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Abstract: Epidemiologists have long regarded relative 
risk (RR) as a key measure of association between two 
binary variables.  Yet even when the sample is repre-
sentative of the population, associations having a RR > 
9 may have a relatively small value for Phi (φ  < .3).  
This paper provides additional reasons for using RR 
instead of φ.  (1) Formulas relating φ and RR are de-
rived.  A relative φ is constructed; the absolute value is 
shown to equal that of the attributable fraction in the 
population (AFP).  RR is shown to increase monotoni-
cally with this relative φ  for a given exposure factor 
prevalence (H).  (2) Constructs are created to measure 
degrees of necessity (N) and sufficiency (S).  Related 
formulas are derived.  RR is shown to increase mono-
tonically with N for a given exposure factor prevalence 
(H). (3) Coordinates that will always generate admissi-
ble results are discussed.  (4) RR is a good measure of 
association between two binary variables because it 
increases monotonically with AFP, with a relative φ 2 
and with N for a given exposure factor prevalence (H).  
In Appendix B, auxiliary identities are presented in-
cluding a Bayes’ rule comparison, the over-
involvement rule and the non-response bias effect size. 
Keywords:  Epidemiology, Constructs 

INTRODUCTION 
Statistics and epidemiology share a common respect 

for confounding, a common interest in modeling, and a 
common basis in empirical data.  Yet statistics and 
epidemiology are tellingly different.   

Statistics generally deals with a random sample that 
is representative of the population; epidemiology often 
deals with two random samples that are separately 
representative of the exposure and control groups, but 
not of the population.  Statistics focuses more on ex-
periments and manipulative control.  Epidemiology 
focuses more on observational studies and associations.  
But epidemiology focuses more on identifying a neces-
sary condition whose removal would reduce undesir-
able outcomes than on identifying sufficient conditions 
whose presence would produce undesirable outcomes.  

1.1 EPIDEMIOLOGISTS AND CORRELATION 
Epidemiologists use RR and OR, but seldom use any 

Pearson-based correlations (e.g., φ).  In the Dictionary 
of Epidemiology (1985), the article on the Pearson 
correlation coefficient notes that special varieties “have 
occasional uses in Epidemiology.”   

Statisticians might argue that correlation should not 
be used in 2×2 tables since correlation is properly de-

fined only for continuous data where correlations can 
be generalized from samples to populations.   

Abramson and Gahlinger (2001) give reasons why 
epidemiologists prefer other measures.  "Unlike the 
odds ratio and Yule's Q, phi and lambda vary with the 
relative sizes of the case and control groups, and should 
in general be used only if the cases and controls to-
gether make up a defined population, or comprise a 
representative sample of a defined population.  The 
values of phi and lambda are then applicable to this 
specific population…. Misleading results may be ob-
tained if the marginal totals are determined arbitrarily, 
as in case-control or cohort studies in which samples of 
arbitrary sizes are compared." 

Yet even when the entire population is surveyed or 
when the samples are representative of the entire popu-
lation, epidemiologists seem to avoid using correla-
tions.   One epidemiologist remarked that the propor-
tion of the variance which the factor explains is obvi-
ously less relevant to the issue than the proportion of 
the disease rate which is explained.  Granting that this 
is so, one wonders why.   

1.2 SMOKING AND LUNG-CANCER DEATHS 
Consider the case of smoking and deaths due to lung 

cancer.  Epidemiologists viewed the high relative risk 
of lung cancer for smokers (RR ≥ 9) as strong evidence 
of a non-spurious association.  See Cornfield (1959).   

Suppose that Table 1 is a random sample of deaths.1  
We see that 5% of these deaths are due to lung cancer, 
that 10% of those who died are smokers, and that 
among the deceased the relative risk (RR) of dying due 
to lung cancer for smokers is 9.    
Table 1: Deaths (hypothetical) 

Deceased Other Causes Lung Cancer Total 
Non-smokers 875 25 900 

Smokers 75 25 100 
Total 950 50 1000 

What is the algebraic relation between RR and φ ?   

1.3 ALGEBRAIC IDENTITIES 
The left column in Appendix A summarizes the al-

gebraic identities between many of the common meas-
ures of association between two binary variables.2  The 

                                                           
1 This hypothetical data is not totally irrelevant.  In the US in 1998, 
7% (160,000) of all deaths (2.3 million) were due to lung cancer.  In 
the US in 1999, 26% of those 12 and older smoked cigarettes. Source: 
Statistical Abstract of the United States: 2001, tables 105 and 190.  
2 Cases are not individual subjects in a list; they are subjects having 
the outcome of interest.  Subjects are classified in the exposure or 
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algebraic notation involves F and H.  F is the preva-
lence of cases in the population; H is the prevalence of 
subjects exposed to the factor of interest.   

The relation between RR and Phi (φ) is presented in 
equation G1. 
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In Table 1, φ 2 = (9/19)(0.8/1.8)2 = 0.094; φ = 0.306.  
How could epidemiologists consider RR ≥ 9 strong 
evidence of a non-spurious association if φ ≈ 0.3?   

Perhaps the problem is not the use of φ per se, but 
the use of φ 2 = 1 as the ideal standard.    

1.4   RELATIVE PHI 
What is the maximum value of φ  for an exposure 

factor having a certain prevalence (H)?  Equation 1 
shown previously specifies the relationship between the 
binary correlation coefficient (φ), the relative risk (RR), 
the prevalence of the exposure factor (H) and the preva-
lence of the outcome of interest (F).  In the notation of 
Appendix A, RR is P/Q.  When RR is infinite (when Q 
is zero), equation 1 gives the maximum value of φ  as 
|[F/H][(1-H)/(1-F)]|. 

Suppose we compare the observed φ with the maxi-
mum φ possible given the observed prevalence of the 
exposure (H).  This would compare the observed factor 
with the factor in its prevalence class having the maxi-
mum relative risk: RR = ∞ when Q = 0 (b = 0). 

|φ(RR,F,H)/φ(RR=∞,F,H)| = |H(RR-1)/[H(RR-1)+1]| 2 

                                                                                           
non-exposure groups, and in the case or non-case groups.  In this 
discussion of AFP, F and H, the whole group is the population or a 
random sample thereof.  Prevalence is a rate that doesn’t involve a 
time interval (e.g., the unemployment rate, the exchange rate).   

In Appendix A, equations a-h define common measures of asso-
ciation such as relative risk (RR), the odds ratio (OR), the attributable 
fraction in the exposure group (AFE), the attributable fraction in the 
population (AFP) and the Pearson correlation coefficient (φ) in a 2×2 
table of binary data.  Equations C through G relate φ with these other 
measures of association.   

The attributable fraction in the exposure group (AFE) is simply 
(P-Q)/P where P is the prevalence of cases in the exposure group and 
Q is the prevalence of cases in the non-exposure group.  See Eq. e.  
The attributable fraction in the population (AFP) is simply (F-Q)/F 
where F is the prevalence of cases in the population.  Note that this 
statistic (which has population in its name) can be calculated for a 
sample as well as for an entire population.  See Abramson (1994) for 
a discussion of these measures. 

Typically, risk is said of unwanted outcomes while prevalence is 
said of exposure factors (including genetic factors and assignment to 
a treatment or control group).  If each exposure factor is a row and if 
each case outcome is a column, then in this paper relative risk (RR) 
compares row ratios and relative prevalence (RP) compares column 
ratios.  In this context, these terms (RR and RP) provide short abbre-
viations that distinguish row and column ratios.   

RR, AFE and OR are independent of the relative size of the expo-
sure group (H) assuming P and Q are constant. Similarly, RP and OR 
are independent of the relative size of the cases (F).  AFP and φ are 
dependent on the prevalence of the exposed subjects and that of cases.  

Using equation f in Appendix A we see that the ex-
pression on the right side of 2 is the attributable fraction 
in the population (AFP): the fraction of cases that 
would be eliminated if that exposure factor were a 
necessary condition for the rate of cases above the base 
rate (Q) and if that exposure factor were eliminated.  3 

 |φ(RR,F,H) / φ(RR=∞,F,H)| = |AFP| 3 
Thus the attributable fraction in the population (AFP) 
with an exposure prevalence (H) is the same as this 
relative correlation: the observed φ relative to the φ of 
a genuinely necessary factor (no exceptions; b = 0 
which implies RR = ∞) that has the same exposure 
prevalence (H).  Using equation f in Appendix A, we 
can see that RR increases monotonically with AFP: 

 RR - 1 = AFP / [H(1-AFP)] 4 

1.5     AFP ≥ 0.5 
If we require a relative correlation of 0.5 (which ex-
plains 25% of the relative variance per equation 3), 
then AFP is 0.5 and RR-1 ≥ 1/H.  See Figure 1. 

Figure 1: Relative Risk versus H for AFP = 0.5 
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Reducing the relative variance in a 2x2 table by 25% 
may not be appropriate in a broader perspective, but it 
does offer a formal criterion that may be useful. 

1.6   COMMENTS4 
The attributable fraction of cases among the exposed, 

AFE, has been misrepresented as the chance that a case 
among those exposed was caused by their exposure.5  
Suppose that RR = 3 and AFE = 67%.  It has been 
claimed this means, “if a person has the disease in ques-
tion and was exposed to the chemical in question, the 
probability that the exposure caused the person's dis-
ease is 67%.”  We disagree.  If the exposure had caused 
67% of the deaths among those exposed, the claim 
would be true.  But that begs the question. 
                                                           
3 φ 2 = AFP times its diagonal exchange partner. Appendix A, Eq. P7. 
4 The expression ad-bc is the numerator in OR-1, RR-1, RP-1, AFE, 
AFP, S/F-1, N/H-1, φ and (d - f h/n).  These expressions differ only in 
their denominators.  Perhaps the numerator of the difference between 
any two parallel ratios in a 2x2 table is ad-bc: e.g., P-Q, S-F, N-H.  
5 Source: www.toxictorts.com/relrisk.htm.  “Relative Risk: Proving 
Causation by the Numbers” by Raphael Metzger, Esq. 
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2.1 NECESSITY AND SUFFICIENCY 
In logic, necessity and sufficiency are both binary: 

yes or no, true or false.  But in reality many factors may 
be required to cause an outcome and the presence of 
some factors vary, so necessity and sufficiency are 
sometimes more usefully viewed as matters of degree.  

Quantitative measures for sufficiency (S) and neces-
sity (N) are introduced in the right column of Appendix 
A in the context of a 2×2 table.  Quantitative suffi-
ciency (S) is defined as the fraction of the exposure 
group that are cases.  Quantitative necessity (N) is 
defined as the fraction of the cases that are in the expo-
sure group.  The formulas presented in the right column 
of Appendix A relate various measures of association to 
these two constructs.6,7 

2.2 NECESSITY VS. SUFFICIENCY 
Why do epidemiologists give so much attention to 

exposure factors that are obviously insufficient?  Most 
smokers do not die of lung cancer, yet public health 
officials try to reduce the prevalence of smoking.  The 
1854 cholera death rate was only 71 per 10,000 houses 
supplied by a particular London pump, yet John Snow 
recommended removing that pump handle. Hill (1987). 

Epidemiologists may focus more on necessity than 
sufficiency.  Epidemiologists may want to reduce dis-
ease incidence more than they want to predict disease.  
Focusing on necessity may be more important for them 
than focusing on sufficiency since eliminating a neces-
sary condition is sufficient to prevent the outcome.   

Unless an effect can be produced by a single suffi-
cient cause (RARE!), producing the effect requires 
supplying ALL of its necessary conditions, while pre-
venting it requires removing or eliminating only ONE 
of those necessary conditions.  Therefore, research into 
prevention need identify only a SINGLE removable 
necessary condition, while research on production must 
identify ALL of the necessary conditions. 

Although RR can be viewed as a relative sufficiency 
(RR=P/Q), RR can also be viewed as increasing mono-
tonically with this measure of necessity (N) for a given 
exposure prevalence (H). AFE and AFP increase mono-
tonically with N (for N>H) for a given exposure preva-
lence (H).  See equations J1, K and L in Appendix A.8 

 RR = [N/(1-N)] / [H/(1-H)] 5a 
 AFE = (N-H)/[N(1-H)]9 5b 
 AFP = (N-H)/(1-H) 5c 

If a 2×2 table is organized so RR > 1 (S > F) and RP > 1 
(N > H), then AFP ≤ N.  For small prevalences of the 
exposure (H << N), AFP approaches N.   

                                                           
6 Equations M-Q are not used herein but are shown for completeness. 
7 RR/RP = (1-S)(1-H)/[(1-N)(1-F)] is elegant but over-specified. 
8  RR = P/Q so N/(1-N) = (P/Q)[H/(1-H)]. 
9  This relation is better seen in AFE = [1/(1-H)] – {(1/N)[H/(1-H)]}. 

2.3 “NECESSITY” AS A POTENTIAL CAUSE 
A fully established causal condition is one which is 

seen as necessary.  An association that measures the 
degree of empirical necessity can indicate the strength 
of evidence for viewing a factor as a potential cause.  

Epidemiologists must often recommend decisions us-
ing observational associations without having the time 
for experimental confirmation.  Thus epidemiologists 
may view an exposure as “a potential cause of the 
cases”, if “cases are more likely than not to be exposure 
subjects.” (This is not the same as saying P > Q.) 

Operationally this “more likely than not” criteria 
means N > 0.5.  So if at least 50% of the cases are asso-
ciated with the exposure, then the exposure may be 
viewed as a potential causal factor for Y.   Using equa-
tion J1 we can relate RR to the exposure factor preva-
lence (H) for N = 0.5 as shown in Figure 2. 

Figure 2: Relative Risk versus H for N = 0.5 
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This ‘more likely than not to be associated with the 

exposure factor’ criteria provides a relative-risk crite-
rion for viewing an exposure factor as a potential cause 
that is independent of any causal model.  Consider 
Table 1 where 10% of adults are long-term smokers (H 
= 10%), and the relative risk of lung cancer for long-
term smokers is 9 or greater.  Since N ≥ 0.5, this data 
would give epidemiologists some evidence for saying, 
“Smoking is a potential cause of lung cancer.” 

Consider London cholera deaths. Most of those who 
drank from the well in question did not die (S <<.5), but 
most of those who died drank from that well (N  > .5).  

Viewing “necessity” as a sign of a potential cause 
may make sense socially when the benefits of eliminat-
ing cases (e.g., lung cancer deaths) is much greater than 
the costs of eliminating the exposure (e.g., smoking). 

The relative risk for N = .5 is always 2 less than the 
RR for AFP = 0.5.   Proof: [(1+H)/H] - [(1-H)/H] = 2.  
Requiring AFP = .5 sets a higher standard for RR than 
N = 0.5.  N is related to RR and H via equation J1 or 5a. 

 N = H RR / [H(RR-1) + 1] 6 
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3 ADMISSIBLE COORDINATES 
We would like to know whether there are sets of al-

gebraic variables from which we can calculate all other 
variables without needing to check the range of the 
outputs. Such sets we call sets of admissible coordi-
nates.10 

One set of admissible coordinates is the set of body 
cell counts.  In a 2×2 table (Appendix A) the 4 body 
cells (a, b, c and d) are coordinates that always generate 
admissible counts and ratios.  Note that the body cell 
(d) and its three adjacent margin values (f, h and n) are 
not admissible coordinates since they can generate 
inadmissible results (e.g., when d > f or d > h).  

Another set of admissible coordinates involves a se-
ries of linked perpendicular single ratios.  In a 2×2 table 
for a given total count (n), the margin ratio (H), and the 
two ratios perpendicular to that margin (P and Q) form 
a set of admissible coordinates. Using these coordinates 
the resulting body-cell counts can never be negative. 

Many combinations of ratios do not form a set of 
admissible coordinates.  E.g., F, H and either P or Q;11 
F, P and Q;12 RR and either P or Q;13 RR, F and H.14 

Unfortunately we may want to use formulas involv-
ing a set of non-admissible coordinates (e.g., RR, F and 
H) as independent variables.  We want to know how to 
limit their values so that we do not generate any inad-
missible values in the four body cells.  This is done by 
generating formulas for the body cell values in terms of 
the coordinates.15  The conditions (necessary and suffi-
cient) for these values to be non-negative are identified.  
If all the body cell values (as ratios over n) are non-
negative and if they sum to 1, then none of these ratios 
can be greater than 1.  Unfortunately conditions that are 
both necessary and sufficient can be fairly complex.16 

Sufficient conditions for all cell values to be admis-
sible can be much simpler.  When RR > 1, admissible 
results will always be given by these conditions: 
• For RR, F and H, require F < H or RR ≤ (1-H)/(F-H)   
• For P, Q and F, require P > F > Q or P < F < Q.  

4 CONCLUSION 
Aside from the independence of RR from the size of 

the exposure group (for a given P and Q), there are two 
additional reasons for using relative risk to measure the 
strength of an association between two binary variables. 
                                                           
10 ‘Coordinate’ is used to designate an independent algebraic variable.   
11 If P H > F or if Q(1-H) >  F.   
12 If P and Q are both more – or less – than F. 
13 If RR > 1/Q, or if RR < P. 
14 If F > H(RR-1)+1 since Q = F/[H(RR-1)+1]. 
15 RR = (d/h)/(b/g) where g = n-h.  So, b(h,RR) = d(n-h)/(h.RR).   
f = d+b  so that  d(RR, h, f) = (f.h.RR)/(h.RR + n-h).  
c = h-d  so that  c(RR, h, f) = {h[RR(h - f) + n – h]}/(h.RR + n-h).    
b = f-d  so that  b(RR, h, f) = [f(n - h)]/(h.RR + n-h).   
a = n-h-b,  so that  a(RR, f, h) = [(n-h)(h.RR + n-h-f)]/(h.RR + n-h).  
16  Denominators in the preceding footnote are always non-negative, 
so numerators must never be negative.   c ≥ 0 iff [RR(h - f) + n – h] ≥ 
0.   a ≥ 0  iff (h.RR + n-h-f) ≥ 0. 

(1) RR increases monotonically with AFP, and AFP 
equals a relative correlation |φ /φmax|: the observed cor-
relation relative to that of a genuinely necessary factor 
having the same exposure prevalence (H).  (2) RR in-
creases monotonically with the degree of necessity (N) 
for a given exposure prevalence (H).  By selecting 
minimum values for AFP or N, these relationships may 
provide minimum conditions for RR such that the asso-
ciated exposure can be viewed as a potential cause. 
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Appendix A.   2×2 COUNT TABLE IDENTITIES18 
Counts Non-Case Case TOTAL 
Control a b g=a+b 
Exposure c d h=c+d 
TOTAL e=a+c f=b+d n=e+f=g+h 
Definitions and Basic Relations:19 
a. E= e/n, F= f/n, G= g/n, H= h/n. P = d/h, Q = b/g.  
b. Relative Risk: RR = (d/h)/(b/g) = (d g)/(b h)=P/Q 
c. Relative Prevalence: RP = (d/f)/(c/e) = (e d)/(c f) 

Note: RR compares rows; RP compares columns. 
d. Odds Ratio: OR=a d/(b c)=(a/b)/(c/d)=(a/c)/(b/d) 
e. Attributable fraction in exposure group (AFE): 
 AFE= (P - Q)/P = (RR-1)/RR = 1-(1/RR) 
f. Attributable fraction in population (AFP):   
 AFP= (F - Q)/F = H(RR-1)/[H(RR-1)+1] 
g. Phi: φ = (a d - b c) / w = r where w2 = e f g h20 
h. Case Prevalence: F = P H + Q(1-H) 

Identities Using Existing Factors  
A1. F=P-(P-Q)(1-H) = P[1-(1-H)(RR-1)/RR] 
A2. H = (F-Q)/(P-Q).  F = Q[H(RR-1)+ 1].  
B1. AFP=H AFE/[1-AFE(1-H)].AFE=AFP/[H+AFP(1-H)] 
B2. OR = RR[H(RR-1)+(1-F)] / [(RR-1)(H-F)+(1-F)] 
B3. [(RR-1)/RR] / [(RP-1)/RP] = (1-F)/(1-H)    
C. φ 2 (d,f,h,n) = (d n – f h)2/[f (n-f) h (n-h)] 
D. )/()( FEHGQP ⋅⋅−=φ       Proportions test21 
E1. a = (e g + ϕ w)/n   b = (f g  -  ϕ w)/n 
 c = (e h  - ϕ w)/n     d = (f h + ϕ w)/n 
E2. When e = f = g = h:          See Shoukri (2000) 
 )1/()1()1/()1( 2 +−=+−= ORORORORφ  
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φ 2(OR, F, H) is intractable with a large radical.   
φ 2(P, F, H) = φ 2(S, F, H).  See equation Q. 

                                                           
18 Equations may be over-specified: allow inadmissible inputs. 
19 Lower case indicates counts; upper case indicates ratios. 
20 X 2  = Σ[(actual value - expected value) 2 / expected value] = n φ 2  
21 When squared and multiplied by n, this is the test for independence.   
22 Note that the right-hand term [(F-Q)/F] is AFP. 

Identities Involving ‘Necessity’ or ‘Sufficiency’18 
Let S = d/h. S = ‘sufficiency’ of exposure for case. 
Let N = d/f. N = ‘necessity’ of exposure for case. 

H1. (RR-1)/(1-S) = (RP-1)/(1-N) = OR - 1 
H2. RR/RP = (1-S)(1-H)/[(1-N)(1-F)] 
I. S/N = (d/h)/(d/f) = f/h = F/H        Bayes’ Rule 
J1. RR = [N/(1-N)] / [H/(1-H)]  = S(1 - H)/(F - S H)  
J2. RR-1 = [(1-F)/(1-N)]{(RP-1)/[F(RP-1)+1]} 
K. AFE  =  (N-H)/[N(1-H)]  =  [(S-F)/S]/(1-H)  
L. AFP  =  (N-H)/(1-H)  =  [(S-F)/F][H/(1-H)]  
 

Four factor φ  with S or N:  [These are over-specified.]18 
M1. ]/)1][(/)1[(),,,(2 RPRPRRRRNSRPNSRR −−⋅=φ  
M2. )]1)(1/[()])([(),,,(2 HFHNFSFHNS −−−−=φ  
M3. )]}1(/[)1({]/)1([),,,( 22 FFHHRRRRSHFSRRΦ −−−=  
 

Three-factor φ  with S or N, and with no margin value: 

N1. 
])1([
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2

2
SNNRRRR
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−−⋅
=φ  

N2. 
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SSRPRRSSRPRR )1(])1([),,(2 −−−−
=φ  
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−−−
=

SORNOR
ORSSNNNSORφ  

Underdetermined: φ 2 (OR,RR,S) and φ 2 (OR,RP,N) 
 

Three-factor φ  with S or N, and with one margin value: 

P1. 
]1)1()][1()1([

)1()1(),,(
2

2
+−−−⋅−
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F
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P3. RRRRNNFFFNRR /)1)(1()]1/([),,( 22 −−−=φ  
P4. )]/())][(1/()[(),,(2 NFSFSFFSNFSN ⋅−−−−=φ  

P5. 
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−−−
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P6. 
]1)1)(1)[(1(

])1)(1()[(),,(2
+−−−
+−−−−

=
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FSSORFFSFSORφ  

P7. φ 2(AFP,S,F) = AFP(S-F)/(1-F) 

Underdetermined:  φ 2 (RR,N,H) and φ 2(RP,S,F).   
 

Three-factor φ with S or N, and with two margin values: 
Q. )]1()1(/[)]([),,( 22 HHFFFSHHFS −−−=φ  
Relations Between Admissible Values:   
Some equations generate inadmissible results for some input values. 
• If P > Q, then RR > 1, P > F > Q, RR > F/Q and RR > P/F 
• If H < F, then RR ≤ (1-H)/(F-H) since P ≤ 1. 
Over-specified equations D and M1-M3 allow inconsistent inputs. 
E.g., φ 2(F, H, N, Q) = (N-H)(F-Q)/[H(1-F)]. 
Diagonal Exchange: If cells b and c exchange then OR and φ are 
unchanged while these exchange: RR & RP, F & H, E & G and S & 
N.  If a valid equation involves only these variables and they are 
exchanged the new equation is valid. e.g. J1:→RP=[S/(1-S)]/[F/(1-F)] 
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APPENDIX B: AUXILIARY IDENTITIES 

BAYES’ COMPARISONS 
We define Bayes’ comparisons as S/F or N/H.  A 

Bayes comparison is a ratio comparison of two ratios.  
Bayes rule says P(F|H) P(H)= P(H|F) P(F).  Let S = 
P(F|H), N = P(H|F), F = P(F) and H = P(H). Bayes’ 
rule equates two Bayes’ comparisons: S/F = N/H.   
If S/F = k then N/H = k.  

If “Those having been in prison are 4 times as likely 
to have low IQ as are those in the entire population”, 
then “Low IQ adults are 4 times as likely to have 
been in prison as are those in the entire population.”23     

The difference between these Bayes’ comparisons is 
so subtle that some may not realize what is changed.  

The benefit of this comparison is that even if one in-
advertently reverses the part and test whole, the number 
in the comparison remains unchanged.  But the need for 
caution is not diminished.  Bayes’ comparison look-
alikes can confound the unwary reader. 

Bayes rule means: If “Cases are k times as likely to 
be exposed subjects as are those in the general popula-
tion,” then “Exposed subjects are k times as likely to be 
cases as are those in the general population.”24 

Bayes’ rule is one of many statements that reflect a 
diagonal exchange. (See Diagonal Exchange in Appen-
dix A where a, d and n exchange with themselves.)  
Under this diagonal exchange, equation 7 is valid.    

 N/H = (d/f)/(h/n) = d n/(f h) = (d/h)/(f /n) = S/F 7 

This exchange may appear to work only with the d cell 
in the lower right corner of the four body cells.  But we 
can make a row or column exchange of the index values 
so that any of the four body cells can be the d cell. 

GETTING RR FROM A BAYES’ COMPARISON 
A relative risk (which is row based) can be obtained 

from the N and H in a column-based Bayes comparison.   

RR = S/Q = (S/F)/(Q/F) = (N/H)/[(1-N)/(1-H)] 8 

Suppose 40% of prisoners are black (N) and 10% of 
the population are black (H).  Blacks are 4 times (N/H = 
40/10) as likely to be in prison as are the general popu-
lation.  From N and H, we see that 60% of prisoners are 
non-black (1-N) and 90% of the population are non-
black (1-H).  So non-blacks are two-thirds (60/90) as 
likely to be in prison as are the general population: Q/F 
= (1-N)/(1-H).25  Thus, blacks are 6 times as likely to be 
in prison as are non-blacks: RR = 4/(2/3) = 6. 

                                                           
23 In prevalent language: If “having a low IQ was four times as preva-
lent among those having been in prison as among [those in] the 
general population” then “having been in prison was 4 times as 
prevalent among those with low-IQ as in the general population.” 
24 OR form:  If “The OR of cases among exposed versus non-exposed 
is k” then “The OR of exposed among cases versus non-cases is k.” 
25 Q=b/g. F=f/n. 1-N =b/f.  Q/F = (b/g)/(f/n)=(b/f)/(g/n)=(1-N)/(1-H) 

NON-RESPONSE BIAS EFFECT SIZE 
Even though we cannot typically measure non-

response bias, we can determine the associated effect 
size necessary to generate a particular outcome.  Sup-
pose the prevalence of responders among those polled 
is H.  Among the responders, the fraction who say 
“Yes” is P.  Typically the fraction who would have said 
“Yes” (Q) among the non-responders is unobserved. 
Thus the fraction who would have said “Yes” in the 
population (F) is unobserved as is the non-response 
bias: P-Q.  But we can determine the non-response bias 
(P-Q) needed to generate a specified value of F. 
 P-Q = (P-F)/(1-H)  9a 
 Q = P – (P-F)/(1-H) = [F – (P H)]/(1-H) 9b 

Consider a two-way election where P > ½.  The non-
response bias needed to give a tie (F = ½) for H < ½ is: 
 P-Q = (P- ½) / (1-H) 9c 
 Q = P – (P- ½)/(1-H) = [½-(P H)]/(1-H) 9d 

As the fraction of non-respondents (1-H) increases, 
H decreases so that the size of the non-response bias (P-
Q) necessary to yield a tie decreases and Q increases.  

Stating the non-response bias or the value of Q nec-
essary to give a specific value in the population (F) 
gives readers a better context for the uncertainty in-
volved.  For example, if 55% of the respondents say 
“Yes” but 25% of population do not respond, then a 
prediction of a majority of “Yes” in the population 
would fail if more than the 65% of the non-respondents 
would say “No” (if non-response bias exceeds 20 per-
centage points). 

IDENTITY CONNECTING RR AND RP 
An identity involving relative risk (RR) and relative 

prevalence (RP) is given by equation B3 (Appendix A). 

 [(RR-1)/RR] / [(RP-1)/RP] = (1-F)/(1-H) 10 

The terms RR-1 and RP-1 can be described using 
“involvement.”  Over-involvement occurs if RR>1 or 
RP>1.  Under-involvement occurs if RR<1 or RP<1.   

In equation 10, the right-hand terms are never nega-
tive.  So RR-1 and RP-1 must have the same sign.  This 
justifies the over-involvement rule:26 over-involvement 
by row (RR>1) implies over-involvement by column 
(RP>1), and vice versa.  

To see how this works, consider deaths classified by 
smoking and lung cancer.  Suppose that among the 
deceased, smokers were more prevalent among those 
who had lung cancer than among those who didn’t 
(RP>1). Even if we didn’t know the data in Table 1, we 
could say, “Dying of lung cancer was more likely for 
smokers than non-smokers” (RR > 1), or “Smoking had 
a positive ‘influence’ on dying of lung cancer.”  

                                                           
26 Carlson, William L. and Betty Thorn.  Applied Statistical Methods, 
Prentice Hall. p. 151 


