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Representations of Reversal 

An Exploration of Simpson's Paradox
Lawrence Mark Lesser 

WHEN updating its Standards documents, the National Council of Teachers
of Mathematics (NCTM) added a pre-K-12 Standard on representation, 
urging that students be able to develop a repertoire of mathematical repre-
sentations that can be used purposefully and flexibly to model and interpret 
physical, social, and mathematical phenomena (NCTM 2000). This article 
aims to explore the potential of including multiple representations in one's 
teaching repertoire through an accessible phenomenon for which full insight 
is not obvious from using only the single most common representation. The 
phenomenon chosen, Simpson's paradox, can be concisely defined as the 
reversal of a comparison when data are grouped. In this particular example, 
we will see that it is possible for women to be hired at a higher rate than men 
within each of two departments but at a lower rate than men when the data 
from both departments are pooled together. 

THE RELEVANCE OF SIMPSON'S PARADOX 
Simpson's paradox was first noted in 1951 by the British statistician E. H. 

Simpson but was discussed as early as 1903 by the Scottish statistician 
George Yule (Wagner 1983). Simpson's paradox can involve a comparison of 
overall rates, ratios, percentages, proportions, probabilities, averages, or 
measurements that are weighted averages of subgroup counterparts. Stu- 
dents are likely vulnerable to this paradox if they have the related "averaging 
the averages" misconception, in which they compute the ordinary average in 
problems requiring the weighted average. In a weighted average, an overall 
average is computed by weighting the individual averages by the sizes of 
their corresponding individual groups. For example, if the average final exam 
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score in a 30-student class is 100 and the average final exam score in a 10-
student class is 60, the overall average for all 40 students is not the 
"unweighted" mean (100 + 60)/2 = 80 but is obtained as a weighted mean: 
((100)(30) + (60)(10))/40 = 90. When some courses are worth more credit 
hours than others, a student's overall grade-point average is a weighted aver- 
age as well. A geometrical interpretation of the weighted mean is described  
by Hoehn (1984) and will be discussed later. 

Simpson's paradox was chosen for the investigation for several reasons: 
1. It is simple enough to encounter (e.g., table 11.1) with mere fraction 

arithmetic and yet complex enough to model with tools spanning a broad 
range of high school mathematics content, generating many different repre-
sentations. 

2. A paradox can motivate students (Movshovitz-Hadar and Hadass 
1990; Wilensky 1995; Lesser 1998). 

3. Its structure relates to common student misconceptions regarding  
weighted means or even the addition of fractions. Noting that students are 
taught (correctly) that the statements 

a/b > e/f and c/d > g/h imply a/b + c/d > e/f+ g/h, 
Mitchem (1989) suggests that students who (incorrectly) add fractions by 
adding the numerators and adding the denominators would assume that   
(a + c) / (b + d) always exceeds (e + g) / (f+ h) and thus be vulnerable to the 
paradox. 

4. It provides many opportunities to explore "both the mathematical 
and developmental advantages and disadvantages in making selections  
among the various models" (NCTM 1991, p. 151). 
       5. It allows "a view of a real-world phenomenon ... through an analytic 
structure imposed on it" (NCTM 2000, p. 70). 
This phenomenon is not contrived: it has actually occurred in many nat- 

ural situations, including university admission rates (male versus female), 
fertility rates (rural versus urban), death rates (young versus old), death 
penalty cases (black versus white), categories of federal tax rates, and various 
baseball statistics (Bassett 1994; Bickel, Hammel, and O'Connell 1975; 
Cohen 1986; Moore and McCabe 1993; Wagner 1982a). Simpson's paradox 
underscores the pitfall of basing a conclusion on only a single average and 
demonstrates a general need for intuition to be checked against mathemati- 
cal arguments. Exploring Simpson's paradox may also stimulate greater 
awareness of what one is averaging over, such as the phenomenon that a uni- 
versity's mean class size averaged over students is never smaller than the 
mean class size averaged over classes (Hemenway 1982; Movshovitz-Hadar 
and Webb 1998). 
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REPRESENTATIONS OF SIMPSON'S PARADOX 
    What are some ways to think about Simpson's paradox? This article pre-     
sents many ways and invites the reader to grab pencil and paper and explore 
them. The reader is also encouraged to reflect on the "relative strengths and 
weaknesses of various representations for different purposes" (NCTM 2000,    
p. 70). Which ones seem "new" or applicable to other mathematics content? 

Numerical or Tabular Representations 

and employment application status (hired or denied). The numbers were cho-   
sen for ease of computation and to draw attention to the role of where the larger 
and smaller cell sizes were located. (Later in the article, table 11.2 offers a simi-
larly behaving data set that is more subtle in appearance.) It is routine to verify 
that within each department, women are hired at a higher rate than men (since 
30/80 = .375 > .25 = 5/20 and 15/20 = .75 > .625 = 50/80), yet are hired at a 
lower rate than men for the overall situation: (30 + 15)/100 = .45 < .55 = (5 + 
50)/100. 
 

TABLE 11.1 
Hiring Data (by Gender and Department) 

ables gender (male or female), department (social sciences or physical sciences), 

    This section begins with a numerical or tabular representation because it is 
concrete and is the most common representation that textbooks use for Simp-
son's paradox. Table 11.1 is a 2x2x2 table involving the three categorical vari-  

Social Sciences 
Male       Female 

 

Physical Science 
Male       Female 

   0verall        
   Male        Female  

Hired 
Denied 

5 
15 

30 
50 

50 
30 

15 
 5 

5 
55 
45 

45 
55 

Total applied 20 80 80 20 100 100 

 
    As Wagner (1982b) states, "Because this situation occurs at the level of a 
purely descriptive data analysis, it can easily bewilder the statistically naïve 
observer" (p. 47). Indeed, many students have responded with the reaction   
"I follow the arithmetic, but I still don't believe the result." The numerical 
representation is undeniably effective in demonstrating that Simpson's para- 
dox can happen but limited in offering insight into how it can happen. 
Exploring additional representations can provide insight into the situation   
that will help resolve this tension. We will keep the underlying numbers the 
same, however, to keep the primary focus on the representation itself. 
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The Circle Graph Representation  
 
   One alternative representation is the circle graph (Paik 1985) as shown in 
figure 11.1. Each circle acts as a sort of scatterplot cluster of points represent-
ing one of the four gender-department combinations with the y-coordinate   
of each center at the corresponding hiring rate (.25, .375, .625, or .75). The 
"weighting" of each hiring rate is reflected in the area of each circle being pro-
portional to the size (20, 80, 80, or 20, respectively) of the applicant pool for 
that particular gender-department combination. The top right circle and   
lower left circle are small, each representing a group of 20 people—physical 
sciences women or social sciences men, respectively. The larger circles repre-
sent groups of 80 people—physical sciences men and social sciences women. 
Since 80 = 4(20), one of the large circles should have quadruple the area (and 
double the radius) of a smaller circle in figure 11.1. (There is no significance   
to the absolute length of any particular radius nor to whether the endpoints of 
the line segment representing the "overall" situation lie inside the circles.) 

 

 

 

t r hiring rate. The descriptions highest, lowest, and middle may not be 
sufficient to distinguish the three line segments for other data sets, such as if   
the departmental segments crossed each other (in such a situation, each 
department would favor a different gender). 
   Although so far we have given an interpretation only to the sign of the   
slope, we can also interpret its numerical value as the "female minus male" 
difference in hiring rates if we choose to code the male and female markers   
on the x-axis as 0 and 1, respectively. With such coding, each department  
would have a segment with a slope of .125 while the (middle) segment repre-
senting all 200 applicants would have a slope of-.l. Coding a qualitative  
variable in such a "quantitative" manner is mathematically meaningful only 

he highe

Females  are  (arbi trar i ly)              
placed to  the  right of males          
on  the  horizontal  axis,  the   
positive  slopes of  these line         
segments reflect the fact that         
females have a higher hiring         
rate  than  males  within   
either  department.   The              
middle  line  segment  con-    
nects  the  male  and  female 
hiring  rates  for  the  overall       
university,  and  we  see that        
now  (from  its  negative                 Fig. 11.1. Circle graph representation adapted   
slope)  it is  males  who have                    from Paik (1985) 
             

 

   The highest line segment in the interior of figure 11.1 connects the male and 
female hiring rates for physical sciences, and the lowest line segment does this 
for social sciences. Because 
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when the qualitative variable is "dichotomous," which means having only   
two possible values (i.e., male or female). In addition, by similarly coding the 
dichotomous variable of hiring status (1 = "hired"; 0 = "not hired"), stu-   
dents who know how to calculate a correlation coefficient can verify that the 
correlation between gender and hiring status within either department is 
approximately .105 > 0, but for both departments combined is -.1 < 0,   
which is a connection to statistics showing a further representation of rever-  
sal. (The sign of a correlation coefficient is always the same as the sign of the 
slope of the line of best fit for that same scatterplot.) 

all permutations (with replacement) of "positive slope," "negative slope," or "zero 
slope" could be possible for these three line segments for a new data set. 
For example, if we change table 11.1 so that 60 of the 80 male physical sci-
ences applicants and 20 of the 80 female social science applicants were hired, 
each department would produce a segment with zero slope (meaning males   
and females were hired at exactly equal rates within each department), but a 
disparity would still appear in the aggregate. This demonstrates that differ-   
ent "cell sizes" alone can cause the effect. 

sketches that vary the sizes or positions (i.e., heights) of the circles to suggest how 

   When we look at the four circles, most of the "weight" (160 of the 200 appli-
cants) is in the two large circles, whose positions determine a "negative sloping" 
orientation. The placement of the two smaller circles has a slight effect on this 
orientation, pulling the middle (overall) line segment somewhat counterclock- 
wise (from the segment that would be determined by the centers of the two large 
circles alone), somewhat toward the orientation of the top and bottom lines, but 
not enough to attain a nonnegative slope. Students might try making circle graph 

The Platform Scale 
Representation 

Fig. 11.2. Platform scale representation  
Adapted from Falk and Bar-Hillel (1980)             

   Perhaps the most concrete rep-
resentation besides the numerical 
table is the platform scale (see fig. 
11.2), as described by Falk and 
Bar-Hillel(1980,p.l07): 

Suppose a set of uniform blocks 
arranged in stacks of varying    
heights is located on a weight- 
less platform, which is balanced 
on a pivot located at the center   
of gravity.... One can ... shift    
the entire construction to the 
right, while simultaneously 
moving individual blocks to  
other stacks on their left. If done 
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appropriately, the net result could then be a new center of gravity which is to the    
left of the old one. 

This helps students identify the weights and, we hope, recognize that weight-  
ed averages depend on the weights as well as on the values being averaged.  
The position of each stack represents an average, and the weight of the stack   
is the weight for that average (in computing the overall weighted average of 
averages). Students can certainly see with this representation that, for exam- 
ple, the weighted average and unweighted average of two stacks will be the 
same (i.e., have the same balance point) only if the sizes of the stacks are   
equal. In other words, if x and y are the stack position values and m and n are 
the stack weights, then setting (nx + my)/(n + m) equal to (x + y)/2 yields   
x(n-m) = y(n-m), which forces m and n to equal each other for x ≠ y. 
   This representation builds naturally on intuition already provided by various 
textbooks, such as Billstein, Libeskind, and Lott (1993): "We can think of the 
mean as a balance point, where the total distance on one side of the mean (ful- 
crum) is the same as the total distance on the other side" (p. 459). Freedman et al. 
(1991) illustrate "histograms made out of wooden blocks attached to a stiff, 
weightless board. The histograms balance when supported at the average" (p. 59). 
This representation could be readily extended to more than two stacks 
(departments, in this instance) and can be built with physical materials read-   
ily available in a typical classroom (e.g., using a ruler or meterstick for the 
platform). The platform scale representation may be limited, however, to 
numerical examples in which the weighting numbers (20, 80, 80, and 20)   
have a convenient greatest common divisor. Nevertheless, the intuition it 
provides would, it is hoped, give students intuition that could transfer to sit- 
uations that cannot be as neatly modeled in this particular representation. 

The Trapezoidal        
Representation         

 
Tan (1986) provides a  

trapezoidal representation  
of Simpson's paradox (see  
fig. 11.3) that is built only  
on the observation (Hoehn  
1984) that "[t]he length of  
any line segment which is  
parallel to the two bases and 
has its endpoints on the  
nonparallel sides of a trape-  
zoid is the weighted mean  
of the lengths of the two  
bases" (p. 135). Specifically,  

FRACTION OF GENDER THAT APPLIED TO 
PHYSICAL SCIENCES 

Fig. 11.3. Trapezoidal representation adapted 
from Tan (1986) 
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"male trapezoid") was higher (which is easier to see with the "sideways" ori-
entation) than the large dot representing the overall female hiring rate. 
   Furthermore, it is straightforward to see with this representation when   
this reversal does and does not happen. For example, if the hiring rates for   
the four gender-department combinations were unchanged but the propor-   
tion of females who applied to the physical sciences became .8 (matching the 
proportion for males), then the dot representing the overall female hiring   
rate would slide along its line and clearly be higher than the dot representing  
the overall male hiring rate. Actually, we can solve the linear inequality .75x   
+ (.375)(1 - x) > .55 to see that greater than 7/15 would suffice. This   
approach could also make it clear that when each gender has a 50-50 split of 
applications between departments, a reversal cannot occur. Related applica-
tions of this representation are made by Witmer (1992). 
   On the positive side, this model can be constructed physically (with a clip   
or bead sliding along a string strung between two vertical poles) or compu-
tationally (in interactive geometry software). These models would not be as 
limited to the data being "nice" as was required by the platform scale model.  
On the negative side, some students may be initially overwhelmed with the 
number of features of the graph, especially its having three axes. 

each base is weighted by the proportion of the trapezoid's height traveled 
toward that base to reach the weighted mean segment. For example, the 
"female" trapezoid is determined by the points (0, 0), (0, .375), (1.0, 0), and 
(1.0, .75) and has bases of length .375 and .75, which have corresponding 
weights .8 and .2, respectively. We may conjecture that when the weights are 
each .5, the weighted average segment and the unweighted average segment 
coincide (in what geometry students would call the median of the trapezoid). 
This relationship can be verified algebraically by setting the usual formula for 
the area of the overall trapezoid equal to the sum of the areas of the two small- 
er trapezoids formed by the new segment, and then recognizing that we now 
have exactly the same equation we encountered when discussing the weighted 
and unweighted averages in the context of the platform scale representation 
   Applying this to our university employment example, we find that each   
gender would have a trapezoid in which the two vertical bases represent that 
gender's hiring rates in the two departments. (This orientation is sideways   
from the more common depiction of a trapezoid, and the reason for this   
choice will soon be clear.) The trapezoids have one leg in common—the seg-
ment of the horizontal axis, which allows tracking the department "weights." 
The fact that females are hired at a higher rate than males in each depart-   
ment is clear by noting the vertical heights of the endpoints of the top male   
and female trapezoid legs (legs that happen to be parallel to each other but   
that do not have to be in general). However, because the genders had differ-   
ent proportions of applicants applying to the physical sciences department, it 
turned out that the overall male hiring rate (the large dot formed by extend-   
ing the male departmental application proportion out to the top leg of the 
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The Unit Square Representation 
   Another type of geometric representation is adapted from the unit square  
model of Bea and Scholz (1994), who originally used it to represent condi-
tional probabilities. Comparing shaded proportions of side-by-side rectangles 
(of equal length within each square), figure 11.4 shows at a glance that in   
each individual department the gender with the greater fraction hired is   
women and yet overall it is men. To understand better the representation, let's 
explain how the physical science unit square was constructed. Beginning with  
a square, draw a vertical line segment that partitions the square into rectan- 
Proportions of Physical Sciences Unit Square by gender and hiring status 

Proportions of Social Unit Square by gender and hiring status 

 

Proportions of Overall Unit Square by gender and hiring status 

Fig. 11.4. Unit square representation of table 11.1 data adapted from Bea and 
Scholz(1994)
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gles whose areas (and shorter sides) are proportional to the respective num-   
bers of men and women (i.e., the vertical line would be 80/(20 + 80) of the   
distance from the left side to the right side). Now shade the fraction of each 
rectangle that represents the fraction of the corresponding gender that was   
hired (i.e., we shade 5/8 of the men's rectangle and 6/8 of the women's).   
Because the rectangles have the same height and because shading is done in   
the same direction, we see at a glance that the fraction of women hired was 
greater because its shaded region extends further down. Students who focus   
on the absolute amount of shaded area of each gender rather than the pro-   
portion of each rectangle that is shaded are simply noticing that within physi-   
cal sciences, males had a greater number hired than females, but the rate at  
which men were hired is still less than the rate women were hired. This   
potential confusion (which would not occur in the other two unit square dia-   
rams) offers a good opportunity to distinguish between amounts and rates. 
 

Other Representations 
   There is also a probability representation (e.g., Movshovitz-Hadar and   
Webb 1998; Mitchem 1989) of this paradox that can be physically represent-   
ed (and empirically simulated) in the classroom with four boxes and two   
colors of balls. Basically, the distribution of objects in the boxes is chosen so   
that the probabilities of drawing (with replacement) a certain color from box   
A or from box C are less than the probabilities of drawing that color from   
box B or from box D, respectively, but the inequality direction is reversed   
when the probability for the combined contents of boxes A and C is com-   
pared to the probability for the combined contents of B and D. Using the   
data from table 11.1, this would mean box A (labeled "social science males") 
would have 5 red chips and 15 green chips, box B ("social science females") 
would have 30 red chips and 50 green chips, box C ("physical science   
males") with 50 red chips and 30 green chips, and box D ("physical science 
females") having 15 red chips and 5 green chips. The phenomenon of com-   
bining data becomes very literal with this representation. Mitchem (1989)   
uses smaller numbers and a picture to shed further light on the dynamic. 
   Lord (1990) offers a representation involving determinants. Ignoring row   
or column totals in table 11.1, we can break the table into three 2 x 2 matri-   
ces, each of the following form: 

Recall that the determinant of the 2x2 matrix 
 

⎥
⎦

⎤
⎢
⎣

⎡
denied females       denied males
hired females        hired males

⎥
⎦

⎤
⎢
⎣

⎡
d     c
b     a
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is ad - bc. Students may find it interesting to verify and investigate the fact   
that the determinant (55)(55) - (45)(45) = 1000 of the overall university   
matrix has a different sign than the determinant (-200) of either of the matri- 
ces representing an individual department. The reversal of determinant sign   
is not a coincidence. Students can verify that the male hiring rate being higher 
than the female hiring rate can be expressed as the inequality 

ca
a
+

>
db

b
+

 

Algebraic transformations produce an equivalent inequality of ad- bc > 0, 
which corresponds precisely to a positive determinant for a 2 x 2 matrix!   
These manipulations also show that a determinant ad - bc equal to 0 corre-
sponds to the female hiring rate and male hiring rate being equal. Intuitively, 
then, the sign of the determinant tells us which gender has it better, and the 
larger the absolute value of the determinant, the greater the evidence of a sta- 
tistical relationship or interaction between gender and employment status. 
   A more advanced representation uses vector geometry of the plane. Lord  
(1990, p. 55) demonstrates that "the following at-first-sight-plausible state- 
ment about complex numbers is, in fact, false: If arg (z2) > arg (z1) > 0 and   
arg (z2') > arg(z1') > 0, then arg (z2 + z2') > arg (z1 + z1')." This translates into   
a corresponding statement about slopes of vectors. Trying to make a diagram 
(such as fig. 11.5) that shows a specific counterexample is an interesting 

Fig. 11.5. A complex numbers representation of table 11.1 
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exercise. To facilitate the interpretation of our figure 11.5, let us agree that  
the ordered pair (a, b) now represents (number applied, number hired), so   
that slope corresponds to hiring rate. The physical science male vector goes 
from the origin to (80, 50). whereas the physical science female vector goes 
from the origin to (20, 15). The slope of the line segment or the angle rela- 
tive to the horizontal axis made by the female vector is larger, thus showing 
that in the physical sciences, females have a better hiring rate. Similarly, the 
social science female vector has a slope larger than the corresponding male 
vector. But the overall male vector has a larger slope than the overall female 
vector. 

AN EXPLORATION WITH PRESERVICE TEACHERS 
   In the fall 1998 semester at a midsized, state-supported university, a class 
period of the secondary school mathematics methods course was devoted to 
exploring how multiple representations of a particular phenomenon served   
as tools for preservice secondary school teachers' thinking. Connections 
between mathematics content and pedagogy (e.g., using multiple representa- 
tions) were one of several ways the author reformed this course as part of the 
National Science Foundation-funded Rocky Mountain Teacher Education 
Collaborative (Lesser 1999). All preservice teachers enrolled in the class par- 
ticipated, but the size of the class (seven) and time available for the explo-
ration yielded anecdotal observations rather than definitive inferences. 
   Although all the students had had upper division coursework in probabili-   
ty and statistics, three of the seven initially answered that it was not possible 
"women could be hired at a higher rate than men within each of the two 
divisions, but still be hired at a lower rate than men for the university as a 
whole." To make sure that all students realized that, yes, it was possible, they 
were then shown table 11.1 and asked to verify by themselves the hiring rates 
for males and females within each department as well as for the overall uni-
versity. 
   During the period, they had time to be exposed to seven of the representa-
tions previously mentioned (each with a written explanation of "how to read 
it" somewhat less detailed than is given in this article). Their comments  
made it clear that they had never seen most of the representations before in a 
textbook or class used to analyze any phenomenon, let alone Simpson's 
paradox in particular. There was a strong tendency among the students to   
say that although they might try the unit square or platform scale represen- 
tations, they would most likely rely on the numerical representation in dis-
cussing the paradox with any future students. There are many possible 
explanations for students' reliance on the tabular (numerical) representa-  
tion, including (1) it was the first one they saw, (2) it is the one most familiar 
to them from their mathematics classes, (3) it is the most concrete, (4) it is 
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the one they could feel most confident teaching with, (5) it makes the most  
clear demonstration that the paradox occurs, and (6) they lacked the time to 
absorb others fully. The author believed the last explanation was certainly an 
issue. In fact, the next time he taught a secondary school methods course, a  
class period happened to be 2.5 times as long, and the students expressed a 
consensus that some of the physical and geometric representations were   
clearly superior to the table. 
   Biff, a preservice secondary school teacher in the author's methods course, 
addressed the tradeoffs of using multiple representations in general. On the   
one hand, he states: "[Multiple representations] can reach different kids with 
different approaches, and reinforce the learning—each representation is in   
fact teaching something new." The last part of this statement seems to sug-   
gest the recognition that a new representation is not just passively delivering  
the same piece of content but giving a new angle that may itself contain con- 
tent (or even a transferable tool). Piez and Voxman (1997) believe that activ- 
ities using multiple representations lead to more thorough understanding 
"[b]ecause each representation emphasizes and suppresses various aspects of   
a concept" (p. 164) and expect that "students will gain the flexibility neces-   
sary to work with a wide range of problems using an appropriate representa-
tion. In our work with students with weak mathematical skills, we have seen 
definite improvement" (p. 165). 
   However, Biff also expressed a pitfall: "Very time-consuming in the end.  
More sophisticated solutions will leave the slower in the dust." Going   
through all possible representations for each piece of content certainly would 
make it hard to stay on pace with a packed curriculum, but knowing that   
there may be far more than three representations possible makes it more   
likely to access the most useful one for the situation. 

ISSUES AND IDEAS FOR THE CLASSROOM 
   The specific numbers chosen could be tailored to the audience. For exam-    
ple, there is more subtlety and "realistic appearance" in the data in table 11.2    
(as opposed to table 11.1, whose entries are all multiples of 5 and included    
"swapped numbers"). 

 

TABLE 11.2 
Slightly Revised Set of Hiring Data (by Gender and Department)                                     

Social Science 
Male  Female 

Physical Science
Male  Female 

Hired 
Denied 

4
16

24 
56 

48
32

14
   6 
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   Constructing a data set with smaller numbers may make Simpson's para-   
dox accessible even to students in the upper elementary grades and could   
even lend itself to being kinesthetically modeled by the typical number of 
students in a classroom by having students stand in marked-off regions of   
two 2x2 tables on the floor and then physically combine into a single 2x2   
table. For example, a 19-student class could arrange themselves into two 2 x   
2 tables as follows (1/3 < 3/8, 3/5 < 2/3, but 4/8 > 5/11): 

3    2 
2     1 

1     3 
2    5 

If we admit the possibility of cells being 0, then Simpson's paradox can actu-
ally be physically modeled with as few as 9 students (0/1 < 1/4, 2/3 < 1/1, but 
2/4 > 2/5): 

0    1       2    1 
1    3       1    0 

   The numerical representation is certainly the easiest way to introduce the 
phenomenon and can be presented in a very accessible manner through a 
structured sequence of questions (e.g., Smith 1996, p. 188) or as a story 
problem (e.g., Movshovitz-Hadar and Webb 1998, p. 113). In general, the   
way a particular representation is introduced may affect a student's ability to  
use or apply flexibly that representation. For example, in a project by McFar-
lane et al. (1995, pp. 476-77), 

children in the experimental classes were introduced to line graphs not as a Cartesian    
plot, where the ability to correctly identify positions on a grid was the objective;    
rather, they were introduced to graphs as a representation of the relationship between    
two variables.... Their ability to read and interpret temperature/time graphs was    
greatly enhanced as a result and it is particularly significant that their ability to sketch  
temperature time curves to predict the behavior of a novel system also improved. 

   Robust examples such as Simpson's paradox that have the potential to   
expand the repertoire of representations available may be especially valuable   
in the early part of the year to get students (and teacher!) primed to look for 
multiple ways of representing all future phenomena encountered, and to get 
them shaken out of habits they may have to fixate on nothing but one fea-   
ture of some familiar graphical representation (see Berenson, Friel, and   
Bright 1993). More research in this area would be useful. 
   Some representations are certainly more suited toward technology repre-
sentations than others. The numbers in the tables (as well as commands for   
the functions involved in any of the nonpictorial representations) could cer-
tainly be entered into a spreadsheet, for example, and the effect of changing 
various numbers instantly apparent. Shaughnessy, Garfield, and Greer   
(1996) list having a choice of dynamic representations for interpreting and 
displaying a data set to be an important attribute of a technological environ-
ment to facilitate the learning of data handling. 
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   Simpson's paradox is rarely experienced by students in any of their cours-   
es, and if it were, it would likely be in numerical form only. Even a popular 
introductory college statistics textbook (Moore and McCabe 1993) that is   
quite "Simpson's paradox-oriented" (by involving the paradox in the only   
three-way table example in the text as well as in every three-way table exer-   
cise following that section) does not offer a nonnumerical representation of   
it. In a case study of a preservice secondary school teacher in a course inte-   
grating content and pedagogy, Wilson (1994) found that being able to trans-  
late between multiple representations was deeply related to conceptual 
understanding, a finding that supports Held (1988) and NCTM (2000). 
Therefore, a deep understanding of how Simpson's paradox can occur seems 
difficult without the aid of representations beyond only a numerical one. 
   Perhaps exposing students and even teachers to rich representations of 
reversal representations will create a "reversal" of some of their attitudes,   
such as the common perception that representations are limited to context-   
free discussions of functions and are limited to a "rule of three" that they   
have already seen before! And maybe it will also reverse a perception of rep-
resentations as some checklist of unrelated items to go through rather than   
as a dynamic source of new insights, connections, and tools for thinking   
whose roles should even further expand throughout the new century. 

EXTENSIONS 
   As a follow-up assessment, students can be given the following data (table 
11.3) and asked for a quick "gut" answer to the question "Is it possible that 
overall mean female salary is less than overall mean male salary even though 
mean female salaries are higher within each category?" This example may be   
a more subtle manifestation of the paradox in that the largest cell sizes for   
men and women are in the same category (i.e., support staff) this time,   
unlike table 11.1 (where 80 and 20 noticeably "swap roles" between depart- 
ments). A "weighted average" computation shows the overall male and   
female salaries here are approximately $41000 and $37000, respectively.  

 

TABLE 11.3 
Annual Salary Data 

      Men    Women 
Support staff 

employees 
    70 males 
(their mean salary 
   is $20000) 

   90 females 
(their mean salary 
   is $30000) 

Executive-level 
employees 

   30 males 
(their mean salary 
   is $90 000) 

   10 females 
(their mean salary 
   is $100000) 
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   Although Simpson's paradox may be new to students, they should be   
reminded that they have certainly seen inequality reversals earlier in their 
mathematical career, and they might now look for a representation that   
yields insight into those examples beyond "rules to memorize." For example,   
2 < 4 and yet 1/2 > 1/4. An elementary school class might represent this with   
fair divisions of pizza, whereas a high school algebra class might consider the   
decreasing property of (either half of) the graph of f(x) = 1/x. Another "sim-   
ple" example of reversal that students might look for a way to illuminate is   
why -2 > -4, since 2 < 4. 
   For a final challenge, classes may look for a representation that indicates if   
it is possible to have the "double Simpson's paradox" posed by Friedlander   
and Wagon (1993, p. 268): 

It is possible for there to be two batters, Veteran and Youngster, and two pitchers, 
Righty and Lefty, such that Veteran's batting average against Righty is better than 
Youngster's average against Righty, and Veteran's batting average against Lefty is 
better than Youngster's average against Lefty, but yet Youngster's combined bat-    
ting average against the two pitchers is better than Veteran's. ... [I] s it possible to  
have the situation just described [which would indeed be a feasible "single" Simp- 
son's paradox] and, at the same time, have it be the case that Righty is a better    
pitcher than Lefty against either batter, but Lefty is a better pitcher than Righty  
against both batters combined? 

If we adapted this to the employment context we have been working with 
throughout the article, the possibility of a "second" Simpson's paradox   
added to our scenario would correspond to asking, "Is it also possible that   
the social sciences department has a lower hiring rate than the physical sci-   
ences department for either gender and yet the physical sciences department   
has a lower hiring rate for both genders combined?" 
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