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Abstract 

IASE organising committee (2004) talks about people making ‘reasoned decisions based on sound 

statistical thinking’. As a string of seven words it rolls so easily off one’s tongue; as an outcome, 

however, it remains elusive. This paper looks at the journey (and output) of one school, from 1997 

to 2004, taken in an effort to empower its students to make reasoned decisions based on sound 

statistical thinking. Background reasons for the journey will be outlined and general description 

and critical comment of some of the learning experiences used will be given. The last twelve 

months of the journey will be considered in some detail. Six phases of teaching and learning that 

may assist in the realisation of the goal of reasoned decision-making based on sound statistical 

thinking, will be discussed. Complementing the phases is a preliminary approach to data analysis 

called distribution division. The effects of this approach on the middle school curriculum will also 

be discussed. 
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1. Introduction. 

Prince Alfred College (PAC) is a private boys school in Adelaide, South Australia. It delivers 

educational programs to boys from ages 5 to 18 years. Over the last seven years, work has been 

carried out that aims to have PAC students making decisions based on sound statistical reasoning. 

The work has focussed on boys 12 to 15 years old. The most recent development that has resulted 

from this work is an elementary approach to data analysis called distribution division. My own 

teaching experience has shaped the work that has been done. The important aspects of this 

experience are outlined in the next section. 

2. Background. 

In 1993 the Senior Secondary Assessment Board of South Australia (SSABSA) introduced an 

externally examined, pre-tertiary (final year of high school) course called Quantitative Methods 

(QM). The course did not contain any calculus but approximately fifty percent of the content was 

statistical in nature. The overview of the Statistics section reads, “The aim of this section is to 

illustrate statistical investigations, from inception to report. Students will complete elementary 

statistical investigations of their own and comment upon the statistical investigations of others. 

Ideas of statistical inference will be introduced for proportions and means but only for a single 

variable with simple random sampling, whereas relationships between two variables will be 

examined using graphical techniques and simple descriptive statistics. The emphasis will be on 

interpretation and the use of statistics to solve problems rather than the mechanics of drawing 

graphs and making calculations, and consequently access to electronic calculators and computer 

packages is essential.” (SSABSA, 1992). 
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A major project, to which students were to devote four weeks, contributed fifteen percent of the 

final mark. The expectation of a major project was daunting; most teachers were without a 

framework that allowed them to guide students in performing a simple, but sensible, statistical 

investigation. It may be no surprise that from 1993 to 2002 the course only attracted some 200 

candidates per year. Informal discussions with teachers indicated that some reasons were: teachers 

had little or no background in statistics and so the course demands seemed greater than they really 

were; mathematics classes had very limited access to electronic technology; a text book had not 

been written; local universities did not support the course. Notwithstanding this, the projects of 

some of the QM students were outstanding. In one of the more memorable projects a student 

investigated how two different forms of castration of young male sheep affected their weight at 

sale time. As a result the student’s father changed his farming practice. 

 

In 2003 the course was replaced with a similar course called Mathematical Methods. Mathematical 

Methods includes statistical concepts beyond those in its predecessor QM and elementary 

differential calculus, among other things. It is not mandatory for students to carry out a major 

project. In 2003 the course had over 500 candidates; a rapid rise in candidature is expected in 

future years. 

 

I taught QM from 1993 to 2000. It was hard but rewarding work. Students loved the course. It is in 

no small part the experience of teaching this course from 1993 to 1997 that shaped my thinking 

about what might be possible in the middle school (statistics) curriculum at PAC. 
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Prior to 1998, Statistics was not taught seriously, if at all, in most mathematics classes at PAC. 

Most teachers saw Statistics as the topic one taught at the end of the year if you had covered all the 

more important topics. This was to change in 1998 when mandatory Statistics sections were added 

to the PAC middle school courses (for boys aged between 12 and 15 years). Each was of three to 

four week’s duration. Teachers’ immediate questions were: How can we spend that long on 

Statistics? (they had not taught QM) and What are we not going to teach from other topics? Most 

text books available at the time included a chapter on Statistics, but the Year 8 chapter differed 

little from the Year 9 chapter and so on. The texts tended to offer a mix of skills for making graphs 

and performing calculations, all of which were rarely put to any logical or interesting use. I 

decided to write learning materials for each of the Years 8, 9 and 10 courses. The major influences 

on these materials will now described. 

 

3. Early influences on the materials. 

The three greatest influences on the material written were: 

• the phrase from inception to report (SSABSA 1992) 

• Moore and McCabe’s book, Introduction to the practice of statistics (1996) 

• an unpublished data handling matrix developed by Robert Hall, a Senior Lecturer in 

Statistics at the University of South Australia. 

 

3.1 From inception to report. 

The expectation for students to understand what they read in the media, for example, to be able to 

understand a graph presented in a newspaper, was being pushed from all directions. Some 

approached this task by providing a flood of media examples for students to read and interpret. My 
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QM experience led me to believe it to be vastly more difficult for a young mind to be able to do 

this if they have never experienced a simple statistical investigation from inception to report. 

There is so much knowledge hidden behind one graph, table or statement and it is hard to 

appreciate this unless you have had first hand experience in developing material such as this from 

raw data. If they are to appreciate and understand the sense (or nonsense) of plots and statements 

made by others, students first need to have come up with a problem of their own, or have had one 

posed to them, and need to have collected some data pertaining to the problem and have calculated 

statistics and produced graphs from such data. 

 

3.2 Moore and McCabe’s book, Introduction to the practice of statistics (1996). 

 At the time, this was the book in our field of vision whose approach to the learning of statistics 

most closely approximated an inception to report format. 

 

3.3 Robert Hall’s data handing matrix. 

Some statisticians dislike this matrix due to its procedural approach that does not openly 

encourage creative thinking by students when faced with unfamiliar situations. Nevertheless, it 

provides a way for novice teachers (and students) to think about statistics that gives them a chance 

to use statistical techniques to solve simple problems. The matrix categorises problems by both the 

number of the variables and the form of the responses involved. For example: 

• Single variable, nominal and ordinal response 

• Single variable, interval response 

• Two variables, nominal/ordinal response and nominal/ordinal explanatory 

• Two variables, interval response and nominal/ordinal explanatory. 
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For each category the matrix outlines how to gather and organise the data, appropriate graphical 

displays and summary statistics, tables suitable for publication and appropriate hypothesis tests. 

 

4. The 1998 materials. 

In 1998 two sets of learning materials were implemented at PAC. Year 8 boys (aged 13 to 14 

years) focused on small problems that required the analysis of categorical data. Year 9 students 

focussed on small investigations requiring the analysis of data measured on an interval scale. The 

materials aimed to have students: 

• reading within a single data set, between two comparable data sets and beyond the data 

set(s), appreciating that sample data may provide a hint as to what was happening in the 

population from which the data came 

• being able to support a conclusion using facts and statistics they had determined from 

analysing data. 

 

Both teachers and students received the materials very well and they have continued to be used by 

teachers both in and outside PAC. However, it is questionable whether the more subtle, and most 

important aims of the materials were achieved. The following reflection, from a teacher who has 

used these materials a number of times, is enlightening. 

 

One of the aims of these units is the acquisition by the student of statistically related skills 

like the use of percentage, the drawing of graphs and graphical interpretation. As a teacher 

this aim is easily attained. Students readily learn (or revise) these skills and can trot them 
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out when asked to. The learning here comes easily, but a sense of achievement is lacking. 

The students work happily in their comfort zone, revising mathematical skills that feature 

strongly in primary school curriculum. Many of them feel that it is ‘Mickey Mouse’ maths 

and rightly feel that little of worth has been achieved. 

The main aim of the Statistical Investigator units is the gaining by the students of an 

appreciation that these statistical skills do something powerful, the idea that statistics is 

concerned primarily with the answering of questions and the solving of problems. One focus 

of the first of these units is on the concept of sampling, its power and its potential flaws, and 

the implication it has for the solutions to the problems that we obtain. In this area the 

learning comes with more difficulty but the potential for achievement is far greater. Students 

struggle to put things into words, and when they succeed they don’t always appreciate the 

significance of what they have done. Students struggle to understand the core concepts and 

the way that they interact. Students will have little chance of grasping these ideas if their 

teachers do not fully understand the significance of these concepts. Whilst the learning is 

harder, the sense of achievement and sense of the power of this vital field of mathematics 

makes it worth the effort. 

When I first used the first Statistical Investigator unit I was an inexperienced teacher of 

statistics who had only ever been asked to deliver a skills-based textbook-focussed 

curriculum. As such I glossed over the concepts I should have emphasised. Since then I have 

taught inferential statistics at a leaving level, and I now feel that I can teach statistics at an 

entry level with an understanding that I lacked earlier. I now see these units as inferential 

statistics without the tests and intervals. The problems we solve should really be put on the 
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classroom wall, to be revisited 5 years later when we have the skills to prove our 

conjectures. (Lupton, A., 2004). 

So, as the author of these units, I had some nagging doubts about exactly what students who used 

them were learning, especially from the unit that focussed on the analysis of data measured on an 

interval scale. One thing not in doubt was that approaching the learning of statistics with a small 

number of questions to be answered or problems to be solved was the best way to proceed. 

Personal experiences and those of other teachers left little doubt that students enjoyed trying to 

solve problems. 

 

A sample problem from the materials that deal with the analysis of data measured on an interval 

scale is provided in the next section. The nagging doubts will be outlined in Section 6. 

 

5. A problem from the 1998 materials. 

Consider the following problem taken from the PAC materials. It is the type of problem students 

were expected to cope with at the end of the unit. The materials provided a scaffold to this level, 

based on both learning about and using the summary statistics and other statistical ideas required. 

A home-owner was interested in whether the Sunday Mail (newspaper) and The Realtor (a 

real estate sales paper produced weekly) contained houses that were for sale for reasonably 

similar prices in general or whether one paper contained houses of generally higher prices.  

To investigate this he randomly selected 100 homes advertised in the Sunday Mail and 101 

from the Realtor over a period of three weeks and recorded the asking price for each house. 

Students are guided to produce a graphical display (Stemplot/Histogram), compare the shapes of 

the two distributions, then compare the centres of the distributions, the spread of the distributions 
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and then finally to make box plots to see what they tell them. Then they are directed to summarize 

their findings in a table and form an argument based on their analysis and which supports their 

answer to the question or solution to the problem. A model output (taken from the materials) is 

shown in Figures 1 – 3, Table 1 and the text below. 

 

               

Figures 1 – 3. Histogram and box plot representations of the real estate data as produced by a 

graphic calculator. 

 

 Sunday Mail Realtor 
 

outliers 
 

none 
 

none 
 

shape 
 

Approximately uniform 
 

Skewed to the high 
 

median 
 

$129 950 
 

$84 950 
 

IQR 
 

$54 950 
 

$24 750 
 

boxplot story 
Over three quarters of Sunday Mail prices were 
higher than three quarters of Realtor prices, 
around 50% of Realtor prices less than around 
90% of the Sunday Mail prices. 

 

 
Table 1: Summary table of analysis of real estate data. 
 

No abnormally high or low house prices were found in the asking prices of homes collected 

from either the Sunday Mail or Realtor. The Sunday Mail's price distribution is reasonably 

uniform, while that of the Realtor is skewed high. The median asking price in the Sunday 

Mail sample is $129 950 compared to a much lower $84 950 for the Realtor sample. The 
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asking prices in the Sunday Mail sample show far more variation than the Realtor. The 

interquartile ranges are $54 950 and $24 750 respectively. It is also worth noting that over 

three quarters of Sunday Mail prices are higher than three quarter of realtor prices and that 

around 50% of Realtor prices are less than 90% of the Sunday Mail Prices. 

The analysis of our samples support the hypothesis that the asking prices of houses in the 

Sunday Mail are, in general, considerably higher than houses advertised in the Realtor. 

 

6. The nagging doubts. 

The nagging doubts were: 

• For most students this was their first serious look at analysing this sort of data and there 

were many new things to learn, such as stem plots, histograms, the concept of distribution, 

shapes of distributions, median, IQR, box plots, and so on, not to mention the skills 

required to construct a sound argument. 

• In reality, the intended focus (the ability to construct a sound argument) came at the end of 

a rather long chain of other skills which had to be learned. For all but the most capable 

students, the learning of the mechanical skills dominated. There was also evidence that 

teachers glossed over the main focus for reasons which have not been fully investigated. 

• It was possible for students to follow a formula to form an argument based on the 

framework and examples they were given. Too many students tried to apply a learned 

procedure and it was evident from their attempts that no real statistical reasoning had taken 

place. Some teachers encouraged this formulaic approach as it was worth marks in the test. 

• All the problems posed required the students to read within an individual data set, between 

a pair of data sets and ‘beyond the data’ (Curcio, 1987). That is, the student had to make a 
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comparison between the two sample data sets and then hypothesise about what that may 

mean about the population from which the data were drawn. As an initial expectation this 

seems to be too much to ask of many students. 

• Most examples in the material provided data sets of which the students had no ownership. 

This made it difficult for most students to read beyond the sample data and think about 

what it may mean in terms of the population the data came from; they had little familiarity, 

for example, with house prices or with the target audience of the two newspapers. Just 

building an understanding of what the population is for a given sample data set, is not a 

trivial task. Did the statement “The analysis of our samples supports the hypothesis that 

…..” mean much to the students, or was it just the thing you had to write to get a mark? 

• What was it that actually promoted the need for students to learn and use things like 

histograms, boxplots, the mean, the IQR, and so on? It seemed there was nothing apart 

from the fact that we were telling them they were useful tools. 

Despite of all these nagging doubts, the materials were and still are received very well. I suspect 

that says more about the materials teachers were using previously, or thought of statistics 

previously, than it does about the relative quality of the 1998 materials. 

 

The result of the nagging doubts was a series of questions that had to be answered before a set of 

materials could be written and tested to replace those presently being used. 

 

7. The first question. 

The first question is: 

• Is there a better sequence of learning that could be employed? 
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I have developed the following four phases that form a learning sequence. Whether or not this 

sequence is an improvement is still to be determined. 

1. Students working with a single data set that requires them only to ‘read the data’ 

(Curcio, 1987) for description purposes (ie. reading beyond it is not possible, the 

‘population’ is before you). This process, from here on, will be referred to as 

reading within. 

2. Students working with two data sets where they are required to read only within 

each data set and between the two data sets and not beyond (ie reading beyond it 

not possible, the ‘population’ is before you). 

3. Students working with a single data set that requires them to read within and 

beyond the data (i.e. inferring to a population because acquiring data from a sample 

of the population is all that is reasonably possible). 

4. Students working with two sample data sets that require them to read within each 

data set, between the two data sets and beyond the data. 

 

8. Tasks for Phases One and Two. 

Presenting a problem/question where the student has all the data associated with the problem 

posed, as opposed to a sample from the population, means the student can singularly focus on 

describing what is seen. 

 

8.1 Phase One: Just within. 

An example of a suitable task is: 

Describe the batting performance of the Australian cricket team during the 1990s. 
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All the data required to describe the performance is readily available. 

 

8.2 Phase Two: Within and between. 

Phase Two consists of tasks that are two-dimensional forms of the questions from Phase One. This 

provides added interest and the chance to make a more powerful use of some simple tools. The 

students would be comparing and contrasting (reading between the data sets) and developing an 

argument to support differences or similarities. 

Such a task is: 
 

The cricket team of which country, Australia or England, had the better batting performance 

during the 1990s? 

 
All the data of use in investigating this question is readily available. 

 

9 Phases Three and Four: Within and beyond, and within, between and 

beyond. 

These phases provide a challenge that leads to the second question. 

• How can we supply students with sample data sets for Phase Three and Four tasks of a 

sensible size (not too small), of a type that students will feel a sense of ownership for and 

that are drawn (preferably by the students) from a population that the students relate to 

with little effort? 

For a busy teacher it is very difficult to find data that meets these requirements. 

 

In 2003 SeniorSchoolCensus-online offered all students in South Australia the chance to take part 

in a secure online Census (HREF). The survey had 34 questions, some providing categorical data, 
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others providing data measured on an interval scale. The survey can be viewed by visiting the 

project website. Over 21 500 students took part. The respondents form a population. Some of the 

population parameters have been released, but the vast majority have not, thereby offering students 

the chance to genuinely experience the problems that face a real statistician. Using the web based 

Sampler, students can draw simple random samples of up to 255 cases. Most importantly, students 

can define the attributes of the individuals sampled using the unique interface. Figure 4 shows the 

set up used to draw a simple random sample of 200 Year 8 males who attend public schools and 

live in the central suburbs of South Australia. This simple random sampling capability allows 

students to investigate all sorts of interesting things about the population, a population to which 

they belong and the parameters of which they have considerable knowledge. 

 

 

Figure 4. The simple random sampling device of SeniorSchoolCensus-online. 

 

9.1 Tasks for Phase Three. 

One question asked in the survey from the SeniorSchoolCensus-online project can be seen in 

Figure 5. 
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Figure 5. Question 32 from SeniorSchoolCensus-online, as seen in the survey. 

 

The following question could be asked of students analysing these data: 

• What do Year 8 boys tend to think is the coolest fashion accessory? 

Students can take a simple random sample from the population and proceed with the analysis of 

their sample (which will of course be somewhat different from other students’ samples), reading 

within and then beyond the data. 

 

Another question asked in the survey can be seen in Figure 6. 

 

 

Figure 6. Question 22 from SeniorSchoolCensus-online, as seen in the survey. 

 

Responses were to the nearest hour. The following question could be asked of students analysing 

these data: 

• How much television did Year 8 students watch on Saturday and Sunday last week? 
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9.2 Tasks for Phases Four. 

Also asked as a part of the survey is the question seen in Figure 7. 

 

 

Figure 7. Question 17 from SeniorSchoolCensus-online, as seen in the survey. 

 

The following question could be asked of the students analysing these data: 

• How, if at all, do Year 8 boys differ from Year 8 girls in terms of what they regard as the 

coolest fashion accessory? 

Students can take a simple random sample of Year 8 boys and then a simple random sample of 

Year 8 girls from the population and proceed with the analysis of their samples. 

Another question asked in the survey is seen in Figure 5. 

 

 

Figure 8. Question 23 from SeniorSchoolCensus-online, as seen in the survey. 

 

Channels 2, 7, 9, 10, and SBS are free-to-air channels. The students who responded ‘Other’ 

claimed a pay TV channel was their favourite channel. So, the following question could be asked 

of the students analysing these data: 
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• Did Year 8 students who stated their favourite TV channel was a pay TV channel watch 

more or less TV on the Saturday and Sunday last week compared to those who stated a 

free-to-air channel was their favourite? 

 

10. The remaining questions arising from the nagging doubts. 

Having addressed the first two questions, a series of other questions followed. The questions are: 

• If we accept that we want students to use data to answer questions and solve problems, 

then is it realistic to have students 12 - 14 years of age (or younger) forming arguments that 

support conclusions and in some cases conjectures about populations as a result of reading 

within, within and between, and so on, in a manner that is not driven by some formulaic 

process? 

• If we suppose the answer to the previous question is yes, then what is the minimum set of 

tools required to equip students to form satisfactory conclusions and supporting 

arguments? The existence of a minimum tool set may provide the time for students to come 

to grips with the process of concluding and arguing and allow them time to understand 

more deeply the context of the problem at hand and how to solve it. The main outcome 

would then not be on the end of a long line of other outcomes. 

• When should these phases be implemented? 

 

11. The minimum set of tools and their application. 

I propose that the minimum set of tools required by a student to be able to produce useful 

conclusions and supporting arguments to questions similar to those posed earlier are: 

• a functional understanding of percentages 
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• the ability to be able to quickly and easily 

o produce a simple pictorial representation of the distribution 

o slice a distribution into sections (student defined) for which they can determine the 

percentage of the data points falling in the sections. 

Clearly the slicing and percentage calculation process, if done manually, would be too labour 

intensive. However, recent developments in statistical software have made this a simple process. 

The software product Tinkerplots (Konold, C. and Miller C., 2004), provides the tools (among 

many others) that make these tasks simple and quick. Students can rapidly slice up distributions, 

consider what information that particular slicing configuration conveys and then try other 

alternatives. The application of these tools in this way is called distribution division. I believe 

distribution division should precede the use of the more traditional summary statistics like the 

mean, median, interquartile range and so on as tools to summarise and describe distributions. 

 

11.1 The minimum set of tools in action. 

To illustrate how these tools may be used I look at some of the questions posed earlier. As the 

approach I suggest is essentially a contingency table approach, and its application to categorical 

data is widely accepted, the focus will be on data measured on an interval scale, which is 

somewhat less conventional. 

 

Recall the task: 

Describe the batting performance of the Australian cricket team during the 1990s. 

Using the minimum set of tools found within the Tinkerplots environment we could proceed as 

seen in Figure 9 to analyse the total runs scored in every match played by Australia in the 1990s. 
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Figure 9. A simple graphical representation of the distribution of total runs scored in each match 

played by Australia in the 1990s cut into 5 divisions. 

 

After creating a distribution of scores, the student can place dividers over the distribution which 

they can freely position anywhere they like. To these divisions they can also add labels that show 

the counts and/or percentages lying within each division. The red reference line is another option 

which helps students read off the location of a divider or case with respect to the horizontal axis. 

Choosing to slice the distribution into five divisions provides the following description: 

 

108 matches were played in total. In 54% of the matches, Australia scored between 450 and 

650 runs. In 26% of the matches between 290 and 450 runs were scored. Greater than 650 

runs but less than 770 were scored in 17% of matches while there were 4 extreme results. 

 

The number of dividers used and their placement will differ from person to person. 
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An alternative approach would be to consider the overall run rate (runs per over) for each match 

played, as seen in Figure 10. 

 

 

Figure 10. A simple graphical representation of the distribution of run rate for each match played 

by Australia in the 1990s cut into 3 divisions. 

 

Here we see that cutting the distribution into three divisions provides good information to describe 

the performance using this attribute. I have chosen to set the central division to have limits of 2.5 

and 3.5 runs per over respectively. Some understanding of the game is needed to make this choice. 

 

It should be noted here that the investigation of other variables would be sensible in attempting to 

perform the task: 

Describe the batting performance of the Australian cricket team during the 1990s. 

It is not the purpose of this article to perform a full analysis to answer this or other questions 

posed. 

 

Now recall the task: 
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• How much television did Year 8 students watch on Saturday and Sunday last week? 

Using a simple random sample of 200 Year 8 boys from the population formed in the 

SeniorSchoolCensus-online, we can proceed as seen in Figure 11. 

 

 

Figure 11. A simple graphical representation of the distribution of hours of TV watched cut into 5 

divisions. 

 

Choosing to cut the distribution into five divisions provides a good summary of the distribution, 

clearly highlighting the fact there are eight extreme responses. The choice of the number of 

sections and positioning of the cuts is obviously critical and requires some experimentation, during 

which a student would become more familiar with the distribution. It is now open for the student 

to consider what this sample may tell us about the population, giving them the opportunity to form 

a conjecture about the population. Research is needed to investigate how students would approach 

this task and how successful they would be. 

 

Now recall the question: 
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The cricket team of which country, Australia or England, had the better batting performance 

during the 1990s? 

Using the minimum set of tools (within Tinkerplots) we can proceed as seen in Figure 12. 

 

 

Figure 12. A simple graphical representation of the distribution of run rate for each match played 

by Australia and England in the 1990s. 

 

Choosing three divisions and setting the cuts to be the same as in the Australia only analysis 

(Figure 10) allows us to see that 14% more of Australia’s run rates were between 2.5 and 3.5 runs 

per over. Also, Australia had 2% more run rates in the upper range than England. So one could ask 

where are the 16% of the English run rates that would be in between these limits if the teams’ 

performances were generally the same? It is clear that they are in the lower zone. This supports the 

argument that Australia had the better batting performance in the 1990s. 

 



 DRAFT 

Page 23 of 30 

Now recall the question: 

• Did Year 8 students who stated their favourite TV channel was a pay TV channel watch 

more or less TV on the Saturday and Sunday last week compared to those who stated a 

free-to-air channel was their favourite? 

Using a simple random sample of 400 students, comprising 200 Year 8 boys and 200 Year 8 girls 

we can proceed as seen in Figure 13. 

 

 

Figure 13. A simple graphical representation of the distribution of hours of TV last weekend for a 

sample of 400 students broken down by form of favourite channel. 

 

The choice of number and placement of divisions in this case was based on dividing the pay TV 

channel distribution in a satisfying way and then comparing the free-to-air distribution when 

divided the same way. We can use a similar analysis to that used in the previous example, noting 

that the pay TV distribution has 10% more students in the 5 to 12 hour range than does the free-to-
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air distribution. We can then look to see where that ‘missing 10%’ are, and so on, suggesting that a 

difference does exist between these distributions and that this difference may support the 

conjecture of a difference in the population. 

 

Obviously, this type of analysis is not possible without an interface like that of Tinkerplots. It also 

requires considerable perseverance from students in experimenting to achieve a division structure. 

I do not see this as a problem and suggest that it is a good thing. At this stage, my classroom 

experiences support the claim that this sort of analysis is a reasonable expectation of young 

students and a better way to initiate their data analysis journey. 

 

One interesting question, specific to Tinkerplots, is whether or not the colour gradient feature, 

when representing variation in the response variable, would help or hinder the division process. 

When a certain attribute is selected, the icons representing each case are coloured. The level of 

colour (light to dark) of a given icon indicates to the student the relative value of the attribute for 

this case. You will note that in all figures except for Figure 12 the colour gradient represents 

variation in the response variable. Figure 12 shows an alternative use of the colour gradient 

feature. 

 

12. The positive aspects of distribution division. 

I propose that distribution division provides a method that allows students to make the process of 

building an argument the focus of their learning rather than it being on the end of a long chain of 

other skills which have to be learned as it was in the 1998 materials. It provides some level of 
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structure for students to work within, but not so much that students are able to follow some pre-

learned formula, as was also the case in the 1998 materials. 

 

I also propose that the distribution division method provides the opportunity for students to really 

appreciate the concept of distribution – something so poorly understood by many students (and 

adults). This approach may also work towards breaking down the tendency students have to think 

of distributions in three parts, the majority in the middle, low values and high values (Bakker 

&Gravemeijer, in press, Konold et al., 2002). The chance of this would be increased if more of the 

data sets students worked with displayed non-normal tendencies. 

 

In addition to this, if students have a greater appreciation of the concept of distribution, the 

distribution division approach should provide an excellent foundation that will aid in the 

understanding of: 

• modal clumps 

• outliers 

• symmetry and asymmetry 

• probability distributions, which will be faced by students later in their learning. 

 

Finally, this approach employs the same methods used in analysing categorical data and data 

measured on an interval scale, making the need for the distinction at this stage unnecessary. This 

raises the question as to when the distinction between different forms of data should be made. It 

must be made, but I suggest not prior to Phase Four type investigations. The icon colouring feature 

of Tinkerplots may well lead students to this distinction. Distinctly different colours are used to 
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represent the response levels of categorical data as opposed to the single colour gradient used for 

data measured on an interval scale. 

 

If students are to function well at higher levels of school and university, they must move on from 

the analysis techniques outlined in this article. The ability to locate modal clumps, identify 

outliers, identify symmetry or asymmetry and apply summary statistics like the mean, median, 

interquartile range and standard deviation all need to be developed. Therefore, we need to consider 

what sort of learning experiences would motivate this ‘moving on’. 

 

13. Motivating the need for more tools: Phases 5 and 6. 

The reason for needing different tools to those in the minimum set must be clear to students. 

Summary statistics like the mean, standard deviation and so on could be described as more 

‘efficient’ tools in the sense that, to a mature users of these tools, two numbers and a description of 

the shape of a distribution can provide a fair indication of what the distribution is like. This could 

be one reason for introducing them. However, a far more powerful approach is to provide students 

with a problem for which the minimum tool set becomes cumbersome. One such task could be: 

The cricket team of which country, Australia, England, India, South Africa or New Zealand 

had the best batting performance during the 1990s? 

This task is considered a Phase Five task in which students use the more traditional tools in 

situations where all the data is before them. 

 

Attempting a division type analysis would be a serious challenge (five explanatory levels to 

compare and contrast) and the thought of it, or attempting it, would hopefully have students 
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asking, “Is there a better way?” The need for different tools would then clear to the students. Here, 

the introduction of a tool like the mean provides a simpler way to compare the distributions. Other 

tools, their use and relative merits could follow. 

 

A Phase Five task like that described above, together with tasks involving two categorical 

variables where one has numerous levels, provides the logical motivation to explore the 

differences in the forms of data that students have previously been working with. Hence, the 

nominal, ordinal, interval distinction can be made and alternative forms of analysis can be 

developed. In addition to this students should be able to begin to appreciate and identify the 

structure of the data sets they are using, realising that most data sets they use are in fact multi-

variate. Robert Hall’s matrix represents one attempt to draw attention to this most important 

feature of the data sets with which we work. 

 

A Phase Six task would include the opportunity for the students to think beyond the sample they 

have to a population. Starting with familiar populations and then moving to non-familiar situations 

would be desirable. SeniorSchoolCensus-online offers the opportunity to create numerous tasks of 

this nature. 

 

14. Have the nagging doubts been addressed? 

Learning materials based on the phases proposed in this article and the process of distribution 

division will be used by students throughout the latter part of 2004 and early in 2005. After this 

has occurred, conclusions about the success or otherwise of these ideas in enabling students to 

make reasoned decisions will be made. 
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One question posed earlier remains to be considered: 

• When should Phases One to Four be implemented? 

This will be addressed in the following section. 

 

15. Effects on curriculum. 

The potential effects on the curriculum of the material and ideas outlined in this article are 

considerable. The timing of the introduction of the phases is an important consideration. 

 

I suggest that Phase One and Two type activities be implemented as soon as students are 

operational with percentages. In Australia this would be when students are approximately 12 years 

of age. I would suggest that Phase Three and Four type activities be implemented in the following 

one to two years. Problems involving categorical data could be included during this time as well as 

problems like those seen earlier. 

 

This would mean that students aged approximately 15 years would be ready to move on to forms 

of analysis that require them to locate modal clumps, identify outliers, identify symmetry or 

asymmetry, apply summary statistics like the mean, median, interquartile range, standard deviation 

and make use of more complex graphical displays like the box plot. It would also be at this age 

that students could begin to make formal distinctions between the forms of data they are analysing 

and how the analysis differs for each. 
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The major impact on the curriculum for students of age 12 years or thereabouts is that the main 

outcome of their learning can be the development of the skills required to form an argument to 

support a conjecture. This has been an elusive outcome for a very long time. 

 

16. Summary. 

The six phases discussed in this article offer a developmental pathway that could have students 

making decisions based on sound statistical reasoning. Distribution division allows students to 

work with very simple tools, the basics of which would have been previously learned, which in 

turn allows them to build an intimate knowledge of the distribution. It also allows them to focus on 

the formation of a supporting argument, rather than being expected to do this on the end of a long 

chain of new learning. The only new learning in Phases One to Four is the art of distribution 

division, the application of the skills of comparing and contrasting and forming arguments, based 

on fact, that support a conclusion or conjecture. Traditionally our students have been initially 

taught to apply Phase Five and Six concepts to problems from Phases One to Three; this may well 

have been compounding their statistical illiteracy. The approach outlined in this paper offers the 

possibility that students will have a sound foundation on which to build when first meeting 

concepts and problems from Phases Five and Six. 

 

If we suppose the proposed phases are desirable, then phases prior to these six exist. Some thought 

and some minor teaching experiments have been done in this area, but it is not the point of this 

article to elaborate on further. 
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