
Of P-Values and Bayes: A Modest Proposal
Steven N. Goodman

I am delighted to be invited to comment on the use of
P-values, but at the same time, it depresses me. Why? So
much brainpower, ink, and passion have been expended
on this subject for so long, yet plus ca change, plus c’ést le
meme chose – the more things change, the more they stay
the same. The references on this topic encompass innu-
merable disciplines, going back almost to the moment
that P-values were introduced (by R.A. Fisher in the
1920s). The introduction of hypothesis testing in 1933
precipitated more intense engagement, caused by the
subsuming of Fisher’s “significance test” into the hypoth-
esis test machinery.1–9 The discussion has continued ever
since. I have been foolish enough to think I could
whistle into this hurricane and be heard.10–12 But we
(and I) still use P-values. And when a journal like
EPIDEMIOLOGY takes a principled stand against them,13

epidemiologists who may recognize the limitations of P-
values still feel as if they are being forced to walk on one
leg.14

So why do those of us who criticize the use of P-values
bother to continue doing so? Isn’t the “real world” telling us
something – that we are wrong, that the effort is quixotic,
or that this is too trivial an issue for epidemiologists to
spend time on? Admittedly, this is not the most pressing
methodologic issue facing epidemiologists. Still, I will try to
argue that the topic is worthy of serious consideration.

Let me begin with an observation. When epidemiol-
ogists informally communicate their results (in talks,
meeting presentations, or policy discussions), the bal-
ance between biology, methodology, data, and context is
often appropriate. There is an emphasis on presenting a
coherent epidemiologic or pathophysiologic “story,”
with comparatively little talk of statistical “rejection” or
other related tomfoolery. But this same sensibility is
often not reflected in published papers. Here, the struc-
ture of presentation is more rigid, and statistical summa-
ries seem to have more power. Within these confines,
the narrative flow becomes secondary to the distillation
of complex data, and inferences seem to flow from the

data almost automatically. It is this automaticity of in-
ference that is most distressing, and for which the elim-
ination of P-values has been attempted as a curative.

Although I applaud the motivation of attempts to
eliminate P-values, they have failed in the past and I
predict that they will continue to fail. This is because
they treat the symptoms and not the underlying mindset,
which must be our target. We must change how we
think about science itself.

I and others have discussed the connections between
statistics and scientific philosophy elsewhere,11,12,15–22 so
I will cut to the chase here. The root cause of our
problem is a philosophy of scientific inference that is
supported by the statistical methodology in dominant
use. This philosophy might best be described as a form of
“naïve inductivism,”23 a belief that all scientists seeing
the same data should come to the same conclusions. By
implication, anyone who draws a different conclusion
must be doing so for nonscientific reasons. It takes as
given the statistical models we impose on data, and
treats the estimated parameters of such models as direct
mirrors of reality rather than as highly filtered and po-
tentially distorted views. It is a belief that scientific
reasoning requires little more than statistical model fit-
ting, or in our case, reporting odds ratios, P-values and
the like, to arrive at the truth.

How is this philosophy manifest in research reports?
One merely has to look at their organization. Tradition-
ally, the findings of a paper are stated at the beginning of
the discussion section. It is as if the finding is something
derived directly from the results section. Reasoning and
external facts come afterward, if at all. That is, in es-
sence, naïve inductivism. This view of the scientific
enterprise is aided and abetted by the P-value in a
variety of ways, some obvious, some subtle. The obvious
way is in its role in the reject/accept hypothesis test
machinery. The more subtle way is in the fact that the
P-value is a probability – something absolute, with noth-
ing external needed for its interpretation.

Now let us imagine another world – a world in which
we use an inferential index that does not tell us where
we stand, but how much distance we have covered.
Imagine a number that does not tell us what we know,
but how much we have learned. Such a number could
lead us to think very differently about the role of data in
making inferences, and in turn lead us to write about our
data in a profoundly different manner.

This is not an imaginary world; such a number exists.
It is called the Bayes factor.15,17,25 It is the data compo-
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nent of Bayes Theorem. The odds we put on the null
hypothesis (relative to others) using data external to a
study is called the “prior odds,” and the odds after seeing
the data is the “posterior odds.” The Bayes factor tells us
how far apart those odds are, ie, the degree to which the
data from a study move us from our initial position. It is
quite literally an epistemic odds ratio, the ratio of pos-
terior to prior odds, although it is calculable from the
data, without those odds. It is the ratio of the data’s
probability under two competing hypotheses.15,17

If we have a Bayes factor equal to 1/10 for the null
hypothesis relative to the alternative hypothesis, it means
that these study results have decreased the relative odds of
the null hypothesis by 10-fold. For example, if the initial
odds of the null were 1 (ie, a probability of 50%), then the
odds after the study would be 1/10 (a probability of 9%).
Suppose that the probability of the null hypothesis is high
to begin with (as they typically are in data dredging set-
tings), say an odds of 9 (90%). Then a 10-fold decrease
would change the odds of the null hypothesis to 9/10 (a
probability of 47%), still quite probable. The Bayes factor is
a measure of evidence in the same way evidence is viewed
in a legal setting, or informally by scientists. Evidence
moves us in the direction of greater or lesser doubt, but
except in extreme cases it does not dictate guilt or inno-
cence, truth or falsity.

I should warn readers knowledgeable in Bayesian
methods to stop here. They may be severely disap-
pointed (or even horrified) by the proposal I am about to
make. I suggest that the Bayes factor does not necessarily
have to be derived from a standard Bayesian analysis,
although I would prefer that it were. As a simple alter-
native, it is possible instead to use the minimum Bayes
factor (for the null hypothesis).26 The appeal of the
minimum Bayes factor is that it is calculated from the
same information that goes into the P-value, and can
easily be derived from standard analytic results, as de-
scribed below. Quantitatively, it is only a small step from
the P-value (and shares the liability of confounding the
effect size with its precision). But conceptually, it is a
huge leap. I recommend it not as a cure-all, but as a
practical first step toward methodologic sanity.

The calculation goes like this. If a statistical test is
based on a Gaussian approximation (as they are in many
epidemiologic analyses), the strongest Bayes factor
against the null hypothesis is exp(2Z2/2), where Z is the
number of standard errors from the null value. Thus it
can be applied to most regression coefficients (whose

significance is typically based on some
form of normal approximation) and
contingency tables. (When the t-sta-
tistic is used, it can substitute for Z.) If
the log-likelihood of a model is re-
ported, the minimum Bayes factor is
simply the exponential of the differ-
ence between the log-likelihoods of
two competing models (ie, the ratio of
their maximum likelihoods). This
likelihood-ratio (the minimum Bayes
factor) is the basis for most frequentist

analyses. While it is invariably converted into a P-value,
it has inferential meaning without such conversion.

The minimum Bayes factor described above does not
involve a prior probability distribution over non-null
hypotheses; it is a global minimum for all prior distribu-
tions. However, there is also a simple formula for the
minimum Bayes factor in the situation where the prior
probability distribution is symmetric and descending
around the null value. This is 2e p ln(p),27,28 where p is
the fixed-sample size P-value. The table shows the cor-
respondence between P-values, Z- (or t-) scores, and the
two forms of minimum Bayes factors described above.
Note that even the strongest evidence against the null
hypothesis does not lower its odds as much as the P-
value magnitude might lead people to believe. More
importantly, the minimum Bayes factor makes it clear
that we cannot estimate the credibility of the null hy-
pothesis without considering evidence outside the study.

This translation from P-value to minimum Bayes fac-
tor is not merely a recalibration of our evidential mea-
sure, like converting from Fahrenheit to Celsius. By
assessing the result with a minimum Bayes factor, we
bring into play a different conceptual framework, which
requires us to separate statistical results from inductive
inferences. Reading from Table 1, a P-value of 0.01
represents a “weight of evidence” for the null hypothesis
of somewhere between 1/25 (0.04)) and 1/8 (0.13). In
other words, the relative odds of the null hypothesis vs
any alternative are at most 8–25 times lower than they
were before the study. If I am going to make a claim that
a null effect is highly unlikely (eg, less than 5%), it
follows that I should have evidence outside the study
that the prior probability of the null was no greater than
60%. If the relationship being studied is far-fetched (eg,
the probability of the null was greater than 60%), the
evidence may still be too weak to make a strong knowl-
edge claim. Conversely, even weak evidence in support
of a highly plausible relationship may be enough for an
author to make a convincing case.15,17

The use of the Bayes factor could give us a different
view of results and discussion sections. In the results
section, both the data and model-based data summaries
are presented. (The choice of a mathematical model can
be regarded as an inferential step, but I will not explore
that here.) This can be followed by an index like the
Bayes factor if two hypotheses are to be contrasted. The
discussion section should then serve as a bridge between
these indices and the conclusions. The components of

TABLE 1 Bayesian Interpretations of P-Values

P-value
(Z-score)

Minimum
Bayes factor

-e p
ln(p)

Decrease in probability of the
null hypothesis.. . .

Strength of evidence
From 50%, to
no less than

From 75%, to
no less than

0.10 (1.64) 0.26 0.6 21% 44% Weak
0.05 (1.96) 0.15 0.4 13% 31% Moderate
0.03 (2.17) 0.1 0.3 9% 22% Moderate
0.01 (2.58) 0.04 0.13 3.5% 10% Moderate to strong
0.001 (3.28) 0.005 0.02 0.5% 1% Strong to very strong
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this bridge are the plausibility of the proposed mecha-
nisms, (drawing on laboratory, other experimental evi-
dence and patterns within this data), other empirical
results related to this hypothesis and the qualitative
strength of the current study’s design and execution.

P-values need not be banned, although I would be
happy to see them go. (When I see them, I translate
them into approximate Bayes factors.) But we should
certainly ban inferential reasoning based on the naïve
use of P-values and hypothesis tests, and their various
partners in crime, eg, stepwise regression (which chooses
regression terms based exclusively on statistical signifi-
cance, widely recognized as egregiously biased and mis-
leading).29,30 Even without formal Bayesian analysis, the
use of minimum Bayes factors (along with, or in lieu of,
P-values) might provide an antidote for the worst infer-
ential misdeeds. More broadly, we should incorporate a
Bayesian framework into our writing, and not just our
speaking. We should describe our data as one source of
information among many that make a relationship ei-
ther plausible or unlikely. The use of summaries such as
the Bayes factor encourages that, while use of the P-
value makes it nearly impossible.

Changing the P-value culture is just a beginning. We
utilize powerful tools to organize data and to guess at the
reality which gave rise to them. We need to remember that
these tools can create their own virtual reality.17,30,31 The
object of our study must be nature itself, not artifacts of the
tools we use to probe its secrets. If we approach our data
with respect for their complexity, with humility about our
ability to sort that out, and with detailed knowledge of the
phenomena under study, we will serve our science and the
public health well. From that perspective, whether or not
we use P-values seems, well, insignificant.

References
1. Berkson J. Tests of significance considered as evidence. J Am Stat Assoc

1942;37:325–335.
2. Fisher R. Statistical Methods and Scientific Inference. 3rd ed. New York:

Macmillan, 1973.

3. Nunnally J. The place of statistics in psychology. Educ Psychol Meas 1960;
20(4):641–650.

4. Morrison D, Henkel R. The Significance Test Controversy: A Reader.
Chicago: Aldine Publishing, 1970.

5. Buchanan-Wollaston H. The philosophic basis of statistical analysis. J Int
Council Explor Sea 1935;10:249–263.

6. Rothman K. Significance questing. Ann Int Med 1986;105:445–447.
7. Rozeboom W. The fallacy of the null hypothesis significance test. Psychol

Bull 1960;57(5):416–428.
8. Pearson E. Some thoughts on statistical inference. Ann Math Stat 1962;33:

394–403.
9. Cohen J. The earth is round (p , .05). Am Psychol 1994;49:997–1003.

10. Goodman SN, Royall R. Evidence and scientific research. Am J Public
Health 1988;78:1568–1574.

11. Goodman SN. P-values, hypothesis tests and likelihood: implications for
epidemiology of a neglected historical debate (with commentary and re-
sponse). Am J Epidemiol 1993;137:485–496.

12. Goodman SN. Toward evidence-based medical statistics I. The P value
fallacy. Ann Intern Med 1999;130:995–1004.

13. Rothman K. Writing for Epidemiology. Epidemiology 1998;9:333–337.
14. Lang J, Rothman K, Cann C. That Confounded P-value. Epidemiology

1998;9:7–8.
15. Goodman SN. Towards evidence-based medical statistics. II. The Bayes

Factor. Ann Intern Med 1999;130:1005–1013.
16. Poole C. Beyond the confidence interval. Am J Public Health 1987;77:195–

199.
17. Greenland S. Probability logic and probabilistic induction [see comments].

Epidemiology 1998;9:322–332.
18. Lindley D. The philosophy of statistics (with discussion). The Statistician

2000;49:293–337.
19. Howson C, Urbach P. Scientific Reasoning: The Bayesian Approach. 2nd

ed. La Salle, IL: Open Court, 1993.
20. Rothman K, Greenland S. Modern Epidemiology. 2nd ed. Philadelphia:

Lippincott-Raven, 1998.
21. Oakes M. Statistical Inference. Chestnut Hill, MA: Epidemiology Resources

Inc, 1990.
22. Greenland S. Summarization, smoothing, and inference in epidemiologic

analysis. Scand J Soc Med 1993;21:227–232.
23. Chalmers A. What is this thing called science? 3rd ed. Indianapolis: Hack-

ett, 1999.
24. Deleted in proof.
25. Kass R, Raftery A. Bayes factors. JASA 1995;90:773–795.
26. Edwards W, Lindman H, Savage L. Bayesian statistical inference for psy-

chological research. Psychol Rev 1963;70:193–242.
27. Bayarri MJ, Berger J. Quantifying Surprise in the Data and Model Verifica-

tion. In: Bernado, et al, eds. Bayesian Statistics. Oxford, Oxford University
Press, 1998; 53-82.

28. Berger JO, Sellke T. Testing a point null hypothesis: The irreconcilability of
P-values and evidence. J Am Stat Assoc 1987;82:112-122.

29. Harrell F, Lee K, Mark D. Multivariable prognostic models: Issues in devel-
oping models, evaluating assumptions and adequacy, and measuring and
reducing errors. Stat Med 1996;15:361–387.

30. Greenland S. Modeling and variable selection in epidemiologic analysis.
Am J Public Health 1989;79:340–349.

31. Robins JM, Greenland S. The role of model selection in causal inference
from nonexperimental data. Am J Epidemiol 1986;123:392–402.

Epidemiology May 2001, Vol. 12 No. 3 P-VALUES AND BAYES 297


