1 
P

ct
.P

t.

Death Rates

Rural

City

Overall
Poor

Good

 

Now consider a plausible confounding factor: the con-
dition of the patient’s health.   We find that overall the 
death rate among patients in poor condition is 3.8% 
while that among patients in good condition is 1.2%. 

Here the simple difference in death rates by patient 
condition (2.6 percentage points) is greater than the 
simple difference in death rates by hospital (1 percent-
age point).  Thus we have strong reason to be con-
cerned about a possible Simpson's Paradox reversal of 
the association between hospital and death rate.  To 
guard against such a reversal we can take into account 
(control for) patient condition when comparing the 
death rates for these two hospitals. 

2. In a group of convicted murderers, the death pen-
alty was given for 11.9% of white murderers and 10.5% 
of black murderers (Agresti 1984).  Based on this data, 
one might argue that the legal system is biased against 
whites.  However, when the sentences are classified by 
the race of the victim, the death penalty was given in 
14.0% of the cases with a white victim and 5.4% of the 
cases with a black victim.  The difference in the rate of 
death sentences by race of victim (8.6 percentage 
points) is greater than the difference in rate of death 
sentences by race of murderer (1.4 percentage points).  
To guard against a Simpson's Paradox reversal we must 
take into account the race of the victim when studying 
the association between the death penalty and the race 
of the mu rderer.  See Figure 4.  

Figure 4.  Death sentence rates  
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3. Cryer and Miller discuss renewal rates of magazine 
subscriptions (1991, p. 93).  In one year the overall re-

newal rate was increased between January and Febru-
ary.  Yet the renewal rate in every category went down.  
With six kinds of subscriptions, the cause is difficult to 
see.  But if we eliminate all types of subscriptions ex-
cept the two largest groups, we find the overall renewal 
rate was 53.4%.  The overall rate was 47.9% in January 
and 67.1% in February.  The two-month renewal rate 
for regular renewal was 78.3% while that for subscrip-
tion agents was 20.6%.  The difference in renewal rates 
by type of subscription (67.7 percentage points) is 
much greater than the difference in renewal rates by 
month (19.5 percentage points).  Thus to understand the 
month-to-month difference, we must take into account 
the type of subscription.  This example shows that even 
a time difference is susceptible to Simpson's Paradox.  

Figure 5.  Renewal rates by month and subscription 
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11. RESULTS OF TEACHING 
Following are some observations of the results of teach-
ing students about the Cornfield conditions: 

1. Students found the algebraic form of Cornfield's 
condition to be unintuitive. To better illustrate these 
differences, a graphical technique was developed.  The 
overall probability of the effect, P(E), was used as the 
base line.  The four probabilities being compared were 
grouped so that percentage point differences were vis u-
ally evident (See Figures 3, 4 and 5).   

2. Students found this graphical device (Figures 3, 4 
and 5) to be visually intuitive.  It seems to be a simple 
and sensible way to measure the importance -- the ex-
planatory power -- of a confounding factor. 

3. Students need extensive reinforcement to see that 
associations can be conditional.  They don't see arith-
metic as conditional, so why should statistics be differ-
ent.   

4. Students seem to understand the problem of asso-
ciation reversal better when describing the association 
as “spurious” rather than as “biased”.  The concept of 
‘bias’ implies error, whereas the concept of ‘spurious’ 
better captures the spirit of being true in one sense, but 
not in another.  ‘Spurious’ indicates 'real' but lacking in 
authenticity.  Knowing an association can be unbiased 
(true) but still be spurious gives them a more powerful 
way of evaluating an association.   Furthermore, know-
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ing an association can be spurious sets the stage for 
partial correlation and multivariate regression. 

5. Students who are trained in this way seem better 
able to appreciate the distinction between total and 
partial correlations in multivariate regression.  They 
are more concerned about what is taken into account. 

12. POSSIBLE OBJECTIONS 
Following are some arguments against featuring Simp-
son's Paradox in teaching introductory statistics: 

1. Simpson's Paradox is unimportant.  It is omitted 
from many introductory texts.  When present, it is 
sometimes just a problem or an optional section.  Even 
if in the text, teachers often skip it.  Reply:  True, these 
are signs of unimportance, but they are not arguments. 

2. In observational studies, Simpson's Paradox is 
always possible.  There is no known statistical test for 
confounding.  Reply:  True but with Cornfields' min i-
mum effect-size conditions we can eliminate many con-
founders and thus strengthen an inductive argument. 

3. Simpson's Paradox is seldom encountered in doing 
real statistical studies.  Reply:  Yes, but the observa-
tional studies most susceptible to Simpson's Paradox 
are often the studies used as evidence for important 
changes in public policy (c.f., second hand smoke). 

4. There are too many other statistical concepts that 
are more fundamental.  Reply:  Fundamentality de-
pends on the goal.  Simpson's Paradox is not fundamen-
tal if the goal is to reason deductively about statistical 
inference, but is most fundamental if the goal is to rea-
son inductively from association to direct causation.  

5. Typically, there are multiple confounding factors.  
Reply:  True.  This single-factor emphasis should be 
used as an introduction to multiple regression.  

13. CONCLUSION 
If students are to understand proper inductive reasoning 
about causality in observational studies, they must un-
derstand Simpson's Paradox.  Understanding the neces-
sary condition (minimum effect size) for a reversal of a 
spurious association is the key to proper understanding 
of Simpson's Paradox.  Without proper understanding 
of the necessary condition, Simpson's Paradox can be a 
doorway to subjectivis m (i.e., if an argument is not de-
ductively valid, nothing is certain and anything is pos-
sible).  Thus Cornfield’s conditions are a most impor-
tant statistical contribution to human thought. 

REFERENCES  
Agresti, A.  1984.  Analysis of Ordinal Categorical 
Data.  John Wiley. 

Cornfield, J., Haenszel, W., Hammond, E., Lilienfeld, 
A., Shimkin, M., and Wynder, E. (1959).  Smoking and 
lung cancer: Recent evidence and a discussion of some 
questions.  Journal of the National Cancer Institute, 22, 
173-203.  

Cryer, Jon and Robert Miller (1991), Statistics for 
Business: Data Analysis and Modelling.  PWS-Kent. 

Fisher, Ronald (1958).  Letter to the Editor.  Nature. 

Freedman, David, Robert Pisani, Roger Purves and Ani 
Adhikari.  Statistics 2nd ed.  W.W. Norton & Co., 

Friedman, Gary (1994). Primer Of Epidemiology 4th 
ed., McGraw Hill 

Kelley, David (1994).  The Art of Reasoning.  2nd ed.  
W.W. Norton & Co.  

Pearl, Judea (1999). Why There Is No Statistical Test 
For Confounding, Why Many Think There Is, And Why 
They Are Almost Right.  Technical Report R-256.   
http://singapore.cs.ucla.edu/jp_home.html.  

Rosenbaum, Paul R. (1995).  Observational Studies.  
Springer-Verlag.  P. 88.  

Rosenbaum, Paul R. Cornfield's Inequality.  Encyclo-
pedia of Biostatistics. 

Samuels, Myra (1993).  Simpson's Paradox and Related 
Phenomena.  Journal of the American Statistical Asso-
ciation, March, 1993, p. 81. 

Schield, Milo (1998).  Statistical Literacy and Eviden-
tial Statistics.  ASA Proceedings of the Section on Sta-
tistical Education, p. 137. 

Wonnacott, Thomas H. and Ronald J. Wonnacott 
(1979).  Econometrics, 2nd ed., John Wiley.  

Wonnacott, Thomas H. and Ronald J. Wonnacott 
(1990). Introductory Statistics, 5 th ed. John Wiley 
 
Acknowledgments: Paul Rosenbaum called attention 
to Cornfield's essay in his talk at the 1998 ASA JSM.  
In Australia, Neil Thomason, University of Melbourne, 
provided David Lewis's graphical explanation of Simp-
son's Paradox while Bob Gibberd, University of Ne w-
castle, suggested the use of conditional probability to 
obtain a simple difference comparison.  Tom Wonna-
cott, University of Western Ontario in Canada, noted 
the use of regression to analyze bias due to an omitted 
confounder.  This paper is based on talks given in Aus-
tralia at the University of Newcastle and at the Statisti-
cal Society of Australia, NSW.  Donald Macnaughton 
made suggestions on earlier drafts.  Jan Hajek, Nether-
lands, and Ansgar Grüne, Institut für Informatik I in 
Bonn, independently spotted an unjustified claim.  The 
author can be reached at schield@augsburg.edu.  This 
paper is at www.augsburg.edu/ppages/~schield. 



07/23/03 Updated Simpson's Paradox and Cornfield's Conditions ASA-JSM 1999 

99ASA.doc Page 7 Milo Schield 

Appendix I: Quotes from Cornfield et al (1959). 

Measures of Difference: 
“…we now discuss the use of relative and absolute 
measures of differences in risk.  When an agent has an 
apparent effect on several diseases, the ranking of the 
diseases by the magnitude of the effect will depend on 
whether an absolute or a relative measure is used.  …  
 Both the absolute and the relative measures serve a 
purpose.  The relative measure is helpful in 1) apprais-
ing the possible noncausal nature of an agent having an 
apparent effect; 2) appraising the importance of an 
agent with respect to other possible agents inducing the 
same effect; and 3) properly reflecting the effects of 
disease misclassification or further refinement of classi-
fication.  The absolute measure would be important in 
appraising the public health significance of an effect 
known to be causal.   
 The first justification for use of the relative meas-
ure can be stated more precisely, as follows: 

If an agent, A, with no causal effect upon the risk of a dis-
ease, nevertheless, because of a positive correlation with 
some other causal agent, B, shows an apparent risk, r, for 
those exposed to A, relative to those not so exposed, then 
the prevalence of B, among those exposed to A, relative to 
the prevalence among those not so exposed, must be 
greater than r.  

Thus, if cigarette smokers have 9 times the risk of non-
smokers for developing lung cancer, and this is not be-
cause cigarette smoke is a causal agent, but only be-
cause cigarette smokers produce hormone X, then the 
proportion of hormone-X-producers among cigarette 
smokers must be at least 9 times greater than that of 
non-smokers.  If the relative prevalence of hormone-X-
producers is considerably less than ninefold, then hor-
mone X cannot account for the magnitude of the appar-
ent effect (Appendix A).  
 The second reason for using a relative measure 
may be phrased as follows: 

If two uncorrelated agents, A and B, each increase the risk 
of a disease, and if the risk of the disease in the absence of 
either agent is small (in a sense to be defined), then the ap-
parent relative risk for A, r, is less than the risk for A in the 
absence of B. 

The presence of other real causes thus reduces the ap-
parent relative risk.  If, for example, the relative risk of 
developing either disease I or disease II on exposure to 
A is the same in the absence of other causes, and if dis-
ease I, but not disease II, also has agent B present, then 
the apparent relative risk of developing disease I on 
exposure to A will be less than that for disease II (Ap-
pendix B).   
 The third reason for using a relative measure is: 

If a causal agent A increases the risk for disease I and has 
no effect on the risk for disease II, then the relative risk of 
developing disease I, alone, is greater than the relative risk 
of developing disease I and II combined, while the absolute 
measure is unaffected. 

Appendix A 
We feel obliged to give proof of the rather obvious 
statement on the magnitudes of relative risk because it 
has been suggested that the use of a relative measure-
ment is merely “instinctive” and lacking in rational 
justification.  Let the disease rate for those exposed to 
the causal agent B, be r1 and for those not exposed, r2, 
each rate being unaffected by exposure or nonexposure 
to the noncausal agent, A.   Let r1 > r2.  Of those ex-
posed to A, let the proportion exposed to B be p1, and 
of those not exposed to A, let the proportion exposed to 
B be p2.  Because of the assumed positive correlation 
between A and B, p1 > p2.  Then 
      R1 = rate for those exposed to A = p1r1 +(1-p1)r2 
      R2 = rate for those not exposed to A = p2r1 +(1-p2)r2 
(1) R1/R2  =  {p1r1 +(1-p1)r2} / {p2r1 +(1-p2)r2} 
Since p1 > p2 and r1 > r2, it follows that R1/R2 > 1. 
From (1) we obtain 
 p1/p2 = R1/R2 + [r2 /(p2 r1)] [(1-p2)(R1/R2)-(1-p1)] 
Since p1 > p2 and R1/R2 > 1, the second term on the 
right is positive and p1/p2 > R1/R2. 
Since p1/p2 is the ratio of the prevalence of B among 
those exposed to A relative to that among those not so 
exposed, and R1/R2 is the apparent relative risk, r, the 
statement is proved. 

On the other hand, if the absolute difference, R1 - R2, is 
used, the relationship, (R1 - R2) = (r1 - r2)(p1 - p2), leads 
to no useful conclusion about p1 - p2. 

Appendix B 

The proof again is simple.  Let r11 denote the risk of the 
disease in the presence of both A and B, r12, the risk in 
the present of A and absence of B, r21, the risk in the 
absence of A and presence of B, and r22, the risk in the 
absence of both A and B.  It is reasonable to assume r22 
= 0, but the less restrictive specification, r22 < r12 r21 / 
r11 is sufficient for what follows.  The proportion of the 
population exposed to B is denoted by p, and this, by 
hypothesis, is the same whether A is present or absent.   
Then 
    R1 = rate for those exposed to A = pr11 +(1-p)r12 
    R2 = rate for those not exposed to A = pr21 +(1-p)r22 
and  R1/R2  = apparent relative risk 

 R1  r12 [1+{[p/(1-p)](r11 / r12)}] 

 R2  r22 [1+{[p/(1-p)](r21 / r22)}] 

Since r22/r21 < r12/r11, the second factor is less than 
unity and (R1/R2) < (r12/r22) which proves the proposi-
tion.” 

[Editorial comment: In Appendix A, the result follow-
ing (1) is obtained by multiplying (1) by the right-hand 
denominator, dividing by p2r1, and canceling r1.] 

= 


