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Abstract: Defining conditions are obtained under
which a binary confounder will nullify (render spuri-
ous) or reverse an association between binary variables
when using a non-interactive (NI) linear OLS regres-
sion model. These defining conditions are used to de-
rive necessary conditions for NI spuriosity and reversal.
These necessary conditions include generalizations of
those obtained by Cornfield and Gastwirth. Cornfield’s
“no effect” condition for spuriosity is found to be a spe-
cial case of NI spuriosity. The reversal which occurs in
Simpson’s paradox is found to be a special case of NI
reversal. Simple tests are obtained to infer whether an
association will be increased, decreased or reversed af-
ter controlling for a confounder.

1. BACKGROUND

This paper deals with confounder-induced spurios-
ity.! An association between two variables is con-
founded by a third if the third has an influence on their
association.  An association is spurious — of no effect
— if it vanishes after taking a confounder into account.
Let E be a binary effect and let A and B be binary pre-
dictors. The goal of this paper is to identify the condi-
tions when the association between A and E becomes
spurious or reverses (changes sign) after taking into ac-
count a confounder, B, using a non-interactive model.

2. NOTATION
The variable name is used to indicate the values (e.g.,
A and non-A). A'designates non-A. If E is cancer and
A is smoker, then P(EIA') is the prevalence of cancer for
non-smokers.” In order to study differences between,
and ratios of, prevalences, this notation is used:

1. DP(Y:X)= P(YIX)-P(YIX'),
2. RP(Y:X)=P(YX)/P(YIX'), XRP(Y:X)=RP(Y:X)-1,
3. AFP(Y:X)=DP(Y:X)'P(X)/P(Y).
The colon indicates that the following value and its
complement are involved. Consider cancer (E), smok-
ing (A) and a cancer gene (B). DP(B:A) is the differen-
tial prevalence of the cancer gene for smokers vs. non-
smokers. RP(E:A) is the relative prevalence, XRP(E:A)
is the excess relative prevalence, of cancer for smokers
vs. non-smokers. AFP(E:A) is the fraction of cancer
cases in the population that are attributed to smoking.
The selection of A vs. A', and of B vs. B’ is arbitrary.
This paper assumes they are selected so DP(E:A) > 0

! A spurious association can also be chance-based: due to sampling
variability when there is no association in the population.
% Note that P(X) signifies prevalence or percentage — not probability.

and DP(E:B) > 0.3 These selections do not determine
whether DP(B:A) is positive in general.

3. SPURIOSITY AS “NO EFFECT”

The first categorical criterion for spuriosity arose in
the argument about whether smoking causes lung can-
cer. A clear association had been demonstrated. But
was smoking the direct cause of cancer or was the as-
sociation spurious — due to some confounder? In 1958,
Fisher, a leading statistician and a smoker, argued that
the smoking-cancer association might be confounded
by genetics. He found an association for twins between
the degree of twinship (identical or fraternal) and smok-
ing preference. To reply, Cornfield modeled spuriosity
by assuming smoking (A) had “no effect™:

4. P(E\B,A) = P(EIB,A') = P(E\B),

5. P(E\B'A)=P(EIB'A') = P(EIB').

We call these conditions “cross-A rate equalities” be-

cause the rates are equal across A (conditionally inde-

pendent of A). In equations derived from 4 and 5, B is
replaced by b to indicate these equalities. These restric-
tions are not on B, but on P(EIB) and P(EIB'). Corn-

field derived a variation of this equation: *

[P(b] A)« XRP(E :b)] +1

[P(bI A")« XRP(E:b)]+1 "

From his variation, Cornfield derived this condition:’

7. RP(E:A) < RP(b:A).

Cornfield et al. (1959) replied to Fisher (italics added):
“Thus, if cigarette smokers have 9 times the risk of
nonsmokers for developing lung cancer [RP(E:A)=9],
and this is not because cigarette smoke is a causal
agent, but only because cigarette smokers produce
hormone X, then the proportion of hormone-X
producers among cigarette smokers must be at least 9
times  greater than that of non-smokers
[RP(b:A)>9]."°

Fisher never replied. Statisticians then asserted that

smoking caused cancer using observational data.

Using the cross-A rate equality conditions (Eq. 4 and
5), Cornfield also derived a difference equality:

8. DP(E:A) = DP(E:b) - DP(b:A).

6. RP(E:A)=

*If DP(E:A) = 0 then reversal is not meaningful. If DP(E:B) = 0 or
DP(B:A) = 0, then spuriosity and reversal are impossible (Eq. 25).

*InEq. 6, P(blA) > P(bIA’) since RP(E:A) > 1 and XRP(E:b) > 0.

% Eq. 6 has the form Z = (U-X +1)/(V-X +1) with U>0, V>0 and X>0.
So Z=(U/V)(X+1/U)/(X+1/V). Footnote 4: P(blA) > P(bIA’).
SoU>V, I/U< 1/V, (X+1/U) < (X+1/V) and (X+1/U)/(X+1/V)< 1.
U/V = RP(b:A),so Z < U/V and RP(E:A) < RP(b:A).

® Appendix A of Schield (1999) replicates Cornfield’s derivation.
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Thus, if the association between smoking and cancer is
spurious, then the differential cancer prevalence for
smokers vs. non-smokers, DP(E:A), must equal the dif-
ferential cancer prevalence for cancer-gene carriers vs.
non-carriers, DP(E:b), times the differential cancer-
gene prevalence for smokers vs. non-smokers, DP(b:A).
Cornfield did not see this as useful.’”

Gastwirth (1988) used Cornfield’s “no effect” as-
sumption to derive another expression for spuriosity:

RP(E:A)-1

P(b| AD[RP(E:b)-1]"
Cornfield’s condition follows from this since the frac-
tion is positive. From a form of Eq. 6, Gastwirth de-
rived a second necessary condition:**

10. RP(E:A) < RP(E:b).

If the smoking-cancer association is due to a gene, this
condition means that the relative prevalence of cancer
among smokers vs. non-smokers [RP(E:A)] must be
less than or equal to the relative prevalence of cancer
among those with vs. without the gene [RP(E:b)].

4. NON-INTERACTIVE SPURIOSITY

In the following models, the values of the variables
are treated as continuous. Rather than use new nota-
tion, we ask readers to recognize that E, A and B can be
continuous in Eq. 11-12, 14-16 and figures 1-4, 7 and 8.

Consider modeling E on two continuous predictors A
and B. When the regression coefficient between A and
E is zero, that relationship is said to be ‘spurious’ with
respect to B. When the model is linear and non-
interactive (NI), the regression coefficient relating E
and A is proportional to r4g g, the partial correlation co-
efficient between A and E after controlling for B:'*!!

1 1y =y =Ty 1) [ =1 (1=rg)

NI spuriosity occurs when rag g = 0. This implies that:

9. RP(b:A)=RP(E:A)+

12. FAE = I'AB * I'BE.

Schield (1999) applied this well-known condition for
spuriosity to binary data and obtained this condition:

13. DP(E:A) = DP(E:B) - DP(B:A).

This condition (Eq. 13) is similar to the condition in Eq.
8, but without the cross-A rate equality assumption.
DP(B:A) > 0 for NI spuriosity (since DP(E:A) > 0 and
DP(E:B) > 0) and for NI reversal (defined in Section 6)
as proven in section 8 after Eq. 24.

7 «if the absolute difference, R1 - R2, is used, the relationship, R1-R2

= (r1-12)(p1-p2), leads to no useful conclusion about pl1-p2.”

8 Eq. 6 has the form, Z = [U(Y-1)+11/[V(Y-1)+1]. U>0, V>0, Y>1.
Since [V(Y-1)+1]> 1, [UY-D)+11/[V(Y-1)+1] < [U(Y-1)+1]. So,
Z < [U-(Y-1)+1].Since U< 1, Z< (Y-1)+1. SoZ< Y=RP(E:D).

? Gastwirth (1988) attributed this condition to Cornfield. Since Gast-
wirth first derived it, we call it the Gastwirth-Cornfield condition.

10 Note: 4 is the Pearson correlation coefficient between E and A.

" 1f rpg = 0 then Irag sl > Iragl. So, the association between A and E

can not be nullified or reversed by such a confounder.

5. CROSS-A VS. NI SPURIOSITY

Since both the cross-A rate equality condition and the
NI model give similar results (Eq. 8 and Eq. 13), it may
be worth explicating their difference. The difference
equation (Eq. 13) can be written as equal slopes: AY/AX
= DP(E:A)/DP(B:A) = DP(E:B)/(1-0). For other forms
see Equations A9 in Appendix A. Figure 1 shows data
that satisfies this slope condition.

Figure 1: Non-Interactive (NI) Spuriosity'*
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In cross-A rate equality, P(EIA',B)=P(EIA,B)=P(E\B)
and P(EIA',B)=P(E|A,B')=P(EIB'). So Figure 1 does
not involve cross-A rate equality. P(EIB) is always a
weighted average of two rates: P(EIA,B) and P(EIA',B).
For cross-A rate equality, these rates are equal, so the
weights don’t matter. For non-interactive spuriosity,
these rates can be unequal so the weights do matter.

6. NON-INTERACTIVE REVERSAL

Non-interactive (NI) reversal is readily seen using the
regression approach presented by Wonnacott and Won-
nacott (1990, Appendix 13-5). A regression model
generates a line, E(A) or B(A), or a surface, E(A,B):
14. E(A) = by(EIA) + bi(EIA)A,
15. E(A,B) = by(EIA,B) + bi(E\A,B)*A + by(ElA,B)*B,
16. B(A) = by(BlIA) + bi(BIA)A.
They showed these four slopes are related as follows:
17.  bi(ElA) = bi(EIA,B) + [b2(EIA,B) - bi(BIA)].
18.  whole effect = direct effect + indirect effect.
An NI model with two binary predictors generates a
surface, E(A,B), that forms two parallel lines: the A’
line, E(A=0,B), and the A line, E(A=1,B). See Figure 2.

Figure 2: NI Reversal: Direct and Whole are Opposite

E is Effect of Interest A Iine/’” E@.1)
W | Ais Associated factor. 7T eE()
° B is confounder I a®
[ _-~PEIA.s--~
° ~:”TI
[} ! | Whole
> . .
° . . Indirect
a P(EJQ ................... . Eifect | | etrect
=37 .
it £Effect H
EQO)g”  _.-% :
E(1,0) ¢ -7 Aline: .
B' P(BIA") P(B) P(BIA) B
Prevalence of Confounder (B)

2 P(EIA"B') = 2/8, P(EIA",B) = 3/3, P(E\A,B") = 2/2, P(E|A,B) = 3/7.
P(A',B") = 8/20, P(A",B) = 3/20, P(A,B’) = 2/20 and P(A,B) = 7/20.
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The A’ line always runs through P(EIA’); the A line al-
ways runs through P(EIA).

The whole effect of A on E, b(EIA), is DP(E:A)
while b{(BIA) is DP(B:A). The direct effect of A on E
is the vertical distance between the two lines.

Non-interactive (NI) reversal of the association be-
tween A and E occurs when the signs of their coeffi-
cients are opposite in the one and two factor models:

19. by(EIA)b\(EIA,B) < 0.

Thus, NI reversal occurs when the sign of the whole
effect is opposite the sign of the direct effect. Since
DP(E:A) > 0 the whole effect is positive and the direct
effect is negative. If DP(B:A) > 0, the A line lies be-
neath the A’ line: a geometric condition for NI reversal.

7. DEFINING AND NECESSARY CONDITIONS

Non-interactive (NI) spuriosity is also defined by:

20. b(EIA,B) = 0.
Although correlation (Eq. 11 and 12) is a primary defin-
ing condition, Eq. 20 follows from their direct relation-
ship. Appendix A contains consequences of Eq. 20.
Appendices B through E give details on NI modeling.

If the association between A and E is NI spurious,
then b,(EIA,B) = DP(E:B) as shown in footnote 39, the
direct effect is zero, the whole effect equals the indirect
effect, and we obtain Eq. 13.

RP(E:B) and RP(B:A) are inversely related under NI
spuriosity (as are rgg and rga in Eq. 12). Figure 3 dis-
plays this relationship using Eq. A4b in Appendix A.

Figure 3: Contours of Spuriosity
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NI spuriosity and NI reversal are closely related. The
defining condition for NI spuriosity (Eq. 20) is a
boundary of the defining condition for NI reversal (Eq.
19). Since bi(EIA) = DP(E:A) and since we are assum-

ing that DP(E:A) > 0, we can state the defining condi-
tion for NI reversal as:
21. by(E\A,B) <O.

When little is known about the confounder, necessary
conditions can be weaker but more useful. Any condi-
tion that is necessary for NI spuriosity, b(EIA,B) = 0,
and NI reversal, b|(EIA,B) < 0, is necessary for either.'
One condition necessary for both is the combination of
the defining conditions for each:

22. by(EIA,B) <0.
Any condition necessary for this is necessary for each."*
8. JOINT NECESSARY CONDITIONS

From Eq. E1 in Appendix E, it follows that:"

23. by(E\A,B) = KI [DP(E:A) - DP(B:A)"DP(E:B)].
Since K1 > 0, combining the joint condition (Eq. 22)
with this form of b; gives this necessary condition:

24. DP(E:A) <DP(B:A)'DP(E:B).

Since DP(E:A) > 0 and DP(E:B) > 0, it follows that
DP(B:A) > 0, so RP(B:A) > 1, for both NI spuriosity
and NI reversal. Since 0 < DP < 1,'

25. DP(E:A) <DP(B:A) and DP(E:A) <DP(E:B).

Similarly structured relations involving correlation
coefficients are obtained from Eq. 11."

From Eq. E2 in Appendix E, it follows that:

26. by(E\A,B) = K2[AFP(E:A) -AFP(B:A)'AFP(E:B)].
Since K2 > 0, combining the joint condition (Eq. 22)
with this form of b, gives this necessary condition:

27. AFP(E:A) < AFP(B:A)*AFP(E:B).

AFP is the fraction of E attributable to A in the popula-
tion. Since 0 < AFP < 1, '8

28. AFP(E:A) < AFP(E:B); AFP(E:A) < AFP(B:A).

From Eq. E3 in Appendix E, it follows that:
29. b(EIA,B)=K3{XRP(E: A)[P(B|A')+ XRP(E : B) +1]
—{P(BIA")+ XRP(B: A)- XRP(E: B)]} -
Since K3 > 0, combining the joint condition (Eq. 22)
with this form of b; gives this necessary condition:
XRP(B: A)+ P(BI A"+ XRP(E : B)

30. XRP(E:A)<
1+[P(BIA')« XRP(E : B)]

Necessary conditions exist for one that are not necessary for the
other. RP(B:A) < P(EIA)/[P(EIA")-P(EIB’)] (from Eq. A12) is
necessary for NI spuriosity, but not for all NI reversals.

If a joint necessary condition is L < R then an increase in R or de-
crease in L makes NewL < NewR a necessary condition for both.
If a necessary condition is false, then the conclusion is false.
Recall that the whole effect is b;(ElA) = DP(E:A). If KI =1, the
indirect effect is DP(B:A)*DP(E:B), but this is a degenerate case.
If DP(B:A) = 1, we have collinearity: a non-useful degenerate case.
DP(E:A) >0 and DP(E:B) >0, so rag > 0 and rgg > 0. Since
bi(EIA,B) is proportional to rag s, applying Eq. 22 to Eq. 11 gives
rag < rap * rpe as a necessary condition for NI spuriosity and re-
versal. So rap < rap*reE, FaES r'ap, and rag < rpg are necessary for
NI spuriosity and reversal. These are analogs of Eq. 24 and 25.
DP(E:A)=AFP(E:A)*P(E)/P(A). DP(E:A)>0 implies AFP(E:A)>0.

@
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The denominator is more than 1; the product of the first
two factors in the numerator is less than 1."” Replacing
both with 1 gives a necessary condition that is a gener-
alization of the Gastwirth-Cornfield condition (Eq. 10):

31. XRP(E:A) < XRP(E:B), and RP(E:A) < RP(E:B).

In Eq. 30, the denominator is greater than 1, so the ine-
quality remains if we replace it with 1. This generates:

32. XRP(E:A) < XRP(B:A)*P(BIA")XRP(E:B).

If XRP(B:A)'P(BIA') < 1, Eq. 32 is stronger than Eq. 31.
If XRP(E:B)'P(BIA') < 1, Eq. 32 is stronger than Eq. 35.
From Eq. E4 in Appendix E, it follows that:
33. by(ElA,B) = K4{[P(B)'XRP(B:A)*XRP(E:B)] +
XRP(E:A)[P(A)*XRP(B:A)+P(B)'XRP(E:B)+1]}.
Since K4 > 0, combining the joint condition (Eq. 22)
with this form of b, gives this necessary condition:
P(B)+ XRP(B: A) « XRP(E : B)
P(B)« XRP(E : B)+ P(A)s XRP(B: A)+1
Since the items being added in the denominator are
positive, we can retain the inequality by retaining any
one of them. Doing this from left to right gives these
three necessary conditions:

35. XRP(E:A) < XRP(B:A),

36. XRP(E:A) < [P(B)/P(A)]"XRP(E:B),

37. XRP(E:A) < P(B)'XRP(B:A)*XRP(E:B).

Eq. 35 is a generalization of Cornfield’s condition
(Eq. 7). Eq. 36 is more restrictive than the generalized
Gastwirth-Cornfield condition (Eq. 31) if P(B) < P(A).
Eq. 37 is less restrictive than Eq. 32 but might be more
useful as is the following: 2%/

38. XRP(E:A) < XRP(B:A)"XRP(E:B).

For the case of smoking and cancer, the generaliza-
tion (Eq. 31) of the Gastwirth-Cornfield condition
means that if this association were spurious and
RP(E:A) were 9, then RP(E:B) must be greater than 9
for a hypothetical genetic confounder. But if the preva-
lence of such a genetic confounder, P(B), was 10%, and
the smoker prevalence, P(A), was 40%, then this new
condition (Eq. 36) would require RP(E:B) > 33.

9. “NO EFFECT” SPURIOSITY

Under NI spuriosity, the two cross-A rate differences,
DP(E:AIB) and DP(E:AIB')*, must either be opposite
in sign (Figure 1) or zero (cross-A rate equality).

In Appendix D, it is shown that any instance of cross-
A rate equality must involve NI spuriosity. Since Fig-
ure 1 is an example of NI spuriosity which does not in-
volve cross-A rate equality, we infer that cross-A rate
equality is a special case of NI spuriosity.

34, XRP(E:A)<

" [XRP(B:A)*P(BIA")] = [P(BIA) - P(BIA")] < P(BIA) < 1.

» This is more restrictive than Eq. 31 & 35 if both XPRs < 1. Itis
more useful than Eq. 32 or 36 if P(BIA) and P(BIA') are unknown.

2 RP(E:A)-1 < [RP(B:A)-1][RP(E:B)-1] < [RP(B:A)*RP(E:B) -
RP(B:A) - RP(E:B) + 1] < RP(B:A)'RP(E:B) - 1.

2 DP(Z:XIY') = [P(ZIX,Y') - P(ZIX',Y")] is analogous to Eq. 1.

10. GEOMETRY OF NI REVERSAL

Eq. 21 gives a defining condition for NI reversal.
Using Eq. 23 with Eq. 21 gives this form:

39. DP(E:A)/DP(B:A) < DP(E:B).

Figure 4 illustrates this condition graphically. The
light dotted lines are the edges of the E(A,B) surface for
A and A’ where the A line lies below the A’ line. P(EIB)
is between E(0,1) and E(1,1); P(EIB’) is between E(0,0)
and E(1,0). See Eq. D6. DP(E:A)/DP(B:A) is the slope
of the dark solid segment. The slope of the dashed line,
[E(1,1)-E(0,0)]/1, is the maximum of DP(E:A)/DP(B:A)
and the minimum of DP(E:B)/1.2

Figure 4: Geometric Condition for NI Reversal
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A geometric condition for NI reversal is that the A line
lies below the A’ line so P(EIA) lies on the lower line.

11. SIMPSON’S REVERSAL
Simpson’s Paradox exists when the sign of associa-
tion in each sub-group (B and B') is opposite the sign in
the composite group. We define Simpson’s reversal as
the reversal occurring in Simpson’s Paradox: **

40. DP(E:AIB) <0, DP(E:AIB') < 0 when DP(E:A)>0.

Not all NI reversals involve a Simpson’s reversal.
Figure 1 illustrates an NI reversal but not all the signs
of the sub-group differences are opposite that in the
composite: DP(E:AIB) < 0 but DP(E:AIB’) > 0.

Simpson’s reversal cannot occur without NI reversal
as shown using this identity (Eq. B8 in Appendix B):
41. DP(E:A) = DP(B:A)'DP(E:B) + X,

42. X = [P(BIA)'DP(E:A|B)*P(BIA")/P(B)]

+ [P(B'|A)DP(E:AIB')*P(B"|A")/P(B")].

In Eq. 41, X < 0 is another form of the defining condi-
tion for NI reversal (see Eq. 39). As defined in Eq. 40,
a Simpson’s reversal is sufficient to make X < O in
Eq. 41. So, all instances of Simpson’s reversal must
involve an NI reversal. But not vice versa since a
Simpson’s reversal is not necessary for X < 0 in Eq. 42.

 The maximum of DP(E:A)/DP(B:A) and minimum of DP(E:B)/1
are achieved simultaneously only under NI spuriosity.

* If the underlying rates were coplanar with cross-A rate difference
equality, DP(E:AIB) = DP(E:AIB"), then E(1,1) = P(EIA,B), etc.,
See Eq. D2e. If so, Figure 4 would illustrate a Simpson’s reversal.
E.g., DP(E:AIB) = [P(E|A,B) - P(EIA",B)] = [E(1,1) - E(0,1)] < 0.
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12. INFERENCES

The influence of a confounder, B, on an observed as-
sociation between A and E can be inferred without
doing the regression provided one has information on
comparisons of single-predictor prevalences: P(X1Y).
Assume as usual that values of A and B are selected so
DP(E:A) > 0 and DP(E:B) > 0. We describe three
cases: (1) given the signs of three comparisons, (2)
given three relative differences, and (3) given three
simple differences.

#1: Direction of Change

Since by(EIA) = DP(E:A), Eq. 23 can be rewritten as:
43. b(EIA,B) = KI[b(E\A) - DP(B:A) -DP(E:B)].

The direction of change in the association between A
and E can be inferred from the sign of DP(B:A):

44. Decrease: bi(ElA,B) < bi(EIA) if DP(B:A) > 0.

45. Increase: bi(ElA,B) > b(E|A) if DP(B:A) <0.
Since XRP has the same sign as DP, the sign of
XRP(B:A) can be used to infer the direction of change.

#2: Non-Reversal™*

If XRP(B:A) > 0, then b(E|A,B) < by(EIA). In this case,

an NI reversal, b;(ElA,B) < 0, is precluded if any of the

following are true:

46. XRP(E:A) > XRP(E:B), XRP(E:A) > XRP(B:A), or
XRP(E:A) > XRP(B:A)"XRP(E:B).

Eq. 46 follows from Eq. 31, 35 and 38 respectively. If

all of the known elements of Eq. 46 are false, then an

NI reversal is not precluded.

#3: Reversal
When rearranged, Eq. 39 gives this form of the defining
condition for NI reversal:

47. DP(E:A) < DP(B:A)-DP(E:B).
If Eq. 47 is true, then an NI reversal holds after taking
the confounder into account; otherwise it does not.

13. AN EXAMPLE
The relevant outcome (E) is death, A is hospital (city
vs. rural), and B is patient condition (poor vs. good).

(#1) Suppose qualitative comparisons are obtained as
follows. Death is more prevalent among patients at city
hospitals that among those at rural hospitals; death is
more prevalent among patients admitted in poor condi-
tion than among those admitted in good condition; and
admission in poor condition is more prevalent among
patients at city hospitals than among those at rural hos-
pitals. It follows that the association between city hos-
pitals and higher death rates is decreased after control-

» Skip this step if DP(E:A), DP(E:B) and DP(B:A) are available.
* If DP(B:A) or XRP(B:A) are not available, they can be derived
from a number of other statistics. For example
e P(BIA) = [P(EIA) — P(E|A,B")]/[P(EIA,B)-P(EIA,B")]
e P(BIA") = [P(EIA") — P(EIA',B))/[P(EIA',B)-P(EIA',B)].
They can also be derived using Phi(B,A), P(B) and P(A):
* [DP(B:A)T = Phi*(BA){ P(B)[1-P(B)]} { P(A)[1-P(A)]}.

ling for patient condition because all three DPs or XRPs
are positive.

(#2) Suppose percentage comparisons are obtained as
follows. Death is 57% more prevalent among patients
at city hospitals than among those at rural hospitals, so
XRP(E:A) = 0.57. Death is 230% more prevalent for
patients admitted in poor condition than for patients
admitted in good condition, so XRP(E:B) = 2.3. And
admission in poor condition is 200% more prevalent
among patients at city hospitals than among patients at
rural hospitals, so XRP(B:A) = 2.0. As in #1, the asso-
ciation between city hospitals and higher death rate is
decreased by taking into account patient condition. In
addition, it follows that a reversal of the association
is not precluded, because XRP(E:B), XRP(B:A), and
XRP(E:B)"XRP(B:A) are each larger than the observed
difference, XRP(E:A).”

(#3) Suppose percentage-point differences are obtained
as follows. Death is 2 percentage points more prevalent
among patients at city hospitals than among those at
rural hospitals, so DP(E:A) = 0.02. Death is 4.4 per-
centage points more prevalent for patients admitted in
poor condition than for patients admitted in good condi-
tion, so DP(E:B) = 0.044. And admission in poor con-
dition is 60 percentage points more prevalent among
patients at city hospitals than among patients at rural
hospitals, so DP(B:A) = 0.6. It follows that this asso-
ciation between city hospitals and higher death rates is
reversed by taking patient condition into account, be-
cause the product of the two confounder-related simple
differences, 0.6 times 0.044, is greater than the ob-
served simple difference, DP(E:A) = 0238

Figure 5 summarizes these comparisons. An under-
score or dot indicates the common numerator in each.

Figure 5: Comparison Triangle

Hospital _XRP(E:A)=57% o Outcome
City vs. Rural < DP(EA) = .02 @=2ed
XRP(B:A) = 200% XRP(E:B) = 230%
DP(B:A) = 0.6 DP(E:B) = .044

Poor Poor vs. Good
Patient Condition:

Now consider similar data in which admission in
poor condition is just 30 percentage points more preva-
lent among patients at city hospitals than among those
at rural hospitals. It follows that the association be-
tween city hospitals and higher death rates is not re-
versed by taking into account patient condition, because
the confounder linkages are not strong enough to re-
verse the association: 0.30 * 0.044 is less than 0.02.**

" Note: to multiply percentages they must first be converted to fractions.

% When DP(E:A)/DP(B:A) < DP(E:B), the A line is below the A' line
so NI reversal will happen. When DP(E:A)/DP(B:A) > DP(E:B),
the A line is above the A' line so NI reversal is impossible.
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14. CONCLUSIONS

Defining conditions for an association to be nullified
(made spurious) or reversed by a confounder are de-
rived for binary variables using a non-interactive (NI)
linear regression model.

Necessary conditions for both NI spuriosity and NI
reversal are derived. These include generalizations of
the Cornfield and Gastwirth-Cornfield conditions.
Cross-A rate equality (Cornfield’s “no effect”) is found
to be a special case of NI spuriosity. Simpson’s rever-
sal is found to be a special case of NI reversal.

Simple tests are obtained to infer whether controlling
for a confounder will increase, decrease or reverse an
association. These tests require just single-predictor
comparisons. They do not require any double-predictor
prevalences and they do not require doing an actual re-
gression.

Since confounding involving binary variables is a
major problem in many fields and since there is no sta-
tistical test for confounder-induced spuriosity or rever-
sal, these results may be of general use. For example,
they may be useful in specifying the minimum strength
needed by a confounder to nullify or reverse an associa-
tion.
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Appendix A: NON-INTERACTIVE SPURIOSITY™
I. THREE DOUBLE RATIOS PER EQUATION’!
Al. DP(E:A)=DP(B:A)+ DP(E:B)
A2. AFP(E:A)= AFP(B:A)+ AFP(E:B)
XRP(B: A)+ P(B| A')« XRP(E : B)

1+[P(BIA')« XRP(E : B)]

XRP(E : A)

P(B1 A)[XRP(B: A)— XRP(E : A)]
A3c. XRP(B:A)= XRP(E: A){1+1/[P(B| A")« XRP(E : B)]}
A3d.
XRP(E:B)—XRP(E:A)= {

A3a. XRP(E:A)=

A3b. XRP(E:B)=

RP(E:B)e P(BI A')+[1- P(B1 A)]}XRP(E : B)
[P(BI1A"Ye XRP(E : B)]+1
P(B)+ XRP(B: A)« XRP(E : B)
P(A)« XRP(B: A)+ P(B)+ XRP(E : B) +1
XRP(E : A){1+[P(A)+ XRP(B: A)]}
[XRP(B: A)— XRP(E : A)]

XRP(E : A){1+[P(B) » XRP(E : B)]}

[P(B)+ XRP(E : B)|—[P(A) « XRP(E : A)]

Ada. XRP(E:A)=

Ad4b. P(B)s XRP(E: B) =

Adc. XRP(B:A)=

Add.
P(A) e XRP(E:A) __P(B)s XRP(E:B) _P(A)s XRP(B:A)

P(A)e XRP(E:A)+1 P(B)s XRP(E:B)+1 P(A)e XRP(B: A) +1

II. Two DOUBLE RATIOS PER EQUATION

A5. XRP(B:A)=XRP(E:A)s P(E|A)/[P(E|A")—P(E|B"]

_ [P(BIA)+ XRP(E : B)|+1

" [P(BIA")« XRP(E : B)] +1

a XRP(E : A)

" P(BIA)—P(BI A')« RP(E: A)

3 DP(E : A)

T P(BIA)+P(EIA)—P(BIA"Y« P(E| A)
P(E)-P(E|A") _ DP(E:B)P(B)- P(B|A)]

DP(B:A)+DP(E:B) DP(E: A)

Aba. RP(E:A)

A6b. XRP(E:B)

A7. XRP(E:B)

A8. PA)=

III. EQUAL SLOPES
AQa, AY _DP(E:A) _DP(E:B) _P(EIA)-P(E) _P(EIB) - P(E)
" AX DPB:A) (1-0) PBIA-PB)  1-P(B)

AQp. AY _ P(EIA)-P(EIB) _[P(EIA)-P(EIB)]

AX P(BIA") P(BIA)
AQc. AY _P(EIB)-P(EIA) _ P(EIB)-P(EIA)
©AX 1-P(BIA") 1-P(BIA)
A0d, AY _ P(E)-P(EIAY) _ P(E)-P(EIB)
AX  P(B)-P(BIA") P(B)

IV. OTHER CONDITIONS (NOT SHOWN ABOVE)

A10. P(E1A)=P(E|B')+P(B|A)« DP(E:B)

All. P(EIA)Y=P(EIB')+P(B|A')+«DP(E:B)

Al2. RP(B:A)=[P(E1A)—P(E|B")]/[P(E|A")— P(E|B")]

[P(E)/ P(E|B)][P(B)! P(B|A")]

[P(E)/ P(E| B)]+[P(B)/ P(B| A)]-1

Al4. This equates the whole with the indirect effect.

DP(E:A)=P(E|B)e DP(B:A)+ P(E1A)e P(BIA")— P(E1A")e P(BIA)

AlS. P(EIA)_IZ[P(EIB)_l][P(BIA)_1][ P(B)
P(E) P(E) P(B) 1-P(B)

Al3. P(E)/P(EIA) =

]

3 DP(E:A)=P(E)XRP(E:A)/[P(A) XRP(E:A)+1]=AFP(E:A)-P(E)/P(A).
31 AL, A5, A8 and A12 have two non-A ratios. All others have more.
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Appendix B: DATA CUBE NOTATION

Heretofore the data values are categories (A, A', B, B,
E and E") and related prevalences. E.g., P(A), P(EIA),
RP(E:A) and DP(E:A). Hereafter these prevalences are
given atomic symbols (proper names). Figure 6 shows
the faces of the categorical cube for binary variables.

The following tables are obtained from the data cube in
Figure 5. Tables A, B and X represent surfaces of the
3D data cube. Tables E, S and T are slices through the
cube. Table R involves ratios between Tables E and X.

Four letter names denote double ratios. >

Table A: Cross-prevalence between A and E

Figure 6: Faces of Categorical Data Cube for A, B & E Table A Non-E E TOTAL
Al B non-B Non-A Aa Ab Ag
Al P Xg Xb Xa non-A A Ac Ad Ah
% Xh Xd X A
A - ” < - Al TOTAL Ae Af n
-E
" &40 2 n Bh Bg Al Table B: Cross-prevalence between B and E
nj N ¥ Bf Bd Bb E Table B Non-E E TOTAL
6‘@00/. A||4@ Be Bc Ba non-E Non-B Ba Bb Bg
%, Al B non-B B Bc Bd Bh
B: confounder. TOTAL Be Bf=Af n
The three margin faces (AE, BE and AB) correspond
to Tables A, B and X (in the next column). Body cells Table X: Cross-prevalence between A and B
are labeled a though d; margin cells are e through h. Table X Non-B B TOTAL
Note: Af=Bf, Xf=Bh and Xh=Ah (Ae=Be, Bg=Xe and Non-A Xa Xb Xg=Ag
Xg=Ag); some margin cells are on more than one face. A Xc Xd Xh=Ah
Since our focus is on modeling outcome E, a 4™ ta- TOTAL Xe=Bg Xf=Bh n
ble, Table E, the center slice, is of interest. For each .
entity, we use the first letter of the variable name to in- _Table E: Distribution of E by A and B.
dicate the table. E.g., Xd is cell d in Table X. Table E Non-B B TOTAL
To focus on outcome E, we shift from counts to ra- Non-A Ea Eb Eg=Ab
tios. Table R is a ratio table: R; = E; / X;. A Ec Ed Eh=Ad
The n data points are summarized by four rates (Ra, TOTAL Ee=Bb Ef=Bd En=Af
Rb, Rc, Rd) and their weights (Xa , Xb, Xc, Xa’):32
Bl. Ra=P(EIA'B), Rb = P(E\A'",B). Table R: Rate of E classified by A and B.
B2. Rc=P(EIA,B), Rd = P(E\A,B). Table R Non-B B TOTAL
Weights are shown relative to column or row totals:**** Non-A Ra=Ea/Xa | Rb=Eb/Xb | Rb=Ab/Ag
B3. XP=P(BIA),  XQ=P(BA), XF=BH=P(B) A Re=Ec/Xc | Rd=Ed/Xd | Rh=Ad/Ah
B4. XN=P(AIB), XM=P(AIB'), @ XH=AH=P(A). TOTAL Re=Bb/Bg | Rf=Bd/Bh | Rn = Af/n
Two-letter names with all caps indicate single ratios. Table T: Association of A and E for B=1.%¢
E.g., BH = Bh/n, BF = Bfifn. AP and AQ signify ratios Table T Non-E E TOTAL
in the exposure and non-exposure groups. AF, AP, AQ, Non-A Xb-Eb Eb Xb
ig) anq IitQ (;11;3 a}[;/lel'rages otf p();i(irs )(()]f r;tesx g)?a, Rb, Rc, A Xd-Ed Ed Xd
weighted by their counts (Xa, Xb, Xc, : — —
BS. AP=P(EIA), AQ=P(EIA), AF = P(E) TOTAL XFE Ef=Bd Xf=Bh
B6. BP=P(EIB), BQ=P(EIB), BF = P(E). Table S: Association of A and E for B=0.
There are several general identities such as: Table S Non-E E TOTAL
B7. AP-AQ = (XP-XQ)(BP-BQ) Non-A Xa-Ea Ea Xa
+ [AP - BP-XP - BQ(1-XP)]/(1-AH), A Xc-Ec Ec Xc
B8. AP-AQ = (XP-XQ)(BP-BQ) +[XP(Rd-Rb)XQ/BH TOTAL Xe-Ee Ee=Bb Xe=Bg

+ (I-XP)(Re-Ra)(1-XQ)/(1-BH)],
BY9. AP-AQ=(XP-XQ)[(Rd-Rc)(1-AH) + (Rb-Ra)AH]
+ [(Rd-Rb)BH + (Rc-Ra)(1-BH)].

32 Absolute weights are Xa, Xb, Xc and Xd, where Xa = n-P(A’, B'),
Xb =n-P(A’, B), Xc = n"P(A, B'), Xd = n-P(A, B).

3 XP=Xd/(Xc+Xd), XQ=Xb/(Xa+Xb), XN=Xd/(Xb+Xd), XM=Xc/(Xa+Xc).

3% AH = (AF-AQ) /(AP-AQ) = (BH - XQ) / (XP - XQ),
BH = (AF-BQ) / (BP-BQ) = (AH - XM) / (XN - XM).

Eq. B8 is directly related to the Lazarsfeld accounting
formula. See Lazarsfeld (1961). This paper does not
include a comprehensive analysis of, or treatment for,
O=0orP-Q0=1.

¥ ARRE = RR(E:A) = APIAQ,  BRRE = RR(E:B) = BP/BQ,
XRPB = RP(B:A) = XP/XQ.  See Schield and Burnham (2002).
% A general identity involving the S and T tables is given by:
AF(1-AH) _ BP(-XN)BH _ BQ(1- XM)(1- BH)
AH(ARRE—1)+1 XN(TRRE-D)+1  XM(SRRE-1)+1
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Appendix C: RATE DATA CUBE
To model this data, the values of variables A, B and E
are treated as continuous. Their extreme values (A and
A") are 0 and 1. See Figure 7. Location 0, 0 is A’, B".
Instead of having a pair of data points (at E=0 and E =
1) for each of the four corners, each pair is replaced by
its weighted average: Ra, Rb, Rc and Rd.

Figure 7: 3D Rate Data Cube with Non-Planar Data

RN E: effect

D, !
‘9/@0, 0,0 XQ 0,1
B: confounder.

Noteworthy values of A are 0, XQ, XF=AH, XP, and 1.
As shown in Figure 7, AP is a weighted average of Rc
and Rd: AP = Rc(1-XP) + Rd-XP.

Appendix D: NON-INTERACTIVE MODEL
A common linear non-interactive regression model
involving two predictors is:

D1. E(A,B) = bo + bl'A + bz'B.
Coefficients are obtained by minimizing OLS variance.
These coefficients can have many forms.

(1) One form involves rates and weights. Let b; indi-
cate non-planarity where b;=Rd-Rc-Rb+Ra.
Let D = XalXb(Xc+Xd)+(Xc Xd)+(XbXcXd),
D2a. by= Ra - (b3Xb-XcXd)/D,

D2b. by = (Rc-Ra) + [b3Xb(Xa+Xc)Xd)/D,
D2c. b, = (Rb-Ra)+[bsXc(Xa+Xb)Xd)/D.

Under cross-A rate equality, Ra = Rc and Rd = Rb.
So, b3 =0, b; = 0, and we have NI spuriosity.

If the data is planar, b; is zero, so (Rd-Rb) = (Rc-Ra).
So, planar data entails cross-A rate difference equality
(which is different from cross-A rate equality). It also
entails cross-B difference rate equality: Rd-Rc = Rb-Ra,

D2d. by=Ra, by=Rc-Ra, b,=Rb-Ra for planar data.

For planar data, the corners of the surface are the rates:

D2e. E(0,0)=Ra, E(0,1)=Rb, E(1,0)=Rc, E(1,1)=Rd.
(2) Another form of the coefficients involves the ra-

tios’” derived from the values on the faces in Figure 6.

Let D =[1 - (XN-XM)(XP-XQ)],

D3a. by =AF - [(AP-AQ)XM + (BP-BQ)XQ] /D,

D3b. by =[(AP-AQ) - (BP-BQ)(XP-XQ)]/D,

D3c. b, =[(BP-BQ) - (AP - AQ)(XN - XM)] / D.****

7 If XP=XQ=XF and XN=XM=XH, where XF=BH and XH=AH, then
by=AQ+BQ-AF, bj=AP-AQ and b,=BP-BQ so E(0,0)=AQ+BQ-AF,
E(0,1)=BP+AQ-AF, E(1,0)=AP+BQ-AF and E(1,1)=AP+ BP-AF.
If b3 = 0 then Ra = E(0,0), Rb = E(0,1), Rc = E(1,0) and Rd = E(1,1).
If AP=AQ the association is trivial and reversal is meaningless.

The following can be derived from these equations:
D4a. AP = E(A=1, B=XP), AQ = E(A=0, B=XQ),
D4b. BP = E(A=XN, B=1), BQ = E(A=XM, B=0),
D4c. AF = E(AH, BH).

Thus the regression plane contains the lines connecting
AP with AQ and BP with BQ. These lines intersect at
AF. Not all ratios in categorical space lie on the surface
of a given model: Rd = P(E|A,B) # E(A=1,B=1).

Figure 8: Two Lines Determine Regression Plane

NI Plane is Determined by Two Lines
Ref:-~-One from AP to AQ; One from BP to BQ.

o E: effect

/' -
%o' 0,0 XQ 0,1
B: confounder.

The four corners of the planar surface are:™

D5a. E(0,0) = AF - [XM(AP-AQ)+XQ(BP-BQ)]/D,
D5b. E(0,1) = AF - [XN(AP-AQ)-(1-XQ)(BP-BQ)]/D,
D5c. E(1,0) = AF+[(1-XM)(AP-AQ)-XP(BP-BQ)]/D,
D5d. E(1,1) = AF+[(1-XN)(AP-AQ)+(1-XP)(BP-BQ) J/D.
D6a BP = E(0,1) + XN[E(1,1) — E(0,1)].

D6b. BQ = E(0,0) + XM[E(1,0) — E(0,0)].

Appendix E: FORMS OF SLOPE: b((EIA,B)
The following are forms of the slope b,(EIA,B) in a
non-interactive OLS regression model on binary data.

, - (AP=AQ) - (XP - XO)(BP - BQ) See D3b
1 1- (XN — XM )(XP — XQ)
The denominator is positive since it is 1-XPhi(B,A ).

El.

E2 b = AF(AAFP — XAFP « BAFP)
1™ AH[I= (XN - XM)(XP - XQ)] '

E3. A double-ratio form with XQ in numerator:
b, = AF{(ARRE —DIXQ(BRRE —1) +1]- [ XQ(XRPB — 1)(BRRE ~ )]}
! (1— XPhi®)[AH (ARRE —1)+1][BH (BRRE —1) +1]

E4. Double-ratio form with AH and BH in numerator:

y = AFUARRE —D[AH (XRPB—1)+ BH (BRRE 1) +1]~[BH (BRRE ~)(XRPB ~D)]}
| =

(1- XPhi®)[AH (XRPB —1)+1[[ AH (ARRE —1)+ 1 BH (BRRE ~ 1) +1]
Equations E1 through E4 are the basis for Al through
A4. Cases with zero denominators are ignored. Non-
zero denominators are always positive when XRPB,
BRRE and ARRE are greater than one.

3 by(EIA,B) is obtained from b,(ElA, B) by exchanging A with B, AH
with BH, AP with BP, XP with XN, and AF with AF. See D3b & D3c.
¥ If by(EIA,B) = 0, then (AP-AQ)=(BP-BQ)(XP-XQ), so by(EIA,B) =
[(BP-BQ)-(BP-BQ)(XP-XQ)(XN-XM)]/D = (BP-BQ) = b,(EIB).
0 If XP=XQ=XF and if XN=XM=XH, where XF=BH and XH=AH,
E(0,0) = AF - [AH(AP-AQ)+BH(BP-BQ)], E(0,1) = AF - [AH(AP-
AQ)-(1-BH)(BP-BQ)]. E(1,0) = AF+[(1-AH)(AP-AQ)-BH(BP-BQ)],
E(1,1) = AF+[(1-AH)(AP-AQ)+(1-BH)(BP-BQ)]. The form in foot-
note 37 is equivalent but simpler.
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